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Abstract 

The large displacement analysis of microbeams and microframes is presented in this 

paper via a shear deformable corotational beam element. In order to account for the small 

size effect, the modified couple stress theory (MCST) is employed in conjunction with 

Timoshenko beam theory in deriving the internal force vector and tangent stiffness matrix 

of the beam element. Hierarchical functions are used to interpolate the local 

displacements and rotation. Newton-Raphson iterative procedure is adopted in 

combination with the arc-length method to solve the nonlinear equilibrium equation and 

to trace the equilibrium paths. Various microbeams and microframes are analyzed to 

show the influence of the size effect on the behavior of the microstructure. The obtained 

result reveals that the size effect plays an important role on the large deflection response, 

and the displacements of the structure are overestimated by ignoring the size effect. A 

parametric study is carried out to highlight the influence of the material length scale 

parameter on the large displacement behavior of the microbeams and microframes. 

1 Introduction 

Microbeams and microframes are used in many micro-electromechanical system (MEMS) devices 

such as capacitive MEMS switches and resonant sensors (Younis, 2011). In MEMS, the microbeams 

and microframes are often undergone large displacement comparing to their dimensions, and this 

motivates the geometric nonlinearity analysis of the microstructures. Investigations on buckling and 
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nonlinear behavior of microbeams and microframes have been extensively reported in the last two 

decades. Contributions that are most relevant to the present work are briefly discussed below. 

In order to model the small size effect of microstructures various higher-order continuum theories 

such as the strain gradient elasticity theory (SGET) (Farokhi, H. and Ghayesh, M. H., 2016), the 

modified couple stress theory (MCST) (Ghayesh, M. H. and Farokhi, H., 2018) have been developed 

to accompany a length scale parameter in modeling mechanical behavior of microstructures. 

Mohammadi and Mahzoon (Mohammadi, H. and Mahzoon, M., 2013) employed both the SGET and 

MCST to study postbukling of Euler-Bernoulli microbeams under the axial force and temperature rise. 

Xia et al. (Xia, W., Wang, L. and Yin, L., 2010) developed a new nonlinear beam model for static 

bending, postbuckling and free   vibration analysis of microbeams by introducing a material length scale 

parameter. The authors showed that the size effect is significant when the ratio of characteristic 

thickness to the material length scale parameter is approximately equal to one, but is diminishing with 

the increase of the ratio. Akgoz and Civalek (Akgoz, B. and Civalek, O., 2013) (Akgoz, B. and Civalek, 

O., 2015) employed the modified strain gradient theory to derive the differential equations for size-

dependent buckling analysis of microbeams. The influence of the size effect on the buckling 

characteristics of the beams was investigated with the aid of the Navier solution technique. The shooting 

method was employed in conjunction with Newton-Raphson procedure by Wang et al. (Wang, Y.-G., 

Lin, W.-H. and Liu, N., 2015) in computing nonlinear deflections and post-buckling paths of microscale 

Euler-Bernoulli beams under the mechanical and thermal loading. Ansari et al. (Ansari, R., Shojaei, M. 

F., Mohammadi, V., Gholami, R. and Darabi, M. A., 2013), (Ansari, R., Shojaei, M. F. and Gholami, 

R., 2016) adopted the differential quadrature method and the MCST in their study on nonlinear bending, 

buckling and vibration of third-order shear deformable functionally graded microbeams. The results of 

the work reveal that the frequencies buckling loads increase, but the nonlinear-to-linear frequency ratios 

as well as the deflections decrease by decreasing the thickness-to-material length scale ratio. A total 

Lagrangian beam element using the fifth-order interpolation was derived by Dadgar-Rad and Beheshti 

(Dadgar-Rad, F. and Beheshti, A., 2017) for nonlinear bending analysis of microbeams and 

microframes. The general form of Mindlin’s strain gradient theory was adopted by the authors to capture 

the size effects at micron scales and Newton-Raphson method was adopted to compute the deformation 

of the mircrobeams and microframes. Attia and Mohamed (Attia, M. A. and Mohamed, S. A. , 2020) 

investigated the thermal buckling and post-buckling of tapered bidirectional functionally graded 

microbeams. The governing equations were derived using Reddy beam theory, and then solved by the 

differential quadrature method in conjunction with the Newton-Raphson method. Numerical 

investigation perfomed by the authors shows that the material microstructure length scale which 

modelled via the MCST leads to the higher critical temperatures, but lower deflections. 

