

Vertical Data Processing for Mining Big Data:

A Predicate Tree Approach

Mohammad Hossain1, Maninder Singh2, Sameer Abufardeh3
1,3Math Science and Technology Department, University of Minnesota Crookston, MN, USA

2Department of Computer Science and IT, St Cloud State University, MN, USA
1,3{Hossain, sabufard}@crk.umn.edu,2 msingh@stcloudstate.edu

Abstract

Time is a critical factor in processing a very large volume of data a.k.a ‘Big Data’.

Many existing data mining algorithms (supervised and unsupervised) become futile

because of the ubiquitous use of horizontal processing i.e. row-by-row processing of

stored data. Processing time for big data is further exacerbated by its high dimensionality

(# of features) and high cardinality (# of records). To address this processing-time issue,

we proposed a vertical approach with predicate trees (pTree). Our approach structures

data into columns of bit slices, which range from few to hundreds and are processed

vertically i.e. column by column. We tested and compared our vertical approach to

traditional (horizontal) approach using three basic Boolean operations namely addition,

subtraction and multiplication with 10 data sizes. The length of data size ranged from half

a billion bits to 5 billion bits. The results are analyzed w.r.t processing speed time and

speed gain for both the approaches. The result shows that our vertical approach

outperformed the traditional approach for all Boolean operations (add, subtract and

multiply) across all data sizes and results in speed-gain between 24% to 96%. We

concluded from our results that our approach being in data-mining ready format is best

suited to apply to operations involving complex computations in big data application to

achieve significant speed gain.

1 Introduction

There has been massive increase in volume of data everyday with the advancement in technology

[16]. In present era, the data is collected and stored from various sources like satellite, customer

checkout from super stores, stock exchange, electronic communication, social media, images/video

from surveillance etc. This massively production of data has introduced the need for advance storage

and processing capabilities [3-4]. This type of large (high in cardinality) and complex (high in

dimensionality) data is known as “Big Data”. High cardinality refers to situation when 100’s of

thousands of data records are generated/stored every unit time interval such that processing each one of

EPiC Series in Computing

Volume 64, 2019, Pages 68–77

Proceedings of 28th International Conference
on Software Engineering and Data Engineering

F. Harris, S. Dascalu, S. Sharma and R. Wu (eds.), SEDE 2019 (EPiC Series in Computing, vol. 64), pp. 68–77

them is not possible in a given unit time interval. High dimensionality means high-dimensional data

that is beyond general 3-dimensions e.g. in text processing, every unique word represents a feature and

there could be even more than hundred thousand features in some texts [28].

Problem Statement: Mining such enormous data that is generated at high velocity has some serious

challenges associated to it i.e. capturing, storing, searching, processing and visualization [7]. High

velocity of data has also raised high cardinality and high dimensionality [5, 8]. Furthermore, mining

such big data with significant accuracy adds to above challenges. There have been many approaches

and studies conducted in past to address these challenges in big data but to some extent they lack in

scalability [6, 8].

Motivation: These un-addressed challenges left us with a motivation to attempt to solve scalability

issue in big data using vertical bit vectors (comprised of 1’s and 0’s) also known as predicate trees

(pTree) [9]. The attempt to arrange data into vertical data format and possibility to apply logical

operations over a large chunk of data at once is our motivation [3-4, 9]. Another motivation behind

vertical approach is its scalability, lossless and data mining ready format that ensures very less pre-

processing work [10].

Proposed Approach: Our approach with pTrees uses data that is structured into vertically bit-sliced

vectors. Vertical vectors are readily available to operate over any logical operation that lay the

foundation of any complex calculation. A speed gain over underlying Boolean operations ensures speed

gain for complex computations that are built over them and this proposed approach is being evaluated

in this study. Our focus is to analyze basic logical operations over vertical (our proposed) and horizontal

(traditional) approaches for big data to report computational time difference. The term pTree and

vertical bit vector is interchangeable used in this paper (explained later in the paper).

