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Abstract

Owing to their remarkable learning capabilities and performance in real-world applica-
tions, the use of machine learning systems based on Deep Neural Networks (DNNs) has
been continuously increasing. However, various case studies and empirical findings in the
literature suggest that slight variations to DNN inputs can lead to erroneous and undesir-
able DNN behavior. This has led to considerable interest in their formal analysis, aiming to
provide guarantees regarding a given DNN’s behavior. Existing frameworks provide robust-
ness and/or safety guarantees for the trained DNNs, using satisfiability solving and linear
programming. We proposed FANNet, the first model checking-based framework for analyz-
ing a broader range of DNN properties. However, the state-space explosion associated with
model checking entails a scalability problem, making the FANNet applicable only to small
DNNs. This work develops state-space reduction and input segmentation approaches, to
improve the scalability and timing efficiency of formal DNN analysis. Compared to the
state-of-the-art FANNet, this enables our new model checking-based framework to reduce
the verification’s timing overhead by a factor of up to 8000, making the framework ap-
plicable to DNNs even with approximately 80 times more network parameters. This in
turn allows the analysis of DNN safety properties using the new framework, in addition
to all the DNN properties already included with FANNet. The framework is shown to be
efficiently able to analyze properties of DNNs trained on healthcare datasets as well as the
well-acknowledged ACAS Xu networks.

Keywords: Bias, Formal Analysis, Input Node Sensitivity, Noise Tolerance, Robustness,
State-Space Reduction

1 Introduction

The continuous improvement of Machine Learning (ML) systems, often wielding Deep Neural
Networks (DNNs), has lead to an ever-growing popularity of these systems in real-world appli-
cations. These include face identification [48], speech recognition [20], anomaly detection [36],
and even safety critical applications like autonomous driving [18] and healthcare [17, 3].

However, as observed in numerous recent works, the DNNs deployed in such systems are
rarely resilient, i.e., they are extremely susceptible to misclassifying or arriving at an unsafe
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output decision in the presence of slight input modifications [40, 32]. Earlier attempts to ensure
correct functioning of these DNNs involved empirical approaches, for instance using gradient-
based methods [40, 29] to identify the adversarial noise patterns that would lead the DNN to
misclassify benign inputs. Although such attempts provide evidence to the lack of resilience of
DNNs, they are insufficient to provide any guarantees regarding DNNs’ resilience in the case
when no adversarial noise is found.

To deal with the aforementioned problem, there has been a great interest towards the rig-
orous evaluation of DNNs, using formal verification, in recent years [41, 25, 7]. This usually
involves checking resilience properties, like robustness and safety, of the DNNs using Satisfiabil-
ity (SAT) checking or Linear Programming (LP). However, the exploration of formal approaches
beyond SAT and LP, to analyze wider variety of DNN’s properties, remains largely neglected.

To the best of our knowledge, our prior work on Formal Analysis of Neural Networks (FAN-
Net) [31] was the first attempt to analyze DNN using SAT-based model checking. The frame-
work was applicable for the verification and analysis of multiple DNN properties namely: robust-
ness under constrained noise bounds, noise tolerance, training bias and input node sensitivity.
However, the FANNet framework provided limited scalability for formal analysis owing to the
large Kripke structure it generated, even for relatively small DNNs. Hence, the applicability of
the framework was limited to small DNNs only.

This work introduces FANNet+ 1, an optimized model checking-based formal analysis frame-
work for DNNs that overcomes the limitations of FANNet, and provides a significant improve-
ment over FANNet in terms of scalability, timing-efficiency and the scope of DNN properties
analyzed by the framework. In particular, the novel contributions of this work are as
follows:

1. Providing novel state-space reduction techniques to reduce the size of the DNN’s Kripke
structure (Section 4.1).

2. Providing coarse-grain and input segmentation approaches, to split the input domain into
manageable sub-domains, to aid model checking (Section 4.2).

3. Leveraging the framework for the automated collection of a large database of counterex-
amples, which assist in an improved analysis of the sensitivity of input nodes and the
detection of training bias (Section 4.3).

4. Comparing the timing overhead of simulation-based testing, FANNet [31] and the pro-
posed framework. The proposed framework reduces the timing-cost of model checking by
a factor of up to 8000 (Section 6.1).

5. Making use of the input sub-domains to verify safety properties of DNNs, in addition to
robustness under constrained noise, noise tolerance, training bias and input node sensi-
tivity properties (Section 6.4).

6. Deploying the above techniques to demonstrate the applicability of the new framework
on DNN case studies with up to 80 times more parameters than the ones used in FAN-
Net, thereby illustrating better scalability and applicability to more complex networks
(Sections 5 and 6).

1https://github.com/Mahum123/FANNetPlus

7

https://github.com/Mahum123/FANNetPlus


Scaling Model Checking for DNN Analysis M. Naseer et al.

Paper Organization The rest of the paper is organized as follows. Section 2 provides an
overview of the formal analysis approaches available in the literature for DNNs. Section 3
defines the basic DNN and model checking concepts and formalism relevant to this paper.
Section 4 provides an overview for our proposed framework FANNet+ for the formal DNN
analysis. Section 5 highlights the DNNs and datasets used to demonstrate the applicability
of our framework for analyzing the various DNN properties. Section 6 presents the results of
analysis for the given DNNs, also comparing timing-overhead of testing, FANNet and FANNet+.
Finally, Section 7 concludes the paper.

2 Related Work

The earliest attempt [47] to analyze correct DNN behavior involved mapping an DNN to a look-
up table. However, the approach lacked the sophistication to allow the analysis of intricate DNN
properties. Recent works instead focus mainly on the use SAT solving and LP, which not only
allow a better formal representation of DNNs but also the analysis of DNN properties like
robustness and safety.

The earlier SAT-based DNN verification attempts [33, 34] focused on the safety properties
of single hidden layer DNNs with logistic function as the activation. More popular SAT-based
approaches include the ones involving layer-by-layer DNN analysis [22] and leveraging simplex
algorithm to provide better splitting heuristics for piecewise linear activations during DNN
verification [24, 25]. Some of the recent works [30, 11, 35] instead focus on the verification of
Binary Neural Networks (BNNs), which are shown to be more power-efficient for the real-world
applications [23] and reduce the complexity of the verification task over conventional DNNs by
using binary valued parameters instead of the real numbered values.

Alternatively, the inherent support of LP for the linear constraints are leveraged in the LP-
based DNN verification approaches, particularly for those using piecewise linear (for instance,
the ReLU) activations [4, 27, 42, 38]. Branch and bound heuristics [43, 42, 8, 7] are also often
deployed for an efficient implementation of LP. In addition, some works [12, 15, 27, 6, 41]
also propose the use of Big-M technique, where an indicator variable is added to the linear
constraints to distinguish the different linear regions of the piecewise linear activation function
for DNN verification.