The von Kármán nonlinear assumption employed in the framework of a fixed coordinate system in 

the above references enables to model the microstructures with moderate deflections and rotations only. 

In practice, the microbeams and microframes can undergo large displacements and rotations, and this 

requires special approach of analysis. The finite element method as a powerful tool in handling 

nonlinearities is adopted herein to study the size dependent large displacements of planar microbeams 

and microframes. To this end, a corotational beam element which enables to capture both the small size 

effect and the large displacements of the microstructure is formulated and used in the study. The element 

based on Timoshenko beam theory and the MCST is derived by using hierarchical functions to 

interpolate the displacement field. With the derived element, equilibrium equation in the context of the 

finite element analysis is derived and solved by the Newton-Raphson based procedure in conjunction 

with the arc-length method. Numerical investigations are presented to highlight the influence of the size 

effect on the large displacement behavior of the microbeams and microframes.  
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2 Timoshenko microbeam model 

According to Timoshenko beam theory, axial and transverse displacements, u and w, of a point in a 

beam element are respectively given by 

         0 0, , ,  u x z u x z x w x z w x  (1) 

where  0u x  and  0w x  are, respectively, the axial and the transverse displacement of a point on the 

x-axis, and   x  is the cross-sectional rotation. 

The shallow arch expression for the axial and shear strains can be adopted for the large displacement 

analysis as (Crisfield, 1991) 

           2
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  x xx u x w x  is the membrane strain. In Eq. (2) and hereafter, a subscript comma 

is used to denote the derivative with respect to the followed variable, e.g. 0, 0 .  xw w x  

The constitutive equation based on linearly elastic behavior for the element material is of the 

following form  
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where xx and xz are, respectively, the normal and shear stresses, G  is the shear modulus and E is the 

Young’s modulus. The shear correction factor   in (3) is chosen by 5/6 for the present model. 

Since the classical continuum mechanics is not sufficient to predict the size-dependent behavior of 

micron-scale structures, the MCST proposed by (Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C. 

and Tong, P., 2002) is adopted herein to evaluate the strain energy of the microbeam element as 

 
1

: : d
2 V

V  σ ε m χU  (4) 

where V is the element volume; σ  and ε  are, respectively, the stress and strain tensors; m is the 

deviatoric part of the couple stress tensor and χ is the symmetric curvature tensor. For the microbeam 

under consideration, these tensors are given by (Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C. 

and Tong, P., 2002) 
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and l is the material length scale parameter; 
2(1 )
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G





and  are shear modulus and Poisson’s ratio, 

respectively. Using Eq. (5), one can rewrite the strain energy for the element in Eq. (4) in the form 
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3 Corotational Timoshenko beam element 

3.1 Hierarchical interpolation 

The displacements u0, w0 of a point on the beam mid-axis and the cross-sectional rotation θ in 

Timoshenko beam theory are independent, and linear functions can be adopted to interpolate them from 

their nodal values. The beam element formulated from the linear functions, however suffers from the 

shear-locking. To avoid the shea-locking problem, the hierarchical functions are employed herein to 

interpolate the displacement field as (Nguyen, D. K. and Bui, V. T., 2017)   

0 1 1 2 2 1 1 2 2 3 3 0 1 1 2 2 3 3 4 4, ,u N u N u N N N w N w N w N w N w             (8) 

where 1 2 1 2 3 4, , , ,... ,u u w w  are the degrees of freedom and N1, N2, N3 and N4 are the linear, quadratic, 

and cubic forms of the hierarchical shape functions with the following forms (Akin, 1994). 

2 2

1 2 3 4

1 1
(1 ), (1 ), (1 ), (1 )

2 2
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With  

2
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e

x

l
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being the natural coordinate (with le is the initial element length). 

