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2 Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10/1 Modena, Italy, marta.lovino@unimore.it; elisa.ficarra@unimore.it;
0000-0002-8061-2124

Abstract

As of late 2019, the SARS-CoV-2 virus has spread globally, giving several variants
over time. These variants, unfortunately, differ from the original sequence identified in
Wuhan, thus risking compromising the efficacy of the vaccines developed. Some software
has been released to recognize currently known and newly spread variants. However, some
of these tools are not entirely automatic. Some others, instead, do not return a detailed
characterization of all the mutations in the samples. Indeed, such characterization can be
helpful for biologists to understand the variability between samples. This paper presents
a Machine Learning (ML) approach to identifying existing and new variants completely
automatically. In addition, a detailed table showing all the alterations and mutations found
in the samples is provided in output to the user. SARS-CoV-2 sequences are obtained from
the GISAID database, and a list of features is custom designed (e.g., number of mutations
in each gene of the virus) to train the algorithm. The recognition of existing variants is
performed through a Random Forest classifier while identifying newly spread variants is
accomplished by the DBSCAN algorithm. Both Random Forest and DBSCAN techniques
demonstrated high precision on a new variant that arose during the drafting of this paper
(used only in the testing phase of the algorithm). Therefore, researchers will significantly
benefit from the proposed algorithm and the detailed output with the main alterations of
the samples.
Data availability: the tool is freely available at https://github.com/sofiaborgato/

-SARS-CoV-2-variants-classification-and-characterization.

1 Scientific Background

At the end of 2019, a new virus of SARS-CoV was spotted in the Chinese region of Wuhan. The
virus causes a severe respiratory illness later called COVID-19, which led to a global pandemic.
As a result, in early December 2020 FDA authorized the first vaccine for emergency use[10].
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Likewise, in late December 2020, The European Commission authorized the first vaccine to
prevent COVID-19 in the EU, following evaluation by EMA [17]. However, at the same time, due
to some critical mutations in the virus’s genome, new lineages of the viruses, commonly known as
variants, began to spread, with the risk of making the vaccines less effective. A sample isolated
from pneumonia patients who were some of the workers in the Wuhan seafood market found
that strains of SARS-CoV-2 had a length of 29.9 kb. Structurally, SARS-CoV-2 has four main
structural proteins, including spike (S) glycoprotein, small envelope (E) glycoprotein, membrane
(M) glycoprotein, and nucleocapsid (N) protein. The most important variants spreading at the
moment this paper is being written are the following ones[9]:

• VOC Alpha 2012012/01 GRY, lineage B.1.1.7 (English variant)[4], first detected
in October 2020, it is correlated with a significant increase in the rate of COVID-19
infection in the United Kingdom, associated partly with the N501Y mutation.

• VOC Beta GH/501Y.V2, lineage B.1.351 (South-African variant)[20], was first
detected in South Africa and reported by the country’s health department. The South
African health department indicated that the variant may have driven the second wave
of the COVID-19 epidemic in the country due to the variant spreading faster than other
earlier variants of the virus.

• VOC Gamma GR/501Y.V3, lineage P.1 (Brazilian variant)[21] was detected in
Tokyo on January 2021. A study found that P.1 infections can produce nearly ten times
more viral load than persons infected by one of the other Brazilian lineages (B.1.1.28 or
B.1.195).

• VOI Epsilon, lineage B.1.427/B.1.429 (Californian variant)[5],[11] was first de-
tected in Fall 2020 in Northern California. CDC has listed B.1.429 and the related B.1.427
as ”variants of concern” and cites a preprint for saying that they exhibit a 20% increase in
viral transmissibility and moderately reduce neutralization by plasma collected by people
who have previously been infected by the virus or who have received a vaccine against
the virus.

• VOI Eta G/484K.V3, lineage B.1.525 (Nigerian variant)[13] The first cases were
detected in December 2020 in the UK and Nigeria. B.1.525 appeared to have significant
mutations already seen in some of the other newer variants, which is partly reassuring as
their likely effect is, to some extent, more predictable.