3 Preliminaries

This section describes the formalism of DNN architecture and properties relevant to this paper.
The basics of model checking, sufficient to understand this work, are also provided. Interested
readers may refer to [2] for more inclusive details on model checking.

3.1 Neural Network Architecture

Essentially, a DNN is an interconnection of nodes arranged in input, output and hidden layers
[39]. This work focuses on feed-forward fully-connected DNNs.

Definition 1 (Feed-forward fully-connected neural network). Given input domain X0, a feed-
forward network F : X0 → XL maps the input to the output domain XL such that the nodes
in each layer k depends only on the inputs from the preceding layer k − 1. This results in a
loop-free network that can be represented by xL = F (x0) = fL ( fL−1 (... f1 (x0) ... )),
where fk encapsulates the linear and non-linear transformations for layer k. The network is
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also fully-connected if each neuron in each network layer is connected to every neuron in the
adjoining layer.

Each layer of the network F involves two transformations: a linear and a non-linear trans-
formation. Given N nodes in the layer k of the network, the linear transformation can be given
by ykj = bkj +

∑N
i=0 w

k
ijx

k−1
i , where wk

ij represents the weight connecting node i from layer k− 1

to node j in the layer k and bkj represents the bias parameter value corresponding node j of the
layer k.

The non-linear transformation maps output of the linear transformation via a non-linear
activation function. This paper considers Rectified Linear Unit (ReLU) activation function,
which is a piecewise linear function mapping negative inputs to zero, while using identity
mapping the non-negative inputs, i.e., xk = max(0, yk). The choice of DNN output is often
based on the output with the highest values. As such, maxpool function is used as an activation
function for layer L of the network, i.e., xL = max(yL1 , yL2 , ..., yLC).

3.2 Neural Network Properties

The following provides formalism to some essential DNN properties to ensure correct DNN
behavior under varying input conditions (like the incidence of noise).

Definition 2 (Robustness). Given a network F : X → Y , F is said to be robust against the
small noise ∆x if the application of the noise to an arbitrary input x ∈ X does not change the
output classification of input by the network, i.e., ∀η ≤ ∆x : F (x+ η) = F (x).

Hence, by definition, a robust DNN does not misclassify inputs in the presence of pre-
determined noise ∆x.

Definition 3 (Noise Tolerance). Given a network F : X → Y , F is said to be have a noise
tolerance of ∆xmax if the application of any noise up to ∆xmax to an arbitrary input x ∈ X does
not change the output classification of input by the network, i.e., ∀η ≤ ∆xmax : F (x+η) = F (x).

In other words, noise tolerance provides (an estimate of) the upper bound of the noise that
the network F can withstand, without showing any discrepancies in its normal behavior, i.e.,
without compromising the robustness of the network.

Definition 4 (Training/Robustness Bias). Let x1, x2 ∈ X b arbitrary inputs from the output
classes A,B ⊂ Y , respectively. Given a network F : X → Y , F is said to be biased towards the
class A if the addition of noise ∆x to x1 does not cause any misclassification, but the addition of
same noise to x2 causes misclassification (i.e., ∃η ≤ ∆x : (F (x1 + η) = A)∧ (F (x2 + η) ̸= B)),
for a significantly large number of noise patterns (η).

Definition 5 (Input Node Sensitivity). Given a network F : X → Y , with the input domain
comprising of N nodes X = [X1, X2, ..., XN ]. Let ∆x = [∆x1,∆x2, ...,∆xN ] be the noise applied
to an arbitrary input x ∈ X, where the noise applied to each node is within the same bounds. The
input node α is said to be insensitive if the application of noise to the node ∀ηα ≤ ∆xα : xα+ηα
does not change the output classification of the input x.

It must be noted that the sensitivity of an input node is analyzed independently of the
remaining input nodes. This means, if the application of noise ∆xα to the node xa does not
change output classification of input x, the node is said to be insensitive regardless of what the
noise (within the limits ∆x) applied to the other input nodes may be.
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Definition 6 (Safety). Given a network F : X → Y , let [X,X] ⊆ X be the valid input domain,
and [Y , Y ] ⊆ Y be the safe output domain. The network F is said to be safe if all inputs within
the valid domain maps to the safe output domain, i.e., ∀x ∈ [X,X]. F (x) = y s.t. y ∈ [Y , Y ].

The safety property can also be subsumed by the concept of reachability, which requires
any undesired output to be unreachable by all valid inputs.

3.3 Model Checking

Model checking is an automated formal verification approach, whereby specifications/desired
properties are rigorously checked for a formal model/implementation given as a state-transition
system, like a Kripke structure, as shown in Fig. 1(a).

Definition 7 (Kripke Structure). Let AP be the set of all possible atomic propositions for a
given system. The Kripke structure M for the system is then a tuple M = (S, I, δ, L) such that:

– S is the set of all the possible states in the formal model M ,

– I ⊆ S is the set of the possible initial states,

– δ ⊆ S X S is the transition relation between the states, and

– L : S → 2AP is the labeling function that defines the AP valid for each state in M .
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Figure 1: (a) A simple Kripke structure; (b) Unwinding
the transition system to generate the computation tree for
BMC; (c) searching the computation tree for the temporal
property.

In case the specification does
not hold for the formal model, the
model checker generally provides
a path to property violation (i.e.,
a counterexample). The infinite
paths, resulting from self-loops or
cycles in the model, and may lead to
the infamous state-space explosion
problem [2]. Additionally, the ex-
plicit declaration of state variables
[21]) may also lead to the generation
of a large number states to encap-
sulate all possible behaviors in the
formal model, resulting in a similar
problem.

Numerous abstraction approaches
are available in the model check-
ing literature to reduce the size
of the formal model, hence avoid-
ing state-space explosion and scal-
ing the model checking for larger
systems. This paper leverages Bounded Model Checking (BMC) [5], Symbolic Model Checking
(SMC) [28] and jump transitions [26] to optimize the formal models of DNNs. BMC limits the
length of paths considered in the computation tree. SMC declares the state variables symbol-
ically, rather than explicitly. Jump transitions compress the states in the model for which the
labeling function L provides the same valid set of AP , as depicted in Fig. 2.
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Jump 
transition

SxS0 Condition:
L(S1) = L(S2) = L(S3) = … = L(Sx)

S1S0 S2 SxS3 . . .

Figure 2: Compressing Kripke structure using
jump transition.