2 Background

Afore mining process, it is often assumed that the data is structured horizontally in relational table

in a DB or in a data cube in data warehouse [11] i.e. into records and tuples. Scan-based data processing

over horizontally structured records is known to be ineffective for mining big data because of scalability

issues as they do not scale with large datasets [12].

In last decade, there has been an increased focus over vertical databases (also known as column-

oriented database) management systems (VDBMSs) [13]. Column-oriented DBMSs are different from

the traditional ones in a way they store and access data [13]. These databases store data in vertical

format i.e. in vertical bit slices and have extensive usage in various data warehouse applications because

of their better performance in terms of read I/O versus conventional DBMSs. Some major open-source

and column-oriented Database Management Systems are C-Store [14], Infobright [15], InfiniDB [16],

MonetDB [19] and pTree [17-18].

C-Store [14] is a collaborative research project at MIT that has now been commercially developed

and is known as Vertica. It brought a lot of novel and interesting features to the column-oriented

architecture such as efficient packing of objects, use of overlapping projections to store the data, query

optimizer and executor based on columns. Infobright [15] is a database and warehouse system available

in both commercial as well as open source to community. Infobright uses knowledge grid: - a small

metadata layer instead of regular indexes. InfiniDB [16] is an efficient, multi-threaded analytic database

system based on column-oriented storage architecture. InfiniDB uses an automated mix of vertical and

horizontal partitioning. While the vertical partitioning allows faster processing by bringing only

selected columns in the memory, a logical horizontal partitioning helps in reducing overall I/O in

horizontal and vertical direction. MonetDB [19] is one of the most mature column-oriented database

system. PTree [17-18] are lossless because the vertical bit-wise partitioning that is used in the pTree

technology guarantees that all information is retained completely i.e. there is no loss of information in

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

69

converting horizontal data to this vertical format. pTree vertical data structures have been exploited in

various domains and data mining algorithms, ranging from classification [17-18], [20], clustering [24-

25], association rule mining [21-22], to outlier analysis [23] as well as other data mining algorithms.

Next section discusses about pTree approach in detail.

3 pTree Approach

In big data processing, one of the biggest challenge is the timely processing of given dataset. Using

pTrees (i.e. vertical bit vectors), we propose a novel approach to overcome aforesaid challenge in big

data processing. Supervised and unsupervised learning approaches require mathematical formulae like

Manhattan distance, Euclidean distance, sum, variance etc. to learn from training data and to make

predictions over new (training or unforeseen) instances [20 and 35]. Few Boolean operations are briefed

in the following section.

3.1 Boolean Algebra for pTrees

Boolean algebra for a set of two elements B = {0, 1} is generally defined with 1 being the TRUE

state and 0 being the FALSE state. The three basic operations i.e. AND, OR and NOT are explained

with two sets X and Y {0, 1}.

3.2 Definitions and Proofs

The following definitions and proofs are referred in this paper. The Lemma’s discussed in this

section lays the foundation of working with pTrees.

Definition 1 (2’s Complement): In binary number system, 2’s complement is used to compute negative
equivalent of an integer. Assume a binary number N of n bits, 2’s complement of N is defined as: 2n –N.
More details can be found at [26].

Definition 2 (1’s Complement): Assume a binary number N of n bits then 1’s complement of N is defined
as: 2n –N-1

Definition 3 (purity): The purity in pTrees refer to presence of either all 1’s or all 0’s in a vertical bit-
vector i.e. if a vertical bit vector consists of all 1’s or all 0’s then it is pure-1 or pure-0 bit-vector
respectively. Purity provides speedy lookup.

Definition 4 (Level-0 pTree): In the process of pTree formation, the vertical bit-vector that is created by
either 1 or 0 is known as level-0 pTree. Number of bits (0 or 1) in a level-0 pTree is known as the length
of pTree. For example in Figure 1.b, the vertical bit-vector 11110100 forms level-0 of pTree.

Definition 5 (Multi-Level pTree): The vertical bit-vector at level-0 is tested for pure-1/pure-0 to form
subsequent levels of pTrees to construct a multi-level pTree. The fixed number of bits to check for purity
is named as ‘stride’ of pTree. In Figure 1.b, the stride length is 2 bits and root is at level-3.

