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Abstract

We recently introduced a framework for program synthesis based on functional specifi-
cations using a saturation-based theorem prover. To make our synthesis technique efficient,
we need to incorporate it into the prover’s architecture. In this paper, we describe the con-
siderations of integrating our synthesis technique with the AVATAR splitting framework
used in first-order theorem proving. We present an example that illustrates the issues
accompanying the integration and describe our solution: constraining the splitting and
adding an additional inference rule replacing certain clauses with AVATAR assertions by
assertion-free clauses. Our experimental results indicate that the integration significantly
improves the synthesis performance on some benchmarks.

1 Introduction

In [2], we present a new framework for program synthesis based on a functional specification
using a saturation-based theorem prover. The main idea is to piggyback on theorem proving:
search for a proof of the specification, and in the process construct a program satisfying the
specification. To this end we modify the saturation algorithm such that it allows to track
subsitutions into certain variables, record synthesized program fragmets, and after a proof is
found, construct a final program from the recorded fragments. However, to make the most
out of the saturation-based theorem prover, we need to integrate our synthesis framework
with the prover’s efficiency-critical features. Such integration allows us to prove more complex
specifications and hence also synthesize more complex programs. In this submission, we explore
integration of program synthesis with the AVATAR architecture for clause splitting [6] in the
Vampire theorem prover [3].

2 Preliminaries

We briefly introduce saturation-based theorem proving and superposition. For details, we refer
to [3]. We assume familiarity with standard multi-sorted first-order logic with equality. We
denote variables by x, y, skolem constants by σ, clauses by C, formulas by F , all possibly with
indices. We reserve the symbol □ for the empty clause which is logically equivalent to ⊥. We
include a conditional term constructor if−then−else in the language, as follows: given a
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formula F and terms s, t of the same sort, we write if F then s else t to denote the term s if
F is true and t otherwise.

Saturation-based proof search implements proving by refutation: to prove that F is valid, it
establishes the unsatisfiability of ¬F . To prove a formula F , saturation-based provers negate
F , skolemize it, and convert to clausal normal form (CNF), denoted cnf(¬F ), which forms
the initial set S of clauses. This set is then saturated by computing logical consequences of S
with respect to a sound inference system. If in the process □ is derived, the original set S of
clauses is unsatisfiable, and hence the formula F is valid. The most common inference system
used by saturation-based provers for first-order logic with equality is the superposition calcu-
lus [4], including the superposition, binary resolution, equality resolution, equality factoring,
and factoring rules. In this paper we use the binary resolution rule:

A ∨ C ¬A′ ∨D
(C ∨D)θ

[Binary Resolution]

where θ is the most general unifier of A and A′ – i.e., it is a substitution such that Aθ = A′θ
and from all such substitutions it is the most general one.

2.1 Saturation-Based Synthesis in a Nutshell

We give a simplified overview of our method from [2]. The method synthesizes programs for
specifications given as formulas in first-order logic having the form

∀x.∃y.F [x, y], (1)

where F [x, y] is a formula containing the variables x and y. The specification expresses that
“for all inputs x there exists an output y such that the relation F [x, y] holds”. Further, the
specification identifies a set of symbols that are considered computable. Intuitively, the goal
is to find a term r which is a witness for the variable y in (1), such that r only consists of
computable symbols and variables x.

To find such an r, we utilize answer literals [1] (already introduced to Vampire in [5]).
Briefly, answer literals are used to track substitutions into the variable y throughout proof
search. We add an answer literal ans(y) to the negated and clausified specification, obtaining

∀y.(cnf(¬F [σ, y]) ∨ ans(y)),

where the skolem constants σ were introduced by skolemizing the variables x, and then we
saturate the resulting set of clauses. If we derive a clause C[σ]∨ans(r[σ]) where C[σ] is ground
and computable and r[σ] is computable, then r[x] is a witness for y in (1) under the condition
that ¬C[x] holds. We call such an r[x] a program with conditions for (1), and we denote it
if ¬C[x] then r[x]. In particular, if C[x] is empty, then r[x] is an unconditional witness for y
in (1) and we call it a program for (1).