Temporal logic is often the preferred for-
malism for defining the system properties in
model checking. It allows the notion of time
to be expressed in the propositions, using
temporal operators like: Xϕ that holds true iff
ϕ holds true in the next state, Gϕ that holds
true iff ϕ holds true in every state, and Fϕ
that holds true iff ϕ holds true eventually in
the current or a following states.

Given the formal model M and a property
defined in temporal logic, model checking involves unwinding the model (see Fig. 1(b)) into a
computation tree and transversing through the tree to search for a violation of the property (as
shown in Fig. 1(c)).

4 Proposed Optimizations for Formal DNN Analysis

The earlier model checking-based framework FANNet [31] provided an initial attempt for the
analysis of DNN properties leveraging explicit state model checking, due to the efficient per-
formance of explicit state model checking for software verification [16, 13, 9]. Additionally, the
independence of our DNN models on any particular hardware technology/components made
this choice of the type of model checking even more logical as the first-step in the domain of
model checking-based DNN analysis.
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Figure 3: Formal analysis of DNN trained on heart disease dataset, which delineates limited
scalability due to: (i) large Kripke structure, (ii) large verification time, and (iii) fewer coun-
terexamples collected within timeout, using FANNet.

Consider a binary classifier trained on heart disease dataset (details in Sections 5 and 6).
Not only is the size of formal model generated by FANNet large (also see Appendix H), but
as shown in Fig. 3, its average verification time is also large. Moreover, for precise analysis of
DNN’s training bias and input node sensitivity, a large number of counterexamples is required.
This means, the model checking needs to be repeated multiple times, while iteratively updating
the specification of this large formal model. Again, as observed in the case study in Fig. 3 that
running FANNet for a small time duration like 5 minutes does not provide a large database
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of counterexamples for precise training bias and input node sensitivity analysis, hence limiting
scalability and timing efficiency.

This section elaborates on our proposed optimizations for reducing the size of the Kripke
structure leveraged by our enhanced framework, FANNet+2. Moreover, two input splitting
approaches are also proposed, which reduce the size of the input domain and hence improve
the scalability and timing-efficiency of DNN model. Hence, in addition to the multiple DNN
properties analyzed using FANNet, the proposed framework also allows the analysis of DNN
safety properties dealing with a large input domain, which was not viable earlier.

4.1 State-Space Reduction

FANNet uses explicit state model checking. Hence, the Kripke structure involves the enumer-
ation of the different noise combinations from the available noise bounds defining the formal
model. This leads to the generation of output states with identical AP . In contrast, FANNet+
proposes the use of SMC to reduces such identical state generation. The noise is added to the
inputs symbolically, hence reducing the number of states in the model by a factor of approxi-
mately n. This can be viewed as the merging of states with identical valid AP in the formal
DNN model (also see Appendix H).

Conjecture 1. Given a model M with S = [Sa, Sb, Sc] and δ = [(Sa, Sb), (Sb, Sb), (Sa, Sc),
(Sc, Sc)] to be the set of all states and transition relations in the model, respectively, the states
Sb and Sc can be merged iff L(Sb) = L(Sc) holds.

This results in a smaller Kripke structure, with a significantly smaller set of paths to trans-
verse in the computation tree. This is further elaborated in Appendix I. This reduces the
chances of the infamous state-space explosion associated with model checking. In addition,
model checking can be viewed as a formal approach providing binary answers, i.e., either the
specification holds (UNSAT) or it is violated (SAT) for the given DNN model. This allows
further reduction of the number of states to be reduced by considering the output of the DNN
to be either “correctly classified” or “misclassified”.

4.2 Input Domain Segmentation

Noise tolerance analysis, as described above, makes use of seed inputs. Hence, model checker
only verifies specification for one element of the input domain at a time. However, for DNN
properties like safety, the verification often needs to be performed for the entire or subset of the
input domain, potentially leading to state-space explosion. This paper proposes two approaches
to resolve this problem: coarse-grain verification and random input segmentation.

4.2.1 Coarse-grain Verification

A rather straight-forward approach to verify a formal model with a large input domain is via
sampling the input domain into discrete samples with regular intervals, i.e., with a constant step
size. Depending on the size of the original DNN, input domain and the available computational
resources available to the model checker, the size of the input intervals can be fine-tuned. For
DNN specifications, for which the subset of input domain violating the specifications is large, the
coarse-grain verification provides an efficient means to reduce the size of Kripke structure, while
successfully finding any violations to the DNN specifications. However, for input domains where
property violation is a rare occurrence, the approach may overlook the property violations.

2Extended version: on arXiv with the same paper title
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4.2.2 Random Input Segmentation (RIS)

To address the challenge of dealing with a large input domain, this paper proposes the use of
RIS, as shown in Fig. 4. The overall idea here is to divide the input nodes into two mutually
exclusive sets: the variable and the fixed input node sets. The model checking is then carried
out using the inputs from the variable set represented symbolically while the discrete samples
from the fixed set are represented as constants in the model. Also see Appendix I for details.
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Figure 4: Overview of RIS: the input nodes are split into variable and fixed sets.

Since the splitting of the input nodes into the two sets and the following model checking
are completely independent, this provides an opportunity for high degree of parallelism to the
approach by dealing with different combinations of nodes from fixed and variable sets using a
different core. This, in turn, reduces the timing-overhead of the analysis.

It must be noted that RIS is optimal for DNN verification (using FANNet+) iff In >
Mn. I!

M !M ′! hold, where n is the number of noise options, I is the total number of input nodes,
M is the number of nodes in the variable set and M ′ the number of nodes in the fixed set
(I = M +M ′).

4.3 FANNet+: Optimized Framework for Formal DNN Analysis

The proposed optimizations reduce the size of DNN’s Kripke structure as well as split the input
domain into more manageable sub-domains (as summarized in Fig. 5). Appendix J provides
the summary and algorithm for the framework.

Initially, the formal model of the DNN is defined in the appropriate syntax of the model
checker, as indicated by the blue box in Fig. 5. This requires the use of trained DNN parameters
and architectural details of the network. Input is often normalized prior to being sent to the
DNN. Some DNNs may in turn also use inverse-normalization for the DNN output. To validate
the functional correctness of the model, the output of the model is checked for the known
(testing) inputs.

The robustness verification of the validated formal model is carried out using seed inputs
from the testing dataset and noise bounds, as explained in Section 4.1. This is expressed in the
yellow box in Fig. 5. The noise bounds are iteratively reduced until the noise tolerance of the
given network is obtained or the pre-defined timeout is reached, while collecting misclassifying
noise to form the counterexample database. In case the property holds before reaching the
timeout, the model checking is immediately terminated.