• VOC Delta G/478K.V1, lineage B.1.617 (Indian variant)[12], was first identified
in Maharashtra, India, in October 2020, but it reached a global spread in Spring 2021.
Emerging research suggests the variant may be more transmissible than previously evolved
ones.

At this pandemic stage, keeping the spread of new variants under control becomes a key
issue. In this context, inspired by a multitude of applications in bioinformatics[16, 15, 14, 18, 7],
several methods of variants classification have been proposed exploiting Machine Learning (ML)
and Deep Learning (DL) techniques[8, 6, 22]. These methods provide efficient tools for the
classification and clustering of SARS-CoV-2 samples. However, these tools can identify new
variants without providing the user with a detailed characterization and synthesis of the newly
identified variant, which is crucial in the field. Therefore, this paper aims to provide a general
pipeline to classify and cluster SARS-CoV-2 samples and verify if a new variant is detected.
In addition, the proposed pipeline provides an in-depth characterization in terms of critical
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mutations of the new variant. This characterization of the known and new variants can help
the experts in clinical settings in the recognition process, by describing the most common
mutations for each cluster and their location, which would help understanding more quickly its
danger.

2 Materials and Methods

This work aims to provide a tool that can automatize the process of analysis and description
of the SARS-CoV-2: the tool describes the key mutations of the group of samples and classifies
them according to the variant of each sample, giving as input the FASTA/FASTQ files of
genome samples of the virus. This section will cover the dataset creation and the proposed
algorithm.

2.1 Dataset

The samples used to train the tool were downloaded from the global science initiative GISAID[2],
which provides open access to whole-genome sequences of SARS-CoV-2. In addition, we down-
loaded 7 FASTA files containing the genome from the original Wuhan cases and 6 variants
divided into Variants of Interest (VOI) and Variants of Concern (VOC) [1]. The dataset
structure is described in Table 1.

Name First detected in # samples Submission Period

Original (Wuhan-Hu-1) China 1000 01/01/2020 - 24/03/2021
VOC Alpha 2012012/01 GRY (B.1.1.7) UK 1000 08/04/2021 - 09/04/2021
VOC Beta GH/501Y.V2 (B.1.351) South Africa 1000 04/04/2021 - 09/04/2021
VOC Gamma GR/501Y.V3 (P.1) Brazil 1000 17/03/2021 - 09/04/2021
VOI Eta G/484K.V3 (B.1.525) UK/Nigeria 1000 04/01/2021 - 09/04/2021
VOI Epsilon (B.1.427/B.1.429) California 1000 04/04/2021 - 09/04/2021
VOC Delta G/478K.V1 (B.1.617) India 500 01/04/2021 - 22/04/2021

Table 1: Dataset composition

Each sample was associated with a numeric label for the corresponding variant. Every
sample was complete (> 29kb) and high coverage (only entries with < 1% undefined bases,
< 0.05% of unique amino acid mutations and verified insertions/deletions), according to the
GISAID notation [2]. We used the genome NC 045512.2 provided by National Center for

Biology Information (NCBI)[3] as a reference to be compared with the samples in order to
highlight their mutations. In order to prepare the dataset, some preprocessing is needed,
including alignment and tables creation.

Alignment of the samples

First, the pipeline reads the FASTA files obtained from GISAID by creating a dataframe with
a row for each genome sample. The genomes are sequences of nucleotides represented by a
string of letters. When the nucleotide is known the letter can be one between A for adenine,
C for cytosine, G for guanine, T for thymine. Different letters can be used if the nucleotide is
unknown, according to the probabilities of being one of the previous bases. We decided to change
all of these letters with Xs to symbolize the unknown bases in the sequence. The second step
of the preprocessing phase consists in the alignment of the sequences to the reference genome.
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Figure 1: Description of the genome structure in SARS-CoV-2