Lemma 1. For any binary number N, 2’s complement of N = (1’s Complement of N) +1

Proof: Assume N has n bits. So according to the definition-1, 2’s complement of N = 2n−N => 2n − N −
1 + 1 = 1’s complement of N + 1 [using definition-2]

Lemma 2. Complement of the complement of a number gives the original number

Proof: Assume a binary number N of n bits. Assume 2’s complement of N is M which will also be n-

bit number. So according to definition 1, M = 2n−N. Now, 2’s complement of M = 2n −M = 2n − (2n −

N) = N, hence proved.

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

70

3.3 Formation of Vertical Bit Vector

In our proposed approach, vertical bit-vector (level-0 of multi-level pTree) records the truth value

of a given predicate for a data set. The value of predicate is assigned 1 if the predicate condition is

satisfied. For example in Figure 1, a data set that captures temperature of a place for 8 days (N=8); if a

condition (is temperature freezing i.e. below 32-degree Fahrenheit?) for predicate ‘Temp’ is chosen then

all the values in temp column consists of either 1 (if temp is less than 32◦F) or 0 (if temp is greater than

32◦F). The predicate P (if the temperature is freezing) is true (i.e. 1) for 5 records while is false (i.e. 0)

for 3 days. The vertical bit-vector obtained by using predicate P is 11110100 (see Figure 1.a).

Conversion of bit-vector to tree: The bit vector obtained from Figure 1.a (11110100) has a length

of N bits (i.e. 8). The vertical bit-vector is processed with stride length of two bits to form multi-levels

in the form of a tree based on stride purity (Definition 3-5). The grouping of bits is needed to compress

bit vectors to make them be able to process faster (Figure 1.b).
Formation of pTrees: In Figure 1.b, we used stride length of two-bits to check purity (explained in

III.B). With stride length of 2 bits and N total number of bits, the height of multi-level pTree can be at
most log2N. In Figure 1.b, there are 3 levels and the top level represents the root and leaf represents
level-0 of pTree. If pure-1 or pure-0 is encountered from level-0 and up then final pTree is formed by
pruning child branches of pTrees that contained pure bits (Figure 1.b). For example, in Figure 1.c, left
branch of final pTree has only one bit (i.e. 1) and it signifies that all children nodes of this 1 are also
pure-1. Similarly, there is one pure-0 in final pTree.

3.4 Formation of Vertical Bit Vectors from Data Set

Conversion of a relational table of horizontal records to a set of vertical bit-vectors (pTree at level-

0) is created by decomposing each attribute in the table into separate bit slices. If an attribute has

numeric value, we convert the data into binary (Figure 2). Each bit position of binary value generates

one-bit slice but if an attribute has categorical value then a bitmap for each category is created followed

by generation of bit vectors for each category. Such vertical partitioning guarantees that the information

is not lost.

Next, consider a data set D with n-attributes such as D = (A1, A2, . . . , An). In order to represent this

data set into pTrees we require n-pTrees sets as {P1, P2, . . . , Pn} such that attribute Ai will be represented

by pTree set Pi. Suppose each value of Ai is presented by an N-bit binary number ai,N−1, ai,N−2 . . . , ai,j ,

. . . , ai,0; then pTree Pi[j] will represent the bit slice of ai,j . Pi [0] pTree represent the least significant bit

slice of Ai and is called the Least Significant PTree (LSP) of Pi. Similarly, Pi [N − 1] is known as the

Most Significant Ptree (MSP). Figure 2 shows the representation of data set into pTree. In Figure 2, we

see that the dataset had three attributes. So, we needed three pTree sets to represent them and each pTree

set required 3-bits to convert them to binary.