The counterexample database is then used in an empirical analysis to check the sensitivity of
individual input nodes and detect any underlying training bias. The is shown by the green box
in Fig. 5. The process is similar to the one used in FANNet. However, the improved timing-
efficiency of our current framework allows model checking a large number of times within the
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Figure 5: FANNet+ (a) provides robustness verification and noise tolerance, (b) uses the ob-
tained counterexamples to analyze bias and input node sensitivity, and (c) enables safety veri-
fication.

pre-defined timeout. This provides a much larger counterexample database than was possible
with FANNet, which in turn allows better analysis of the DNN properties in question.

DNN safety properties involve checking the DNN model with a large input domain. The
optimizations proposed in Section 4.2.2 allow safety verification of the validated formal model,
as shown in the orange box in Fig. 5. Here, either coarse-grain verification or verification with
RIS can be opted. As mentioned earlier, the step size (in coarse-grain verification) and the size
of input segments (in RIS) is chosen on the basis of the size of the original DNN, input domain
and the available computational resources available to the model checker.

5 Experiments

This section describes the datasets corresponding trained DNNs used to demonstrate the ap-
plication of FANNet+ for the analysis of DNN properties.

Leukemia Type Identification. The leukemia dataset [19] is a collection genetic attributes
of Acute Lymphoblast Leukemia (ALL) and Acute Myeloid Leukemia (AML) patients (hence-
forth referred to as Labels 1 and 0, respectively). Minimum Redundancy and Maximum Rele-
vance (mRMR) feature selection [1] was used to extract the 5 most important genetic attributes
representing leukemia for the training. A feed-forward fully-connected DNN with single hidden
layer and a total of 141 network parameters was trained for the dataset, with the training and
testing accuracies of 100% and 94%, respectively. The following properties are analyzed for
this DNN: robustness, noise tolerance, input node sensitivity, and training bias. The results of
analysis are presented in Section 6.

Heart Disease Prognosis. The heart disease dataset [14] provides the records of continuous
and discrete attributes enabling the prognosis of heart disease in the patients, i.e., patients with
and without blood vessels narrowing (henceforth indicated by Label 1 and 0, respectively). A
feed-forward fully-connected DNN with 3 hidden layers, and a total of 622 network parameters
was trained for this dataset. The training and testing accuracies of the DNNs were 90% and
86%, respectively. To imitate real-world case scenarios, where the noise is more likely to affect
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continuous variables as compared to discrete ones, noise was applied to the input nodes with
continuous variables. This was in turn used for the analysis of robustness (under constrained
noise), noise tolerance, input node sensitivity, and training bias. The results of the analysis are
presented in Section 6.

Airborne Collision Avoidance System (ACAS Xu). Airborne Collision Avoidance Sys-
tem (ACAS Xu) comprises of 45 networks that make use of the trajectories of ownship and
intruder to ensure safety while maneuvering the ownship. Each DNN is feed-forward and fully-
connected, with ReLU activation function, 6 hidden layers and 13, 305 parameters. Let i1–i5
be the DNN inputs corresponding distance between ownship and intruder, and their heading
angles and speeds, while o1–o5 be the ownship’s maneuvering decisions namely clear-of-conflict,
weak left/right and strong left/right. The DNN’s output decision corresponds to the output
class with minimal value. We consider 4 well-studied saftey properties of ACAS Xu networks
in our analysis (also given in Appendix K). As indicated in Section 4, the analysis of safety
properties involves a formal model with large input domains. Hence, coarse-grain verification
and RIS are used for the analysis of ACAS Xu networks.

6 Results and Analysis

We use DNNs highlighted in the previous section to perform formal DNN analysis on CentOS-
7 systems running on Intel Core i9 − 9900X processors at 3.50GHz. The proposed framework
FANNet+ is implemented in Python, C++ and MATLAB, and uses NuXmv model checker [10]
back end. The tools Reluplex [24] and Marabou [25] are implemented on virtualbox running
Ubuntu 18.04, for comparison. The timeout used for DNNs trained on leukemia and heart
disease datasets is 5 minutes, while a timeout of 2 hours is used for ACAS Xu networks. It
must be noted that the objective of comparison between FANNet+ and SMT-based tools is
to establish the consistency of results, not to compare timing-overhead since model checking is
still fairly a new direction for DNN analysis.

6.1 Computational Overhead for Testing and FANNet

Testing is generally considered more user friendly, as compared to model checking. However,
the results for model checking are more rigorous, and hence provide more reliable behavioral
guarantees than testing. We compared the performance of FANNet with MATLAB-based
testing. For testing, we define a matrix for all possible noise combinations, for a predefined
noise bounds, before initializing the test. On the other hand, the model checker searches for
noise combinations, non-deterministically, at run-time. Both experiments are based on the
small DNN trained on the Leukemia dataset, as described in the previous section, since the
timing and memory overhead of testing increases rapidly for large noise bounds for larger DNNs.
Both experiments run on the same seed inputs.

Considering the time taken until the termination of both experiments, the average timing
requirement of the FANNet, although significantly higher than testing’s for the given experi-
ment, increases at a slower rate than that for testing. This trend is illustrated in Fig. 6(a).
On the other hand, the increase in average memory requirements of FANNet also increases at
a significantly slower rate than testing, as shown in Fig. 6(b). The trends for the average time
and memory requirements of both experiments indicate that the strength of model checking is
more prominent for larger DNNs.
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6.2 Behavioral (Robustness) Verification and Noise Tolerance Deter-
mination

As indicated earlier, the Kripke structure model for DNNs generated by FANNet is quite
large, owing to the enumeration of noise applied to seed inputs. In contrast, the formal model
generated by the FANNet+ is considerably smaller due to the optimizations for state-space
reduction used. Hence, the framework provides same results (i.e., SAT or UNSAT) for both
robustness verification and noise tolerance determination. However, the execution times of the
frameworks are significantly different.
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Figure 6: (a) Timing, and (b) memory overhead comparison between exhaustive testing (using
MATLAB) and FANNet [31] for DNN trained on Leukemia dataset, b. Comparison of timing
overhead using (c) FANNet and (d) FANNet+ for DNN trained on heart disease dataset.

FANNet versus FANNet+ – We run both frameworks for the DNNs trained on the leukemia
and the heart disease datasets. Figs. 6 (c) and (d) shows the average execution time for verifying
DNNs for both datasets, under identical noise bounds. Both frameworks lead to the same noise
tolerance for the DNNs. However, the execution time for property verification is significantly
larger for FANNet, as shown in Figs. 6 (c) and (d). For the given DNNs, FANNet+ provides a
significant improvement over FANNet in terms of timing-cost, by reducing the timing overheard
by a factor of up to 8000 times. This makes FANNet+ suitable for the analysis of relatively
larger DNNs.