This step is required to highlight and describe the mutations characterizing each genome. In
particular, the local alignment technique has proven to be less sensitive to unknown bases in
the samples. This technique, though, can be computationally expensive. Therefore, the tool
allows dividing the genome in a subsequence of a fixed length, then separately aligned and
concatenated. In order to ensure the stability of the process, consecutive sub-string have an
intersecting section.
The performance of the aligner can vary according to the choice of the different scores: 1)
correct match: score assigned when the basis of the sequence matches the one of the reference.
Set to 2 in this paper; 2) mismatch: score assigned when the basis of the sequence does not
match the one of the reference. It is set to -0.1; 3) gap: score assigned when a first gap is
inserted in the sequence or in the reference. It is set to -2; 4) repeated gap: score assigned
when there is more than one consecutive gap in the sequence or in the reference. It is set to
-0.2;
These parameters have been empirically optimized for the alignment of SARS-CoV-2 sequences.
This combination, indeed, is stable to the presence of sequences of Xs, which have to be
considered as mismatches.

Tables construction

The final step of the preprocessing phase compares the aligned sequences and the reference
genome.
The uptake of working with aligned sequences allows splitting them into different genes accord-
ing to the division of the reference and evaluating the mutations separately for each gene. The
results of this evaluation are then automatically summarized into three output tables (gene se-
quences, mutation statistics, key mutation), which supply a thorough description of the sample
given as input.

Gene sequences table. This table contains in each row the sequence split according to
the gene division in Figure 1 and the label of the variant. variants.

Mutations statistics table. This table describes numerically the kind and the number of
mutations divided by region. The mutations can be divided according to the following:

1. Silent substitutions: single-base substitutions which code for the same amino acid
and do not affect the functioning of the protein; 2. Nonsense substitutions: single-base
substitutions that result in a premature termination codon which signals the end of translation.
This interruption causes the protein to be abnormally shortened; 3. Missense substitutions:
single-base substitutions, which results in the generation of a codon that specifies a different
amino acid and hence leads to a different polypeptide sequence. Depending on the type of

69



SARS-CoV-2 variants classification and characterization Borgato, Bottino, Lovino and Ficarra

Figure 2: a) Example of mutation statistics table. Every column has the format type region
and counts how many mutations of a specific type happened in a region of the virus genome,
for every sample. The last column contains the common name of the variant classified. b)
Example of key mutation description table, describing the most common mutations in the
dataset given as input in descending order according to the frequency.

amino acid substitution the missense mutation is either conservative or nonconservative. 4.
Deletions: mutations where one or more bases are lost from the reference genome. According
to the number of lost bases, the deletion can be in-frame or cause a frameshift, resulting in a
garbled message or a non-functional product. 5. Insertions: mutations where one or more
bases are added concerning the reference genome. Once again, they can be in-frame or frame-
shift. An example of the mutations statistics table is reported in 2 a).

We wrote Python code to compare every sample with the reference and identify every
mutation. This table counts the number of mutations for each gene divided according to the
specific type as described above.

Mutations description table. This table describes the most frequent mutations in the
input sample. Every time a mutation is encountered when comparing the sequences and the
reference genome, different features are saved to describe it:

1) the nucleotide position, 2) the amino acid position 3) the gene 4) the type of mutation as
described in the previous paragraph. An example of the mutations description table is reported
in Figure 2 b). Afterward, the most frequent mutations are saved in the table in descending
order according to the frequency.
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(a) The heat-map describes the relationship be-
tween hyper-parameters of the Random Forest
and the optimal number of features selected by
RFE. The columns represent different number
of trees, while the rows represent their possible
depths.

(b) The y axis represents the distance to the
k-th nearest neighbor, x axis represents the
number of points that have the k-th nearest
neighbor within that distance.

Figure 3: Random forest(a) and clustering(b) hyper-parameters.