Figure 1: Construction of pTree: (a) Predicate for temperature (b) Conversion to tree (c) Final pTree

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

71

3.5 Operations on Vertical Approach

Any Boolean operation discussed in section III.B can be applied on vertical bit vector. Suppose p

and q are two level-0 vectors of length L and assume a binary operator OPb that is applied on these two

vectors. Then p OPb q is calculated as p[i] OPb q[i] ∀i|i ∋ (0 : L − 1) where p[i] and q[i] are the ith bit of

p and q vector. Similarly, if OPu is a unary operator then OPu(p) is calculated as OPu(p[i]). So, the binary

operations AND, OR, XOR and XNOR as well as unary operation NOT can be applied to vertical bit-

vector (level-0 pTrees).
Various operations including sum, max, min, median/rank and top-k have been successfully
implemented with pTrees in prior studies [25]. Vertical representation allows very fast execution for
some mathematical expressions. For example, consider vertical bit-vector (11110100) from Figure 1.a
to count the number of 1’s. The resulting pTree from Figure 1.c provides faster counting by traversing
through different branches of tree, we can calculate count i.e. 1 in left leaf of pTree is at level-2 (level-
0 is leaf nodes) that accounts for 22 =4 counts of 1 and similarly, there is another 1 at level-0 that
accounts for 20=1 count of occurrence of 1. So, a simple addition of all the values (4+1=5) gives the
total count of 1 in predicate tree (pTree) instead of complete traversal for each record. It is worth to
mention here that pTree formation is one-time process.

4 Experiments Results and Discussion

This section presents theoretical proofs, advantages, result and its discussion of pTree approach.

The time comparison for various Boolean operations is presented in Figure 3 for horizontal versus

vertical approach. X-axis in Figure 3 represents bit-width and Y-axis represents execution time of

Boolean operation. The analysis and comparison between horizontal and vertical approach for

remaining data set sizes is shown in Table 1. Boolean operations namely Addition, Subtraction and

Multiplication are labelled with acronym A, S and M (these acronyms were chosen to best utilize

available table space) in Table 1. The term ‘K’ in table means 1000 i.e. 12000 millisecond is written as

12K. Horizontal approach is analyzed over 4 bit-widths (8 bit, 16 bit, 24 bit and 32 bit) because of

negligible difference in execution time across 4 to 8, 8 to 16 bit-widths and so on.

4.1 Performance analysis of speed between vertical and horizontal

approaches

As mentioned before, the term ‘pTrees’ referred in this section is vertical bit-vector at level-0 of

pTree (Figure 1.b). Vertical approach (using pTrees) and trivial horizontal approach is compared over

time taken (in milliseconds) to execute various Boolean operations using variable data-size (0.5 billion

to 5 billion bits) as well as variable bit-widths (4 bits to 32 bits) in Figure 3. Due to space restriction,

graphical representation of results has been shown (Figure 3) for two data sizes (0.5 and 5 billion bits)

Figure 2: pTree representation of Data Set: (a) Data Set of 3 attributes (b) Corresponding pTree Sets

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

72

across variable bit-width (4 to 32 bit-width with step width of 4 bits) over vertical and horizontal

approach.

The performance of pTree approach over addition and subtraction operations outperform horizontal

approach for each bit-width and each dataset size (refer Figure 3). In multiplication, the pTree

performance is better for smaller bit-width as compared to horizontal approach under similar

experimental conditions. The execution time for horizontal approach across variable bit-width remained

almost similar (Figure 3) whereas it showed linear increase for pTree approach across variable bit-

width. The complete performance results obtained for each data set size have been listed in Table 1.

However, for multiplication operation, pTree approach couldn’t outperform horizontal approach

beyond 12 bit-width (refer Table 1 for M column) because during pTree multiplication with large

number of bits, the number of internal operations at register level increases exponentially (proof is

beyond the scope of this paper).

4.2 Analysis of Space and Speed Gain by vertical approach over

horizontal approach

This research question focuses on analysis of speed gain and space consumption by vertical

approach. The experimental analysis of speed gain through execution of three Boolean operations is

shown in Table 2. Three basic Boolean operations have been executed over 10 different data sets and

for 8 different bit-widths. The resulting speed gain using the by pTree approach has been shown in

Table 2 below. The speed gain was constant across variable data size but varied over bit-width. So,

Table 2 present results for variable bit-width only. It is seen that the speed gain decreases as the number

of bit-width increases but pTree approach still outperforms horizontal approach. Speed gain is highest

(>90%) for all Boolean operations for data sets that have bit-width of 4. It is also seen that for Boolean

operations Add and Subtract the speed gain range between 66% (for 32 bit-width data) to 95% (for 4

bit-width data). The discussion on space and speed gain are discussed in the following sections.