       A Timoshenko beam element can be formulated from the interpolation (8) and (9). To make the 

element more efficient, (Tessler, A. and Dong, S. B., 1981) proposed a method by constraining the 

shear strain to be constant, constxz  . The method allows to express w3 and w4 in term of θi (i = 1..3), 

and the interpolation (8, 9) deduces to the following forms (Nguyen, D. K. and Bui, V. T., 2017)  
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The interpolation (11) is used herein to formulate a size-dependent corotational beam element for large 

displacement analysis of microbeams and microframes.   

3.2 Local and global relationship  

A planar 2-node beam element with its kinematics in two coordinate systems, a local (x, z) and a 

global (X, Z), as depicted in Figure 1 is considered. The element is initially inclined to the X-axis an 

angle 0 . The global system is fixed, while the local one continuously moves and rotates with the 

element during its deformation. The system (x, z) is chosen such that the origin is at the node 1 and the 

x-axis directs towards the node 2, so that 1 1 2 0u w w   . The element vector of local nodal 

displacements, (d), thus contains only four components 

 2 1 2 3, , ,
T

u   d  (12) 

The global nodal displacements in general are nonzero, and the element vector of global nodal 

displacements (D) has six components as 

 1 1 1 3 2 2 2, , , , , ,
T

U W U W   D  (13) 

where , ,i i iU W   (i = 1, 2) are, respectively, the global axial, transverse displacements and rotation at 

the node i, 3 is a global additional degree of freedom. 
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Figure 1: A 2-node corotational beam element and its kinematics 

The vectors of nodal internal forces associated with the nodal displacements in Eqs. (12) and (13) 

are   

   , , , ,
T T

in u in U Wf   f f F F F F  with  2 1 2 3, , ,
T

uf n m m m f  

     1 2 1 2 1 2 3, , , , , ,
T T T

U WN N Q Q M M M  F F F  
(14) 

where 1 2 1 2 1 2 3, , , , , ,N N Q Q M M M  are, respectively, the global nodal axial, shear forces and moments 

at nodes 1 and 2, and similar definition 2 1 2 3, , ,n m m m is applied for the local nodal force and moments. 

The following relation between the local displacement and rotations in Eq. (12) with the global ones 

in Eq. (13) can be obtained from geometric consideration of Figure 1 

2 1 1 2 2 3 3, , ,C e R R Ru l l               (15) 

The angle 0 , rigid rotation R , rotation  , the initial and current lengths of element ,e Cl l  in the 

above equation are of the following forms (Crisfield, 1991) 
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with  1 1,X Z and  2 2,X Z  are, respectively, the global coordinates of the nodes 1 and 2 of the 

element in the initial configuration (Crisfield, 1991). 

Assuming the strain energy U    of the element has been derived, the global nodal force vector fin 

and the tangent stiffness matrix kt for the element can be obtained by successive differentiating U   with 

respect to the global vector of nodal displacements as 
2

1 1 1 2 2 1 2 3 32
, ( )T T

in in t t n m m m
   

        
   

d
F T f K T k T T T

D d D D

U U U
 (17) 

In the above equations, in   f dU  and 
22

t   k dU  are, respectively, the local nodal force vector 

and tangent stiffness matrix; T1, T2 and T3 are the transformation matrices, which can be computed as 
2 2

2

1 2 32 2
, , ,Ru  

   
  

d
T T T

D D D
 (18) 

Eqs. (17) and (18) completely define the element formulation provided that the local nodal force 

vector and tangent stiffness matrix are known. 
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3.3 Local formulations 

Using the remarked above 1 1 2 0u w w    in Eq. (11), one can write 
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Differentiating 0 0,  and u w  in Eq. (19) with respect to x gives 

0, 2 , 0, 0,, , ,x u x x w xx wu b u w w   b θ b θ c θ  (21) 

with 

, , , ,, , ,u u x x w w x w w xb h     b h b h c b  (22) 