Our framework utilizes saturation-based proof search to derive such clauses C[σ]∨ans(r[σ]).
Upon derivation of such a clause, we record the corresponding program with condition and
replace the clause in the search space by C[σ]. Finally, when a proof of the given specification (1)
is found, we construct a program for (1) by composing the programs with conditions recorded
during the proof search using a (nested) if−then−else construction. For more details on the
synthesis framework, see [2].
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2.2 Clause Splitting in a Nutshell

Clause splitting is one of the key features that make saturation-based theorem proving efficient
in practice. The main idea of splitting is as follows. Let S be a set of clauses and C1 ∨ C2 a
clause such that C1, C2 have no common variables. We call such clauses C1, C2 the components
of the clause C1 ∨ C2. Then S ∪ {C1 ∨ C2} is unsatisfiable iff both S ∪ {C1} and S ∪ {C2} are
unsatisfiable. Therefore, instead of checking satisfiability of a set of large clauses, we can check
the satisfiability of multiple sets of smaller clauses.

AVATAR [6] is the leading approach to clause splitting, used e.g. by the theorem prover
Vampire [3]. It implements splitting by an interplay between a saturation-based first-order
theorem prover and a SAT/SMT solver. The first-order prover passes clauses that can be split
into multiple components to the SAT/SMT solver. The SAT/SMT solver then finds a set of
clause components, satisfiability of which implies satisfiability of all split clauses – a model. The
components in the model, called assertions, are then passed to the first-order prover to be used
for further derivations in saturation. A clause C derived using assertions C1, . . . , Cn is denoted
as C ← C1, . . . , Cn and is called a clause with assertions C1, . . . , Cn. When the first-order
theorem prover derives the empty clause with assertions C1, . . . , Cn, it notifies the SAT/SMT
solver of this and the SAT/SMT solver finds a new model of the split clauses such that not all
C1, . . . , Cn are true in the model. If there is no such model, it means that the whole problem
is unsatisfiable, and the contradiction is propagated to the first-order theorem prover, which
concludes the proof search.

3 Example without AVATAR

We illustrate the potential pitfalls of the use of answer literals in AVATAR by the following
example from [5].

Example 1. The specification asks for a workshop, given the information which workshop
happens on which day of a conference and an assertion that it is either Sunday or Monday:

specification: ∃x.workshop(x)
axioms: sunday→ workshop(arcade)

monday→ workshop(vampire)

sunday ∨monday

One possible program for this input would be:

if workshop(arcade) then arcade else vampire

However, it is disputable if this program is helpful: if we ourselves could evaluate whether the
condition workshop(·) holds, arguably we would not need to pose the query ∃x.workshop(x) at
all. Therefore, we annotate the symbol workshop as uncomputable, and thereby disallow its use
in the target programs. With this annotation, we can straightforwardly synthesize a program
for the input without using AVATAR:

(a) ¬workshop(x) ∨ ans(x) [input specification with answer literal]

(b) sunday ∨monday [input]

(c) ¬sunday ∨ workshop(arcade) [input]
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(d) ¬monday ∨ workshop(vampire) [input]

(e) ¬sunday ∨ ans(arcade) [binary resolution (a), (c)]

(f) ¬monday ∨ ans(vampire) [binary resolution (a), (d)]

At this point our synthesis saturation algorithm records two programs with conditions:

if sunday then arcade

if monday then vampire

It also replaces (e) by (g), (f) by (h), and continues with saturation:

(g) ¬sunday [replacement for (e)]

(h) ¬monday [replacement for (f)]

(i) monday [binary resolution (b), (g)]

(j) □ [binary resolution (h), (g)]

The final program is constructed by composing the programs recorded during the proof search:

if sunday then arcade else vampire

Note that we do not need to consider the condition if monday, because the proof was concluded
by deriving □, and hence ¬sunday combined with the input clauses together implies monday.