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

73

Table 1: The execution time of pTree and Horizontal approach in milliseconds for different data sets and bit-

widths
 4 bit width 8 bit width 12 bit width 16 bit width

Data

Size

pTree pTree pTree pTree

A S M A S M A S M A S M

0.5 44 48 117 85 90 462 125 129 1K 167 173 1.8K

1.0 110 109 250 197 208 978 298 304 2.2K 386 377 4K

1.5 181 180 417 337 347 1.6K 508 499 3.5K 663 661 6.5K

2.0 245 244 561 486 475 2.1K 682 682 4.9K 1K 987 9.3K

2.5 311 328 699 598 647 2.8K 876 880 6.4K 1.2K 1.2K 12K

3.0 364 358 844 696 702 3.5K 1K 1K 7.9K 1.4K 1.4K 14.6K

3.5 425 420 1K 822 805 4K 1.2K 1.2K 9.3K 1.6K 1.6K 17.2K

4.0 500 486 1.1K 960 963 4.8K 1.4K 1.4K 11K 1.9K 1.9K 19.6K

4.5 554 539 1.3K 1.1K 1.1K 5.3K 1.6K 1.5K 12.2K 2.1K 2.1K 22.4K

5.0 607 597 1.5K 1.2K 1.1K 6K 1.7K 1.7K 14K 2.3K 2.3K 24.6K

 20 bit width 24 bit width 28 bit width 32 bit width

Data

Size

pTree pTree pTree pTree

A S M A S M A S M A S M

0.5 207 212 2.9K 247 254 4.2K 286 295 5.6K 309 313 6.5K

1.0 464 465 6.1K 564 575 9K 647 654 12K 676 708 14K

1.5 843 820 10.7K 971 972 15.3K 1.2K 1.2K 21K 1.2K 1.2K 25K

2.0 1.1K 1.1K 15.2K 1.4K 1.4K 21.4K 1.6K 1.6K 29K 1.7K 1.7K 35K

2.5 1.4K 1.5K 19.5K 1.7K 1.7K 27.3K 2K 2.1K 37K 2.1K 2.2K 44K

3.0 1.7K 1.7K 23K 2K 2K 33.4K 2.3K 2.3K 47K 2.6K 2.5K 52K

3.5 2K 2K 27.5K 2.4K 2.3K 38.8K 2.8K 2.8K 53K 3K 3K 62K

4.0 2.3K 2.3K 31.7K 2.8K 2.8K 45.3K 3.2K 3.2K 60K 3.4K 3.6K 71K

4.5 2.5K 2.6K 35.5K 3.2K 3.2K 49.6K 3.6K 3.7K 68K 3.8K 3.9K 80K

5.0 2.8K 2.8K 38.7K 3.9K 3.4K 56.3K 3.9K 4K 78K 4.2K 4.2K 87K

 8 bit width 16 bit width 24 bit width 32 bit width

Data

Size

Horizontal Horizontal Horizontal Horizontal

A S M A S M A S M A S M

0.5 1.3K 1.3K 1.4K 1.3K 1.3K 1.4K 1.3K 1.3K 1.4K 1.3K 1.3K 1.46K

1.0 2.5K 2.5K 3K 2.5K 2.5K 3K 2.5K 2.5K 3K 2.5K 2.5K 3.2K

1.5 3.7K 3.7K 4.9K 3.7K 3.7K 5K 3.7K 3.7K 5K 3.7K 3.7K 5.6K

2.0 4.9K 4.9K 6.6K 4.9K 4.9K 7.2K 4.9K 4.9K 7K 4.9K 4.9K 7.7K

2.5 6.1K 6.1K 8.6K 6.1K 6.1K 9.3K 6.1K 6.1K 9.2K 6.1K 6.2K 9.8K

3.0 7.3K 7.3K 10.5K 7.3K 7.3K 11.2K 7.3K 7.3K 11K 7.3K 7.4K 11.6K

3.5 8.5K 8.5K 12.4K 8.5K 8.5K 13.3K 8.6K 8.5K 12.7K 8.6K 8.6K 13.8K

4.0 9.7K 9.7K 14.7K 9.8K 9.7K 15.1K 9.8K 9.7K 14.9K 9.8K 9.8K 16K

4.5 11K 11K 16.5K 11K 11K 17.4K 11K 11K 16.8K 11K 11K 17.8K

5.0 12K 12K 18.7K 12K 12K 19.1K 12K 12K 18.9K 12K 12K 19.4K

4.3 Space Advantages of pTrees

Assume a dataset S consisting of N rows and n columns containing value of m bits. So, if we convert

the dataset into pTrees we will get mn pTrees where the length of each tree will be N bits. In traditional

approach, let the size of the dataset be Strad. The size of each value will be = ⌈
𝑚

8
⌉ bytes and size of each