2.2 The algorithm

The proposed tool performs the supervised classification of new samples (test samples) from
FASTA/FASTQ files of SARS-CoV-2 sequences. In order to do so, the algorithm is trained
on 6000 sequences, coming from the original Wuhan samples and 5 variants known until April
2021 (alpha, beta, gamma, epsilon, and eta). First, all details about the training samples are
reported in Table[1]. Then, it automatically creates the mutation statistics table to train the
ML algorithm. With proper hyper-parameter tuning, many ML algorithms have been explored
for the classification task (e.g., Support Vector Machine - SVM, Multi-Layer perceptron - MLP).
The test set is made up of 150 samples, equally divided into the 5 SARS-CoV-2 variants.

Since all classifiers returned an accuracy higher than 99%, the Random Forest (RF) clas-
sifier has been chosen because it is one of the fastest and best performing. In addition, the
Recursive Features Elimination (RFE) was chosen as a feature selection method to optimize
the results of the RF. RF hyper-parameters (the best number of estimators of the model (trees)
and their maximum depth) were selected by performing a grid search for the highest accuracy.
Since all models scored > 99% accuracy on stratifying 5-fold cross-validation, we only looked
for the minimum number of features. This choice resulted in a number of estimators and a
maximum depth equal to 10. Figure [3a] represents the result of the RF hyper-parameters
optimization. The columns represent a different number of trees, while the rows represent their
possible depths.

In addition to the classification, the tool allows the user to cluster new samples providing the
FASTA/FASTQ files of SARS-Cov-2 sequences. The method automatically builds the mutation
statistics table, and the new samples are grouped into clusters corresponding to known variants
(alpha, beta, gamma, epsilon, and eta) or eventually new ones. In order to do so, the tool
concatenates the new samples to a control database containing 1000 samples for each known
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variant (see Table[1]). Eventual new clusters should represent a group of similar observations
that are sufficiently different from the known variants present in the control database at the
execution. Therefore, among many ML clustering algorithms tested, DBSCAN has been selected
for its density-based properties. However, since the number of clusters is not known in advance,
we implemented an automatized version of DBSCAN [19]. The parameters to be tuned in a
DBSCAN algorithm are the minimum number µ of points to define a cluster and the maximum
distance ϵ between two samples in the same cluster in the features space. The best performing
distance for this task is the euclidean distance and the optimal value of µ is 20. This value
was found empirically as the best-performing given the structure of the input table, but other
values, as long as lesser than the number of features (N = 39), led to comparable results. Since
the value of ϵ can vary according to the dataset given as input, we automatized the algorithm
proposed for the ϵ best choice as in [19]. A suitable value for ϵ can be found by calculating the
distance to the nearest µ points for each point, sorting and plotting the results (Figure 4b).

The optimal value for ϵ corresponds then to the elbow of this plot. Since it represents a
step function, we automatized the choice of the elbow by selecting the index where the distance
between two consecutive steps is under a certain threshold. We set the threshold empirically to
30 to be the most stable for the optimal choice of ϵ. The number of clusters created corresponds
to the number of known variants, a cluster of the outliers and, if data from new variants are
present, one cluster for each new variant.

3 Results and discussion

As previously stated, this paper aims to provide a tool to classify and cluster new SARS-CoV-2
samples in searching for possible new variants. In addition, gene sequences, mutation statistics,
key mutation tables are reported as an output. The tool has two options.

Classification option: the tool performs the supervised classification and labels the new
samples according to the known variants. This option is more accurate and less sensitive to the
outliers compared to the clustering option. However, it can be used only and advised for files
with < 100 samples. It creates a folder containing: 1) a histogram describing how the samples
are divided among the known variants, 2) the three tables -gene sequences, mutations statistics
and mutations description, described above-, 3) a descriptive plot of the average number of
mutations for each region and variant.

Clustering option: the tool performs the unsupervised clustering of the new samples. It
is more sensitive to the outliers but capable of highlighting new lineages of the genome. There-
fore it is advised for files with > 100 samples. It creates a folder containing: 1) a histogram
describing how the samples are divided among the clusters, 2) the three tables -gene sequences,
mutations statistics and mutations description, described above-, 3) a descriptive plot of the
average number of mutations for each region and variant, 4) an additional mutation descrip-
tion table for each new variant which describes its key mutations, 5) a text file describing the
performance scored by the clustering.