6.3 Counterexample Analysis for detecting DNN’s Training Bias and
Input Node Sensitivity

With the reduction in timing overhead, it is possible to run the framework for small timeout,
and yet be able to collect a large database of misclassifying noise vectors, i.e., counterexamples.
Analyzing the DNN outputs for these counterexamples provide insights regarding training bias
and input node sensitivity, as shown in Figs. 7 and 8.

As observed in Fig. 7, for the DNN trained on leukemia dataset, even when the large noise is
applied to inputs, ALL inputs are rarely misclassified to AML. From the description of available
datasets (discussed in Section 5), it is known that training dataset for leukemia is significantly
imbalanced, i.e., approximately 70% inputs belong to ALL. Hence, the obtained results indicate
a strong bias in the resulting trained DNN likely due to the imbalance in dataset.
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Figure 7: Output classification of DNNs trained on (a) Leukemia dataset and (b) Heart disease
dataset, mapped with respect to the input noise, using FANNet+. An unequal number of red
and blue points indicates a bias in trained networks.

On the contrary, for the DNN trained on heart disease dataset, outputs from both classes
are misclassified even though the misclassifications from Label 0 to Label 1 are more likely.
The training dataset for heart disease does not have the same class imbalance as the leukemia
dataset. This likely accounts for the relatively moderate bias observed in the DNN.
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Figure 8: Plots of noise applied to individual input nodes (using FANNet+), that lead to
misclassification. Unlike FANNet (in orange), which shows complete insensitivity to positive
noise, FANNet+ provides more accurate results.

For the misclassifying noise vectors, observing noise applied to the individual input node
provides insights to the sensitivity of the input nodes. For instance, input node i5 from the
DNN trained on the leukemia dataset, shown in Fig. 8, was observed to delineate rarely any
misclassifications for the positive values of the applied noise. This suggests the node to be
insensitive to positive noise, for the trained DNN. However, this was not the case for any of
the input nodes for the DNN trained on heart disease dataset. For instance, node i8 in Fig. 8
gives an example of a typical input node that is not sensitive to any specific input noise.

FANNet versus FANNet+ – We performed the same experiment for DNN trained on
Leukemia using FANNet. As discussed earlier, due to the large timing overhead of FAN-
Net, the counterexamples obtained compose a smaller counterexample database. Hence, even
though both FANNet and FANNet+ indicate the DNN to be biased towards Label 1 and input
node i5 to be insensitive to noise, the results obtained by FANNet+ are more precise. For
instance, given the noise bounds of 40%, Fig. 8 indicate node i5 to be completely insensitive to
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any positive noise. However, FANNet+ predicts the node to be relatively insensitive to positive
noise, but may still lead to DNN misclassification with certain noise patterns. Hence, the larger
counterexample database with FANNet+ is able to provide more precise results for training
bias and input node sensitivity, as compared to FANNet.

6.4 Safety Verification
Node P1 P2 P3 P4

i1 10, 000 10, 000 10−9 1000
i2 1 1 10−9 10−1

i3 1 1 10−9 –
i4 500 500 10−9 400
i5 500 500 10−9 400

Table 1: Step sizes used for coarse-grain verification
of ACAS Xu safety properties.

For DNN properties, like safety, which
involve large input domain, coarse-grain
verification with input step sizes for
ACAS Xu networks as shown in Table
1, is first used. The verification for each
property, for each DNN, takes only a few
seconds to complete. As mentioned ear-
lier in Section 4, coarse-grain verification
is suitable when large segments of input
domain violate the DNN property, which does not hold true for ACAS Xu networks.

Next, RIS is deployed. Based on the chosen variable and fixed sets, and the input segments
of the nodes from fixed set, verification of each DNN is split into multiple smaller verification
sub-problems. As stated earlier, these verification problems are independent and hence, given
sufficient computation resources, they can potentially all be verified in parallel. If any of these
sub-problems return a SAT, the property is said to be violated for the DNN. Likewise, if any
of the sub-problems times out, the entire property is considered to have timed out, since the
model checker is unable to find a result for a sub-section of the input domain. Otherwise, the
verification is deemed to have terminated without a solution. It must be highlighted here that
the framework does not return UNSAT since the use of fixed set introduces a certain degree
of incompleteness, with respect to the input domain verified for the property. However, this
notion of incompleteness is not the same as the incompleteness of the formal model observed in
numerous state-of-the-art [37, 46, 38, 45], which may lead to false positive. On the other hand,
FANNet+ does not lead to false positives in the results.

The results of the safety verification are compared to those obtained from Reluplex and
Marabou. For all problems that provide SAT results with Reluplex and Marabou, FANNet+ is
also able to find the property violation unless the verification times out. It is interesting to note
that FANNet+ was also able to find a property violation for the network 2 2 with property P4,
although both Reluplex and Marabou return UNSAT for the stated property. We confirmed
the validity of the obtained counterexample using Maraboupy. Detailed results using Reluplex,
Marabou and FANNet+ are provided in the Appendix K.

FANNet versus FANNet+ – As opposed to FANNet+, which leverages coarse-grain verifi-
cation and RIS to split input domain prior to verification, FANNet relies on bounds of entire
input domain. Hence, the verification of safety properties of ACAS Xu networks was infeasible
with FANNet, even with a timeout of 24 hours.

7 Conclusion

Formally analyzing deep neural networks (DNNs) is an actively sought research domain. To-
wards this end, a model checking-based framework FANNet was introduced earlier, which could
verify robustness of trained DNNs to constrained noise, and also analyze DNNs’ noise tolerance,
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input node sensitivity and any underlying training bias. This paper proposes a more scalable
model checking-based framework FANNet+, which improves over FANNet in multiple direc-
tions. Firstly, it employs a state-space reduction strategy to ensure a more manageable size of
the resulting Kripke structure. Secondly, it introduced input domain segmentation approaches,
including our novel random input segmentation approach, which uses a divide-and-conquer
strategy to break the verification problem into smaller sub-problems. Thirdly, apart from the
multiple DNN properties mentioned earlier, the new framework FANNet+ extends the scope of
DNN analysis by adding the verification of safety properties to the framework. The aforemen-
tioned improvements were found to scale the framework for DNN’s with up to 80 times more
DNN parameters, while reducing the timing overhead by a factor of up to 8000 for the consid-
ered examples. The applicability of the framework was shown using multiple DNNs, including
the well-known ACAS Xu benchmark.