The axial strain as given by Eq. (2) and the interpolating functions (19) cannot be used directly to 

generate a finite element formulation due to the membrane locking effect. In order to avoid this problem, 

the membrane strain 0 in Eq. (2) is replaced by an effective strain defined as (Crisfield, 1991) 
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Using Eqs. (19) - (22), one can write Eq. (23) in the form 

eff 2 2

0

1 1
d

2

el

T T T

u w w u w

e e

b u x b u
l l

    θ b b θ θ B θ  (24) 

with  

0

24 24 0
1

d 24 24 0
2

0 0 2 45

e e el

T

w w w e e

e

l l

x l l

l

 
 

  
 
  

B b b  (25) 

Substituting Eqs. (2), (3), (5), (6) and (19) - (25) into Eq. (7), one gets 
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The local internal force vector inf is obtained by differentiating the strain energy as 
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It is convenient to split the local matrix tk into sub-matrices as 
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The sub-matrices in the above equation have the following form 
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With the derived local internal force vector inf  and the tangent stiffness matrix tk , Eqs. (17) and 

(18) completely define the beam element. 

4 Numerical examples 

Numerical examples are presented in this section to show the performance of the derived element. 

For the convenience of discussion, the following dimensionless parameters are introduced 
2 2

* * * *, , , ,
U W l GA PL ML

U W P M
L L EI EI EI

      (33) 

with GA and EI are the shear and bending rigidities, respectively. 

4.1 Accuracy and convergence studies 

Since the data for large displacements of microbeams and microframes are not available in the 

literature, the accuracy of the derived formulation is verified herewith by comparing the large 

displacements of macroframe structure obtained herein by setting η = 0 with the published data. To this 

end, Figure 2 and Figure 3 compare the load-displacement curves of a cantilever beam and Lee’s frame, 

respectively. Good agreement between is noted from the figures. 

Figure 4 and Figure 5 show convergence of the derived formulation of the derived element in large 

displacement of the cantilever microbeam and Williams’ microtoggle, respectively. The convergence, 
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as seen from the figures, is achieved by using two elements for the cantilever microbeam and only one 

element per beam for Williams’ microtoggle. 

 

 
Figure 2: Comparison of tip response of cantilever 

macrobeam due to a tip moment 

 
Figure 3: Comparison of load-deflection  

curves for Lee’s macroframe. 

 

 
Figure 4: Convergence of the derived formulation  

in evaluating tip displacements of cantilever 

microbeam due to a tip moment for η = 0.1. 

 
Figure 5: Convergence of the derived formulation  

in evaluating center deflection of Williams’  

microtoggle for η = 0.1.  

4.2 Cantilever microbeam with an end moment 

A cantilever microbeam under a tip moment M is considered. In Figure 6, the deformed 

configurations of the microbeam at the value of the length scale and applied moment parameters are 

depicted for various values of the scale parameter η and loading parameter λ. The microbeam rolls 

toward a circle when increasing the applied moment. The effect of the material length scale parameter 

η on the load-displacement curves of the microbeam is shown in Figure 7. As seen from the figure, the 

parameter η has a significant influence on the large displacements, and the displacements are lower with 

the presence of the length scale parameter η. 

4.3 Lee’s microframe 

The large displacements of an asymmetric miroframe under a downward P in Figure 3 are investigated 

herewith. The influence of the size effect and the large displacement behavior of the microframe can be 

seen from Figure 8, where the load-displacement curves of the microframes are depicted. The limit load 
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of the microframe, as seen from Figure 8 is considerably underestimated by ignoring the size effect of 

the microframe. 

 

 
Figure 6: Deformed configurations of cantilever 

microbeam under tip moment. 

 
Figure 7: Effect of length scale parameter  on load-

displacement curves of cantilever microbeam. 

 

 
Figure 8: Effect of material length scale parameter  

on load-displacement curves  

of Lee’s microframe. 

 
Figure 9: Effect of material length scale parameter  

on load-displacement curves  

of Williams’ microtoggle.  

4.4 Williams’ microtoggle 

The Williams’ microframe is analyzed by using only two elements per beam with the various values 

of the material length scale parameter,  = 0, 0.1, 0.2, and the result is shown in Figure 9. As can be 

observed that the deflection is larger for a smaller value of . This reveals that the size effect plays an 

important role in the large displacement behavior of the microstructures, and the displacements are 

underestimated by ignoring the size effect. 