column = ⌈
𝑚

8
⌉ N bytes that gives us the size of the whole dataset, Strad= ⌈

𝑚

8
⌉ 𝑛𝑁 bytes.

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

74

In pTree approach, let the size of the dataset be SpTree. Size of each pTree will be ⌈
𝑁

8
⌉bytes. So the

size of whole dataset, SpTree =𝑚𝑛 ⌈
𝑁

8
⌉ bytes. In a large dataset where N >> 8, we can assume N = 8×L.

We get Strad = 8 ⌈
𝑚

8
⌉nL bytes and SpTree = mnL bytes. Now if 1 < m < 8 then ⌈

𝑚

8
⌉ = 1. Therefore, we get

SpTree =
𝑚

8
 Strad. However, when m = 8 we get SpTree = Strad Now if 9 < m < 16 then ⌈

𝑚

8
⌉ = 2 and we get

SpTree =
𝑚

16
Strad. And when m = 16 we get SpTree = Strad. So, we conclude that SpTree < Strad and SpTree = Strad

if m is a multiple of 8.
Table 2: Speed Gain by pTree approach

Bit Width Add Subtract Multiply

4 95% 95% 91%

8 90% 91% 68%

12 86% 86% 24%

16 81% 81% -29%

20 77% 77% -113%

24 71% 71% < -113%

28 68% 68% < -113%

32 66% 66% < -113%

4.4 Speed Advantages of pTrees

Assume that a logical operation (AND, OR, NOT, XOR) between two machine words (of size W)

of memory takes Tlog units of time. When we do such logical operations on two pTrees of length N we

do it on L pairs of machine words where L =⌈
𝑁

𝑊
⌉. So, the logical operation on two pTrees takes LTlog

unit of times. Assume an arithmetic operation (addition, subtraction, multiplication etc.) between two

bytes of memory takes Tarith units of time. Suppose we will do such an arithmetic operation on two

columns of our previously described data set, S. For simplicity assume each value in the dataset takes

1 byte of memory. So, each column has N bytes memory and the arithmetic operation will take Ttrad =

NTarith units of time. Suppose to get the same arithmetic operation using pTree we need to perform g

number of logical operation on different pTrees. So, the process will take TpTree = gLTlog unit of time.

For simplicity consider that N is multiple of W, so we can write

 TpTree

𝑇𝑡𝑟𝑎𝑑
=

𝑔

𝑊

𝑇𝑙𝑜𝑔

𝑇𝑎𝑟𝑖𝑡ℎ

Let’s call the factor
 Tlog

𝑇𝑎𝑟𝑖𝑡ℎ
 = α. In old processors bit-wise logical operation would run faster than

arithmetic operation like addition, multiplication, etc. resulting the factor α less than 1. However, in

modern day processors the arithmetic operations are optimized in such a level that they run as fast as

bit-wise operations resulting the factor α close to 1 [27]. Again, W represent the number of bits in a

machine word, which the computers can handle at a time, is expected to be a large number comparing

with g. As a result, if g < W the TpTree will be less than Ttrad giving the speed gain of pTree based

algorithm processing over traditional processing of the same algorithm.