References

[1] Khan et al., S.: A novel fractional gradient-based learning algorithm for recurrent neural networks.
CSSP 37(2), 593–612 (2018)

[2] Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

[3] Bassi, P.R., Attux, R.: A deep convolutional neural network for covid-19 detection using chest
X-rays. Res. on Biomed. Engineering pp. 1–10 (2021)

[4] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring
neural net robustness with constraints. In: Proc. NeurIPS. pp. 2613–2621 (2016)

[5] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Handbook
of satisfiability 185(99), 457–481 (2009)

[6] Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient Verification of
ReLU-based Neural Networks via Dependency Analysis. In: Proc. AAAI. pp. 3291–3299 (2020)

[7] Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and bound for piecewise
linear neural network verification. JMLR 21(2020) (2020)

[8] Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view of piecewise linear
neural network verification. In: Proc. NeurIPS. pp. 4790–4799 (2018)

[9] Buzhinsky, I., Pakonen, A., Vyatkin, V.: Explicit-state and symbolic model checking of nuclear
i&c systems: A comparison. In: Proc. IECON. pp. 5439–5446. IEEE (2017)

[10] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri,
M., Tonetta, S.: The nuxmv symbolic model checker. In: Proc. CAV. pp. 334–342 (2014)

[11] Cheng, C.H., Nührenberg, G., Huang, C.H., Ruess, H.: Verification of Binarized Neural Networks
via Inter-Neuron Factoring. In: Proc. VSTTE. pp. 279–290. Springer (2018)

[12] Cheng, C.H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks. In:
Proc. ATVA. pp. 251–268. Springer (2017)

[13] Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous boolean pro-
grams. In: Proc. SPIN. pp. 75–90. Springer (2005)

[14] Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.uci.edu/ml

[15] Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward
neural networks. In: Proc. NFM. pp. 121–138. Springer (2018)

[16] Eisner, C., Peled, D.: Comparing symbolic and explicit model checking of a software system. In:
Proc. SPIN. pp. 230–239. Springer (2002)

[17] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Cor-
rado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Medicine 25(1), 24
(2019)

19

http://archive.ics.uci.edu/ml


Scaling Model Checking for DNN Analysis M. Naseer et al.

[18] Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep Learning-Based Multi-scale Multi-object
Detection and Classification for Autonomous Driving. In: Fahrerassistenzsysteme, pp. 233–242.
Springer (2019)

[19] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh,
M.L., Downing, J.R., Caligiuri, M.A., et al.: Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. science 286(5439), 531–537 (1999)

[20] Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Kingsbury, B., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion. Signal Process. magazine 29(6), 82–97 (2012)

[21] Holzmann, G.J.: Explicit-state model checking. In: Handbook of Model Checking, pp. 153–171.
Springer (2018)

[22] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In:
Proc. CAV. pp. 3–29. Springer (2017)

[23] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Proc. NeurIPS. vol. 29,
pp. 1–9. Curran Associates, Inc. (2016)

[24] Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient SMT
solver for verifying deep neural networks. In: Proc. CAV. pp. 97–117. Springer (2017)

[25] Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S., Wu,
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H Kripke Structure generation using FANNet and FANNet+

Fig. 9 presents the Kripke model generation for trained DNNs, using FANNet and FANNet+,
respectively. The use of optimizations elaborated in Section 4 allow a significant reduction in
the number of states in the model using FANNet+.
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Figure 9: The Kripke structures generated by the model checker for DNN with two (= C)
output classes/atomic propositions, using FANNet (top) and FANNet+ (bottom). G and F are
the temporal operators indicating that the property holds globally and eventually, respectively.
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I Random Input Segmentation (RIS): Details and Algo-
rithm

The RIS algorithm, introduced in Section 4 proceeds as follows (also summarized in Algorithm
1):

1. Initially, for each input node, the upper and lower bounds of the (equally-spaced) input
segments are calculated, as shown in Lines 3 − 4 of Algorithm 1. The number of input
segments for each node (i.e., the bins per input node (X)) is pre-defined.

2. The input nodes for the variable set are then picked, while the remaining nodes form the
fixed set. Line 9 of Algorithm 1 illustrates the selection of a single input node i for the
variable set, while remaining nodes Btemp form the fixed set. However, the algorithm
can be modified to work for any number of nodes being assigned to either of the sets.

3. Nested loops are used to pick the combination of segments for each input node in fixed
set. For each combination of segments, a random discrete input value is picked for each
input node, as shown in Lines 11− 16 of Algorithm 1.

4. The input domain is then updated with constant random values for input nodes in the
fixed set, as shown in Lines 17− 23 of Algorithm 1.

5. The model checking is then performed with this updated input domain, shown by Line
25 of Algorithm 1.

6. If a counterexample corresponding to a property violation is obtained (as shown in Line 26
of Algorithm 1), i.e., the property is found to be SAT, model checking can be terminated.
However, if no counterexample is found, the algorithm proceeds with the next discrete
sample from the combination of segments of input nodes from the fixed set.

7. In turn, the process is repeated with a new splitting of input nodes into variable and fixed
sets, as depicted in Lines 7− 9 of Algorithm 1.

As the number of input nodes fed to the DNN increase, the computation requirements (and
subsequently the timing overhead) also increase. This “curse of dimensionality” is a known
challenge with DNN analysis in the literature [44]. However, the parallelism enabled by the
independence of the model checking of each splitting of the input nodes into the two sets
alleviates the timing-overhead of the analysis.

Soundness – As shown in Fig. 4 and Lines 17 − 23 of the Algorithm 1, the input domain
I ′ contributing to the formal model analyzed by the model checker is the combination of the
entire bounds of the input nodes from the variable set and random inputs from the selected
segments of input nodes from the fixed set. Hence, this updated input domain is the proper
subset of the original valid input domain I of the DNN, i.e., I ′ ⊂ I. This preserves soundness
of the framework.