While this problem is simple and admits a short proof without splitting, it can be used
to illustrate the issues with using AVATAR with answer literals. We however note that the
problems that benefit most from the integration of AVATAR and synthesis are more complex,
such as the maximum of n variables (for a sufficiently large given constant n):

∀x1, . . . , xn.∃y.(
i≤n∧
i=1

y ≥ xi ∧ (

i≤n∨
i=1

y = xi)) (2)

4 Path to Integration

In the process of integrating synthesis with AVATAR we had to deal with two main questions.

Q1. What would happen if we split clauses containing answer literals? We note
that answer literals appear in all clauses only with positive polarity. Hence, if we split a
clause containing answer literals such that an answer literal becomes a component and pass
it to AVATAR, nothing prevents AVATAR from finding a model in which all answer literals
are true. This model will satisfy all splittable clauses that contain answer literals. Thus, we
might only find a proof by refutation if the input axioms without the negated specification were
unsatisfiable, since the axioms correspond to the only input clauses without answer literals.
This is clearly undesirable. Therefore, to avoid answer literals being true in the AVATAR
model, we disallow splitting of clauses that contain answer literals.

To illustrate our second question, let us take another look at the problem from Example 1
using the answer for Q1 from the previous paragraph.
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Example 2. We search for a proof of the problem from Example 1 using AVATAR but without
splitting clauses containing answer literals:

(a’) ¬workshop(x) ∨ ans(x) [input specification with answer literal]

(b’) sunday ∨monday [input]

(c’) ¬sunday ∨ workshop(arcade) [input]

(d’) ¬monday ∨ workshop(vampire) [input]

AVATAR splits clauses (b’)-(d’), denoting sunday,monday,workshop(arcade),workshop(vampire)
by 1, 2, 3, 4, respectively:

(b’): 1 ∨ 2

(c’): ¬1 ∨ 3

(d’): ¬2 ∨ 4

Clauses (b’)-(d’) now do not participate in the first-order inferences anymore. AVATAR com-
putes a model {1, 3, 4} and introduces the component clauses:

(e’) sunday← 1 [component 1]

(f’) workshop(arcade)← 3 [component 3]

(g’) workshop(vampire)← 4 [component 4]

First-order reasoning continues:

(h’) ans(arcade)← 3 [binary resolution (a’), (f’)]

(i’) ans(vampire)← 4 [binary resolution (a’), (g’)]

At this point there are no more inferences that can be applied. Further, since the clauses
containing answer literals (i.e., (h’) and (i’)) also have AVATAR assertions, they are not in the
form C ∨ ans(r), where C is ground and computable, and therefore we cannot directly apply
the replacement steps we used in the AVATAR-less proof. This means that the proof attempt
gets stuck, which leads us to the second question.

Q2. What can we do with a clause derived using assertions and which also contains
an answer literal? The assertions correspond to additional conditions that entail the clause.
Hence, a natural way of converting a clause with assertions to a clause without assertions is to
add negations of the assertions as literals. I.e., we can convert a clause C ← A1, . . . , An, where
A1, . . . , An are assertions, to the clause C ∨ ¬A1 ∨ · · · ∨ ¬An.

Example 3. Let us try converting the clauses with assertions to assertion-free clauses to
continue with our proof from Example 2:

(j’) ans(arcade) ∨ ¬workshop(arcade) [reintroduce assertions of (h’)]

(k’) ans(vampire) ∨ ¬workshop(vampire) [reintroduce assertions of (i’)]

The clauses (j’) and (k’) are also not in the form C∨ans(r) where C is ground and computable,
because the symbol workshop is uncomputable. Therefore, we cannot apply the recording and
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replacement step. To make matters even worse, now the first-order reasoning continues by
subsuming clauses (j’) and (k’) by the clause (a’). Then, there are once again no more first-
order inferences that could be applied – we reached saturation with respect to the AVATAR
model {1, 3, 4}, corresponding to {sunday,workshop(arcade),workshop(vampire)}.