5 Conclusion

From results and discussion, it can be concluded that the vertical approach outperformed the

horizontal approach over data sets ranging between half-billion bits to 5 billion bits. The speed gain

obtained with the vertical approach over the horizontal approach varies between 66% and 95% across

variable bit-widths and is obtained for Boolean operation Add and Subtract. Data sets with 4 bit-width

showed the highest speed gain (95%) and with 32 bit-width showed comparatively lower speed gain

(66%). A positive speed gain (24%) is shown for multiplication operation up to bit-width of 12 and

showed negative speed gain beyond 12 bits. We concluded from the discussion in section 4.4 that our

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

75

approach is able to process vertically bit vectors faster is most suited to address big data processing

issues. Our approach showed that the vertical approach is faster than the horizontal approach over basic

Boolean operations that are the basis of very complex calculations like Manhattan distance, Euclidean

distance, sum, variance, etc. Using the vertical approach in complex calculations can further improve

processing speed.

Reference

[1] Edd Dumbill. Making sense of big data. Big Data, 1(1):1–2, 2013.

[2] Chris Eaton, Dirk Deroos, Tom Deutsch, George Lapis, and Paul Zikopoulos. Under-standing big

data, April 2012. URL:

http://public.dhe.ibm.com/common/ssi/ecm/en/iml14296usen/IML14296USEN.pdf

[3] Mohammad K Hossain, and Sameer Abufardeh. “A New Method of Calculating Squared Euclidean

Distance (SED) Using pTree Technology and Its Performance Analysis.” Proceedings of 34th

International Conference on Computers and Their Applications (CATA-2019), Honolulu, Hawaii,

USA, March 2019: 45-54.

[4] Mohammad K Hossain, Arjun Roy, Arijit Chatterjee, and William Perrizo. Algorithms to calculate

the manhattan (l1) distance for vertical data represented in ptrees. In Proceedings of the 2012 ISCA

27th International Conference on Computers and Their Applications (CATA-2012), CATA-2012,

Las Vegas, Nevada, USA, March 2012.

[5] S. Sagiroglu and D. Sinanc, "Big data: A review," Collaboration Technologies and Systems (CTS),

2013 International Conference on, San Diego, CA, 2013, pp. 42-47.

doi: 10.1109/CTS.2013.6567202

[6] A. Katal, M. Wazid and R. H. Goudar, "Big data: Issues, challenges, tools and Good

practices," Contemporary Computing (IC3), 2013 Sixth International Conference on, Noida, 2013,

pp. 404-409. doi: 10.1109/IC3.2013.6612229

[7] Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sensing as a service and big

data. arXiv preprint arXiv:1301.0159, 2013.

[8] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-Yeol Song. 2013. Data warehousing and OLAP over

big data: current challenges and future research directions. In Proceedings of the sixteenth

international workshop on Data warehousing and OLAP (DOLAP '13). ACM, New York, NY,

USA, 67-70. DOI=http://dx.doi.org/10.1145/2513190.2517828

[9] Mohammad K Hossain and William Perrizo. Algorithm for shifting images stored in peano mask

trees. International Journal of Electrical, Electronics and Computer Systems (IJEECS), 1(1):2221–

7258, March 2011.

[10] Mohammad Kabir Hossain, Rajibul Alam, Abu Ahmed Sayeem Reaz, and William Perrizo.

Bayesian classification for spatial data using p-tree. In Multitopic Conference, 2004. Proceedings

of INMIC 2004. 8th International, pages 321–327. IEEE, 2004.

[11] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann series

in data management systems. Elsevier, 2012. ISBN 9789380931913.

[12] Arjun Roy, Mohammad K Hossain, Arijit Chatterjee, and William Perrizo. Column-oriented

database systems : A comparison study. In Proceedings at the ISCA 27th International Conference

on Computers and Their Applications, CATA-2012, Las Vegas, Nevada, USA, March 2012.