Completeness – Since the updated input domain I ′ is the proper subset of domain I, the
model checking using the domain entails incompleteness. This is the direct result of the Lines
14−16 of Algorithm 1, which bypass the exhaustive coverage of the segments of the input nodes
from the fixed set. However, it must be noted that such incompleteness is essentially different
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Algorithm 1 Random Input Segmentation

Input: Input Bounds (I), Network Parameters (w, b, L, N), Normalization
Parameters (µ, ς), Bins per Input Node (X), Specification (Φ)

Output: Counterexample (CE)
Initialize: CE ← [ ]

//Creating bins to split ranges of each input node
1: for i = 1:Size(I, 2) do ▷ For each input node
2: for j = 1:X(i) do ▷ For each input segment

3: B[1][j][i]← (
I(2,i)−I(1,i)

X(i)
× (j − 1)) + I(1, i)

4: B[2][j][i]← (
I(2,i)−I(1,i)

X(i)
× j) + I(1, i)

5: end for
6: end for

//Segmentation
7: for i = 1:Size(I, 2) do
8: I′ ← I
9: Btemp← B \B{:, :, i}
10: k ←Size(I, 2)− 1 ▷ Total number of input nodes in fixed set
11: for j1 = 1:Size(Btemp{:, :, 1}, 2) do
12: ...
13: for jk = 1:Size(Btemp{:, :, k}, 2) do
14: temp[1]← rand(Btemp[1, j1, 1], Btemp[2, j1, 1])
15: ...
16: temp[k]← rand(Btemp[1, jk, k], Btemp[2, jk, k])
17: for m = 1 : k do ▷ For updating I′ with temp for input nodes from fixed set
18: if i ≤ m then
19: I′[m+ 1]← temp[m]
20: else
21: I′[m]← temp[m]
22: end if
23: end for
24: temp← [ ]
25: CE ← FANNET+(I′, w, b, L,N, µ, ς,Φ) ▷ Model checking
26: if CE ̸= [ ] then return 1 ▷ Termination of code
27: end if
28: end for
29: ...
30: end for
31: end for

from the incompleteness often observed in DNN analysis literature [37, 46, 38, 45] arising from
overapproximation of the input domain and/or activation functions, and hence leading to false
positives in the analysis. The analysis based on our algorithm, in contrast, does not lead to
any false positives.

J Overall Formalization and Property Checking Proce-
dure used by FANNet+

As indicated in Fig. 5 earlier, FANNet+ makes use of the parameters and architectural details
of the trained network to generate the formal DNN model. This formal model is consequently
used for checking whether the desired network property holds for the network. The details of
the procedure (also summarized in Algorithm 2) are as follows:

1. The input is first normalized, prior to being fed to the formal DNN model (as shown in
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Algorithm 2 Network Formalization and Property Checking

Input: Input (I), Network Parameters (w, b, L, N), Normalization
Parameters (µ, ς), Specification (Φ)

Output: Counterexample (CE)
Initialize: CE ← [ ]

1: function FANNet+(I, w, b, L,N, µ, ς,Φ)

2: Inorm ← I−µ
ς

▷ Input normalization
3: temp I ← Inorm

4: for i = 1 : L do
5: for j = 1 : N(i) do
6: temp O[j]←

∑
(w[j][:][i])× temp I[j]) + b[j][i]) ▷ Fully-connected layer

7: if temp O[j] < 0 then
8: temp O[j]← 0 ▷ ReLU activation
9: end if
10: end for
11: temp I ← temp O ▷ Input propagation to next DNN layer
12: end for
13: Outnorm ← temp O
14: Out← (Outnorm × ς) + µ ▷ Output inverse-normalization
15: CE ← Property(Φ, I, Out) ▷ Checking DNN specification
16: return CE
17: end function

Line 2 of Algorithm 2).

2. Input is propagated through layers of the DNN model (as shown in Lines 4 − 12 of
Algorithm 2).

3. Output may undergo inverse-normalization (as shown in Line 14 of Algorithm 2) prior to
decision-making/classification by the DNN.

4. The desired formal property Φ of the network is then checked via SMC as described in
detail in Section 4. In case the property does not hold for the network, the evidence of
the property violation is returned by the model checker (as shown in Line 15 of Algorithm
2).

K Safety Verification results using Reluplex, Marabou
and FANNet+

The safety properties relevant to the ACAS Xu networks studied in this work include:

1. Given a large distance between ownship and intruder, with the intruder travelling at much
slower speed than ownship, the clear-of-conflict remains below a certain threshold.

2. Given a large distance between ownship and intruder, with the intruder travelling at much
slower speed than ownship, the clear-of-conflict advisory does not have the highest value.

3. Given a constrained distance between ownship and intruder, with the intruder in line of
ownship’s translation and moving towards it, the DNN’s clear-of-conflict advisory is not
minimal.
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4. Given a constrained distance between ownship and intruder, with the intruder in line of
ownship’s translation and moving away from it, but with a speed slower than that of the
ownship, the DNN’s clear-of-conflict advisory is not minimal.

The detailed results obtained after analyzing the safety properties P1 − P4 for ACAS Xu
networks using Reluplex [24], Marabou [25] and FANNet+ are given in Tables 2 and 3 and
Fig. 10. A consistent timeout of two-hours was used for all the experiments. As can be seen
from the results in tables, for all experiments, whenever the renowned tools Reluplex and/or
Marabou find satisfying solution to the violation of property, FANNet+ is also able to find the
counterexample(s) within the pre-defined timeout.

Table 2: Results of verifying properties P1 and P2 for ACAS Xu Networks

Network
Reluplex Marabou FANNet+

P1 P2 P1 P2 P1 P2

1 1 UNSAT UNSAT UNSAT UNSAT TO TO
1 2 UNSAT SAT UNSAT SAT TO SAT
1 3 TO SAT UNSAT TO TO TO
1 4 UNSAT SAT UNSAT TO TO SAT
1 5 UNSAT SAT UNSAT SAT TO TO
1 6 UNSAT SAT UNSAT SAT TO TO
1 7 UNSAT SAT UNSAT TO TO TO
1 8 UNSAT TO UNSAT TO TO TO
1 9 UNSAT UNSAT UNSAT TO TO TO
2 1 UNSAT SAT UNSAT SAT TO SAT
2 2 TO SAT UNSAT SAT TO SAT
2 3 TO SAT UNSAT SAT TO SAT
2 4 UNSAT SAT UNSAT SAT TO SAT
2 5 TO SAT TO SAT TO SAT
2 6 TO SAT TO SAT TO SAT
2 7 TO SAT TO SAT TO SAT
2 8 TO SAT TO SAT TO SAT
2 9 TO SAT TO TO TO SAT
3 1 UNSAT SAT UNSAT SAT TO SAT
3 2 UNSAT SAT UNSAT TO TO TO
3 3 UNSAT TO UNSAT TO TO TO
3 4 UNSAT SAT UNSAT SAT TO SAT
3 5 UNSAT SAT UNSAT SAT TO SAT
3 6 TO SAT TO SAT TO SAT
3 7 UNSAT SAT TO SAT TO SAT
3 8 TO SAT TO SAT TO SAT
3 9 TO SAT TO SAT TO SAT
4 1 TO SAT TO TO TO SAT
4 2 TO TO UNSAT TO TO TO
4 3 UNSAT SAT UNSAT SAT TO SAT
4 4 UNSAT SAT UNSAT SAT TO SAT
4 5 TO SAT TO SAT TO SAT
4 6 TO SAT UNSAT SAT TO SAT
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Network
Reluplex Marabou FANNet+