Our solution to preclude the situation where we add back assertions only to find that the
resulting clause cannot be reasoned with further is to disallow splitting clauses that are not
ground and computable. Then, all assertions are ground and computable, and thus if we derive
a clause C ∨ans(r)← A1, . . . , An where C is ground and computable, we can record a program
based on it and remove the answer literal. Formally, we do this by adding a new inference rule

C ∨ ans(r)← A1, . . . , An

C ∨ ¬A1 ∨ · · · ∨ ¬An ∨ ans(r)
[Reintroduce Assertions],

which applies only if C is ground and computable. An application of this rule is always followed
by recording of the program if ¬C ∧ A1 ∧ · · · ∧ An then r and replacement of the clause
C ∨ ¬A1 ∨ · · · ∨ ¬An ∨ ans(r) by C ∨ ¬A1 ∨ · · · ∨ ¬An.

Example 4. Let us take a look at the proof of the problem from Example 1 using AVATAR
with the constraints and the new rule as described above:

(a”) ¬workshop(x) ∨ ans(x) [input specification with answer literal]

(b”) sunday ∨monday [input]

(c”) ¬sunday ∨ workshop(arcade) [input]

(d”) ¬monday ∨ workshop(vampire) [input]

AVATAR splits the clause (b”) (not clauses (c”) and (d”), since workshop is not computable):

(b”): 1 ∨ 2

Clause (b”) now does not participate in the first-order inferences anymore. AVATAR computes
a model {1} and introduces the component clause:

(e”) sunday← 1 [component 1]

First-order reasoning continues:

(f”) workshop(arcade)← 1 [binary resolution (e”), (c”)]

(g”) ans(arcade)← 1 [binary resolution (f”), (a”)]

(h”) ¬sunday ∨ ans(arcade) [reintroduce assertions (g”)]

At this point the algorithm records the program with condition:

if sunday then arcade

It also replaces (h”) by (i”) and continues with saturation:

(i”) ¬sunday [replacement for (h”)]
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(j”) □← 1 [binary resolution (e”), (i”)]

(k”) ¬1 [AVATAR contradiction (j”)]

AVATAR recomputes a model {2} and introduces the component clause:

(l”) monday← 2 [component 2]

First-order reasoning continues:

(m”) workshop(vampire)← 2 [binary resolution (l”), (d”)]

(n”) ans(vampire)← 2 [binary resolution (m”), (a”)]

(o”) ¬monday ∨ ans(vampire) [reintroduce assertions (n”)]

At this point the algorithm records the program with condition:

if monday then vampire

It also replaces (o”) by (p”) and continues with saturation:

(p”) ¬monday [replacement for (o”)]

(q”) □← 2 [binary resolution (l”), (p”)]

(r”) ¬2 [AVATAR contradiction (q”)]

AVATAR tries to recompute the model, but detects that its input clauses are unsatisfiable,
which concludes the proof:

(s”) □ [AVATAR refutation (b”), (k”), (r”)]

Finally, we construct the program from the programs with conditions collected during the proof
analogously to how we did for the derivation without AVATAR:

if sunday then arcade else vampire

5 Conclusions

To integrate our synthesis framework with the AVATAR splitting framework, we add a con-
straint to only split clauses that are ground, computable, and contain no answer literals. Fur-
ther, we introduce a new inference rule, which replaces certain clauses with assertions by clauses
without assertions.

We acknowledge that the constraints could possibly be weakened – we leave this for future
work. However, our experimental evaluation [2] witnesses that our approach already works well
in practice: with AVATAR integration, we can synthesize the maximum function for specifica-
tion (2) up to n = 23, while without the integration we can only synthesize the maximum up
to n = 9 (all within a 5 minute time limit).
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