Outputs 1), 2), and 3) are in common between the classification and the clustering options,
while 4) and 5) are specific for the clustering one. Figure 4a reports an example of output 1)
both for the classification (on the left) and the clustering (on the right). Here, each column
represents the number of samples for each variant. In the classification case, we selected 150
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(a) Distribution of the test samples
among the known variants as output plot
of classification option.

(b) Distribution of the original labels among the different
clusters as output plot of clustering option. We can see that
the clusters from 0 to 5 correspond to the known variants,
whereas most of the unknown samples are assigned to a
brand new cluster. The cluster -1 collects the outliers.

Figure 4: Examples of output 1) for classification and clustering.

samples (30 for each known variant) as a test set, and the algorithm correctly assigned every
sample to its variant.

We selected 140 Delta variant samples (not present in the training dataset) and 10 samples
for each known variant as a test set in the clustering case. In this case, the algorithm adds
the new 190 test samples to the previous 6000 training ones. As shown in Figure[4b] the tool
properly associated the samples from the known variants to the same cluster of the ones from
the training set; it also creates a new cluster (cluster 6 in the figure) made up of only new
Delta variant samples. In addition, a cluster of outliers samples (cluster -1) is created, which
corresponds to 1.6% of the total number of samples.

An example of output 2) -the three tables- can be seen above, while an example of output 3)
the descriptive plot of the average number of mutations for each region and variant is reported
in 5.

This plot is crucial for biological interpretation of the results since it allows further analyses
to compare the different variants. For example, most of the mutations happening on genes
ORF1ab and S are samples from the Gamma variant, which on average mutates more in gene
S than the other ones. It is also interesting to note that distinction between variants is not
sensible to a low number of mutations. For example, it can be seen that even if the samples of
the original virus (light blue in Figure[5]) have a non-zero number of mutations, the clustering
algorithms still groups them correctly.

Suppose the tool highlights one or more new variants, as in the case reported. In that case,
a new mutation description table is created for each new variant, providing information about
its key mutations. In terms of format, output 4) is identical to table in Figure 2 b). This table
is extremely crucial for a biological interpretation of the variant since it details all encountered
mutations.

Output 5) is a text file containing the main clustering evaluation metrics (e.g., in the example
described the results are Homogeneity = 0.958, Completeness = 0.941, V-measure = 0.949,
Adjusted Rand Index = 0.97, Adjusted Mutual Information = 0.949, Silhouette Coefficient =
0.44).
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Figure 5: Example of analysis performed with statistics table: each column represents the
average number of mutations for each gene divided by color according to the variant of the
virus.

4 Conclusion

Summing up, the tool receives as input a FASTA file containing genome sequences from the
SARS-CoV-2 virus, aligns them to a reference genome with an algorithm of local alignment,
and compares them to the reference to obtain information about the mutations provided by
three data structures. This information can be exploited to train supervised classifiers that
can assign the samples to the correct variant or train a clustering algorithm to highlight new
clusters of genomes, representing new unseen variants.

The main limit of this work is the time used to align the genomes. In addition, this process
has a high computational cost compared to the ML part of the tool. Another limit is in the
ability of DBSCAN to find new clusters with unseen variants: since this algorithm is density-
based, it fails in finding a new variant if the number of samples is too small. We obtained good
results if the number of samples from the new variant is > 100. On the other hand, identifying a
group of anomalous samples as ”variant” would not make much sense if the number of exemplars
is too small.
Further development for this work could make the training dataset updatable whenever new
variants are met. By adding the samples from the new variant to the training dataset and
labeling them, the supervised classifier would predict new classes for the following observations.
This work, in particular, the mutation statistics and mutation description tables, can be useful
in clinical applications to automatize the analyses of the isolated samples, which would make
much faster the identification and description of new dangerous mutations in clusters of new
cases COVID-19.
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