P1 P2 P1 P2 P1 P2

4 7 TO SAT UNSAT SAT TO SAT
4 8 TO SAT TO SAT TO SAT
4 9 TO SAT TO SAT TO SAT
5 1 UNSAT SAT UNSAT SAT TO SAT
5 2 TO SAT UNSAT SAT TO SAT
5 3 UNSAT SAT UNSAT SAT TO TO
5 4 UNSAT SAT UNSAT SAT TO SAT
5 5 TO SAT UNSAT SAT TO SAT
5 6 TO SAT TO SAT TO SAT
5 7 TO SAT TO SAT TO SAT
5 8 TO SAT TO SAT TO SAT
5 9 TO SAT TO SAT TO SAT

SAT: satisfiable solution found UNSAT: property unsatisfiable
TO: timeout (time exceeded 2 hours) NF: no counterexample found

Table 3: Results of verifying properties P3 and P4 for ACAS Xu Networks

Network
Reluplex Marabou FANNet+

P3 P4 P3 P4 P3 P4

1 1 UNSAT UNSAT UNSAT UNSAT TO NF
1 2 UNSAT UNSAT UNSAT UNSAT TO TO
1 3 UNSAT UNSAT UNSAT UNSAT TO TO
1 4 UNSAT UNSAT UNSAT UNSAT TO NF
1 5 UNSAT UNSAT UNSAT UNSAT TO NF
1 6 UNSAT UNSAT UNSAT UNSAT TO TO
1 7 SAT SAT SAT SAT SAT SAT
1 8 SAT SAT SAT SAT SAT SAT
1 9 SAT SAT SAT SAT SAT SAT
2 1 UNSAT UNSAT UNSAT UNSAT TO TO
2 2 UNSAT UNSAT UNSAT UNSAT TO SAT
2 3 UNSAT UNSAT UNSAT UNSAT TO NF
2 4 UNSAT UNSAT UNSAT UNSAT TO NF
2 5 UNSAT UNSAT UNSAT UNSAT TO TO
2 6 UNSAT UNSAT UNSAT UNSAT TO TO
2 7 UNSAT UNSAT UNSAT UNSAT TO TO
2 8 UNSAT UNSAT UNSAT UNSAT NF TO
2 9 UNSAT UNSAT UNSAT UNSAT TO NF
3 1 UNSAT UNSAT UNSAT UNSAT TO NF
3 2 UNSAT UNSAT UNSAT UNSAT TO NF
3 3 UNSAT UNSAT UNSAT UNSAT TO NF
3 4 UNSAT UNSAT UNSAT UNSAT TO NF
3 5 UNSAT UNSAT UNSAT UNSAT TO TO
3 6 UNSAT UNSAT UNSAT UNSAT TO NF
3 7 UNSAT UNSAT UNSAT UNSAT TO NF
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Network
Reluplex Marabou FANNet+

P3 P4 P3 P4 P3 P4

3 8 UNSAT UNSAT UNSAT UNSAT TO NF
3 9 UNSAT UNSAT UNSAT UNSAT TO NF
4 1 UNSAT UNSAT UNSAT UNSAT TO NF
4 2 UNSAT UNSAT UNSAT UNSAT TO NF
4 3 UNSAT UNSAT UNSAT UNSAT TO NF
4 4 UNSAT UNSAT UNSAT UNSAT TO NF
4 5 UNSAT UNSAT UNSAT UNSAT TO NF
4 6 UNSAT UNSAT UNSAT UNSAT TO NF
4 7 UNSAT UNSAT UNSAT UNSAT TO NF
4 8 UNSAT UNSAT UNSAT UNSAT TO TO
4 9 UNSAT UNSAT UNSAT UNSAT TO NF
5 1 UNSAT UNSAT UNSAT UNSAT TO NF
5 2 UNSAT UNSAT UNSAT UNSAT NF NF
5 3 UNSAT UNSAT UNSAT UNSAT TO NF
5 4 UNSAT UNSAT UNSAT UNSAT TO NF
5 5 UNSAT UNSAT UNSAT UNSAT TO NF
5 6 UNSAT UNSAT UNSAT UNSAT TO NF
5 7 UNSAT UNSAT UNSAT UNSAT TO NF
5 8 UNSAT UNSAT UNSAT UNSAT TO NF
5 9 UNSAT UNSAT UNSAT UNSAT TO NF

SAT: satisfiable solution found UNSAT: property unsatisfiable
TO: timeout (time exceeded 2 hours) NF: no counterexample found

FANNet+ is able to find violation to property P4 for the network 2 2, i.e., the experiment
for which both Reluplex and Marabou return UNSAT. The satisfying input leading to violation
of the property, as found by FANNet+ is as follows: [1600, 3, 0, 1100, 720]. The validity of the
counterexample is confirmed using Maraboupy.

27



Scaling Model Checking for DNN Analysis M. Naseer et al.

1_1 5_14_13_12_1

1_2 5_24_23_22_2

1_3 5_34_33_32_3

1_4 5_44_43_42_4

1_5 5_54_53_52_5

1_6 5_64_63_62_6

1_7 5_74_73_72_7

1_8 5_84_83_82_8

1_9 5_94_93_92_9

1_1 5_14_13_12_1

1_2 5_24_23_22_2

1_3 5_34_33_32_3

1_4 5_44_43_42_4

1_5 5_54_53_52_5

1_6 5_64_63_62_6

1_7 5_74_73_72_7

1_8 5_84_83_82_8

1_9 5_94_93_92_9

1_1 5_14_13_12_1

1_2 5_24_23_22_2

1_3 5_34_33_32_3

1_4 5_44_43_42_4

1_5 5_54_53_52_5

1_6 5_64_63_62_6

1_7 5_74_73_72_7

1_8 5_84_83_82_8

1_9 5_94_93_92_9

1_1 5_14_13_12_1

1_2 5_24_23_22_2

1_3 5_34_33_32_3

1_4 5_44_43_42_4

1_5 5_54_53_52_5

1_6 5_64_63_62_6

1_7 5_74_73_72_7

1_8 5_84_83_82_8

1_9 5_94_93_92_9

Reluplex Marabou FANNet+ Unsafe Safe

Property: P1 Property: P2 Property: P3 Property: P4

Discrepancy in results

Figure 10: Safety verification using Reluplex, Marabou and FANNet+: in case of discrepancy
in result, FANNet+ is found to provide correct result as opposed to the the other frameworks.
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