5 Conclusions 

A corotational beam element for large displacement analysis of microbeams and microframes was 

formulated in the basis of Timoshenko beam theory and the MCST. The hierarchical functions were 

employed in deriving the internal force vector and tangent stiffness matrix of the element. Using the 

derived element, the equilibrium paths of various microbeams and micro frames have been computed.  

The obtained results show the derived beam element is accurate and it is capable to model the size 

effects of the microstructures. The influence of the material length scale parameter on the large 
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displacement behavior of various microbeams and microframes has been examined in detail and 

highlighted. 

References 

Akgoz, B. and Civalek, O. (2013). Buckling analysis of functionally graded microbeams based on the 

strain gradient theory. Acta Mechanica, 224(9), 2185–2201. 
Akgoz, B. and Civalek, O. (2015). A novel microstructure-dependent shear deformable beam model. 

International Journal of Mechanical Sciences, 99, 10-20. 

Akin, J. E. (1994). Finite elements for analysis and design. London: Academic Press, Ltd. 

Ansari, R., Shojaei, M. F. and Gholami, R. (2016). Size-dependent nonlinear mechanical behavior of 

third-order shear deformable functionally graded microbeams using the variational differential 

quadrature method. Composite Structures, 136, 669–683. 

Ansari, R., Shojaei, M. F., Mohammadi, V., Gholami, R. and Darabi, M. A. (2013). Buckling and 

postbuckling behavior of functionally graded timoshenko microbeams based on the strain 

gradient theory. Journal of Mechanics of Materials and Structures, 7(10), 931-949. 

Attia, M. A. and Mohamed, S. A. . (2020). Nonlinear thermal buckling and postbuckling analysis of 

bidirectional functionally graded tapered microbeams based on Reddy beam theory. 

Engineering with Computers, 1-30. 

Crisfield, M. A. (1991). Non-linear finite element analysis of solids and structures. Volume 1: 

Essentials. New York: Wiley. 

Dadgar-Rad, F. and Beheshti, A. (2017). A nonlinear strain gradient finite element for microbeams and 

microframes. Acta Mechanica, 228(5), 1941-1964. 

Farokhi, H. and Ghayesh, M. H. (2016). Size-dependent behaviour of electrically actuated 

microcantilever-based MEMS. International Journal of Mechanics and Materials in Design, 

12(3), 301-315. 

Ghayesh, M. H. and Farokhi, H. (2018). Nonlinear behaviour of electrically actuated microplatebased 

MEMS resonators based MEMS resonators. Mechanical Systems and Signal Processing, 109, 

220-234. doi:https://doi.org/10.1016/j.ymssp.2017.11.043 

Hsiao, K. M. and Hou, F. Y. (1987). Nonlinear finite element analysis of elastic frames. Computers & 

structures, 693-701. 

Mohammadi, H. and Mahzoon, M. (2013). Thermal effects on postbuckling of nonlinear microbeams 

based on the modified strain gradient theory. Composite Structures, 106, 764-776. 

Nguyen, D. K. and Bui, V. T. (2017). Dynamic Analysis of Functionally Graded Timoshenko Beams 

in Thermal Environment Using a Higher-Order Hierarchical Beam Element. Mathematical 

Problems in Engineering, 1-12. 

Tessler, A. and Dong, S. B. (1981). On a hierarchy of conforming Timoshenko beam elements. 

Computers and Structures, 335–344. 

Wang, Y.-G., Lin, W.-H. and Liu, N. (2015). Nonlinear bending and post-buckling of extensible 

microscale beams based on modified couple stress theory. Applied Mathematical Modelling, 

39(1), 117-127. 

Xia, W., Wang, L. and Yin, L. (2010). Nonlinear non-classical microscale beams: static bending, 

postbuckling and free vibration. International Journal of Engineering Science, 48(12), 2044-

2053. 

Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C. and Tong, P. (2002). Couple stress based strain 

gradient theory. International journal of solids and structures, 2731-2743. 

Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics (Vol. 20). Binghamton, New 

York: Springer Science & Business Media. 

A shear deformable corotational beam element for large displacement analysis of ... C. I. Le et al.

70