[13] Abadi DJ, Madden SR, Hachem N. Column-stores vs. row-stores: How different are they really?.

InProceedings of the 2008 ACM SIGMOD international conference on Management of data 2008

Jun 9 (pp. 967-980). ACM.

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

76

[14] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Mad-

den, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and Stan Zdonik. C-store: A column oriented dbms.

VLDB, pages 553–564, 2005.

[15] D. Slezak, J. Wroblewski, V. Eastwood, and P. Synak. Brighthouse: An analytic data warehouse

for ad-hoc queries. VLDB, pages 1337–1345, 2008.

[16] Calpont infinidb concepts guide. URL

http://www.calpont.com/phocadownload/documentation/2.0.0/CalpontInfiniDBConceptsGuide

20-1.pdf

[17] T. Abidin and William Perrizo. Smart-tv: A fast and scalable nearest neighbor based classifier for

data mining. In Proceedings of the 21st Association of Computing Machinery Symposium on

Applied Computing, SAC-06, Dijon, France, April 23-27 2006.

[18] T. Abidin, A. Dong, H. Li, and William Perrizo. Efficient image classification on vertically

decomposed data. In IEEE International Conference on Multimedia Databases and Data

Management, MDDM-06, Atlanta, Georgia, April 8 2006.

[19] P. Boncz and M. Kersten. Monet: An impressionist sketch of an advanced database system. In

Basque International Workshop on Information Technology, San Sebastian, Spain, July 1995.

[20] M. Khan, Q. Ding, and William Perrizo. K-nearest neighbor classification on spatial data stream

using ptrees. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data

Mining, PAKDD 02, pages 517–528, Taipei, Taiwan, May 2002.

[21] I. Rahal, D. Ren, and William Perrizo. A scalable vertical model for mining association rules.

Journal of Information and Knowledge Management (JIKM), 3(4):317–329, 2004.

[22] I. Rahal, M. Serazi, A. Perera, Q. Ding, F. Pan, D. Ren, W. Wu, and William Perrizo. Datamime.

In Association of Computing Machinery, Management of Data, ACM SIGMOD 04, Paris, France,

June 2004.

[23] D. Ren, B. Wang, and William Perrizo. Rdf: A density-based outlier detection method using

vertical data representation. In Proceedings of the 4th IEEE International Conference on Data

Mining, ICDM-04, pages 503–506, November 2004.

[24] E. Wang, I. Rahal, and William Perrizo. Davyd: an iterative density-based approach for clusters

with varying densities. International Journal of Computers and Their Applications (IJCTA),

17(1):1–14, 2010.

[25] A. Perera, T. Abidin, M. Serazi, G. Hamer, and William Perrizo. Vertical set squared distance

based clustering without prior knowledge of k. In International Conference on Intelligent and

Adaptive Systems and Software Engineering, IASSE-05, pages 72–77, Toronto, Canada, July

2005.

[26] M.M. Mano. Digital Design. Prentice Hall international editions. Prentice Hall, 2002. ISBN

9781888325171.

[27] Kim, Joo-Young, and Hoi-Jun Yoo. "Bitwise competition logic for compact digital comparator."

2007 IEEE Asian Solid-State Circuits Conference. IEEE, 2007.

[28] Domingos. Pedro, “A few useful things to know about machine learning.” Communications of the

ACM 55.10 (2012):78-87.

[29] Weinberger, Kilian Q., John Blitzer, and Lawrence K. Saul. "Distance metric learning for large

margin nearest neighbor classification." Advances in neural information processing systems. 2006.

[30] Xing, Eric P., et al. "Distance metric learning with application to clustering with side-information."

Advances in neural information processing systems. 2003.

[31] Weinberger, Kilian Q., and Lawrence K. Saul. "Distance metric learning for large margin nearest

neighbor classification." Journal of Machine Learning Research 10.Feb (2009): 207-244.

Vertical Data Processing for Mining Big Data M. Hossain, M. Singh, and S. Abufardeh

77

