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Abstract

We present a method for answering ontology-mediated queries for DL-Lite extended
with a concrete domain, where we allow concrete domain predicates to be used in the query
as well. Our method is based on query rewriting, a well-known technique for ontology-based
query answering (OBQA), where the knowledge provided by the ontology is compiled into
the query so that the rewritten query can be evaluated directly over a database. This tech-
nique reduces the problem of query answering w.r.t. an ontology to query evaluation over a
database instance. Specifically, we consider members of the DL-Lite family extended with
unary and binary concrete domain predicates over the real numbers. While approaches for
query rewriting DL-Lite with these concrete domain have been investigated theoretically,
these approaches use a combined approach in which also the data is processed, and require
the concrete domain values occurring in the data to be known in advance, which makes
the procedure data-dependent. In contrast, we show how rewritings can be computed in a
data-independent fashion.

1 Introduction

Formal ontologies are useful to augment application data in order to be able to extract more
consequences from the data by use of background knowledge than from a query over the plain
data alone. In recent years, ontology-based query answering (OBQA) by means of Description
Logics (DLs) has become a prominent example of this setting. In many practical applications
such as medical or stream-reasoning applications, where data is produced by sensors, the data
need not always be symbolic, but can be numerical. Concepts from such applications can be
characterized by relating their instances to numerical values. For example, patients with high
blood pressure can be modelled as patients with a value for blood pressure over 180. Such
statements can be expressed in an ontology by the use of concrete domains [5].

In OBQA applications, the expressiveness of the underlying DL can lead to high complexity
of query answering, which limits a fast execution of ontology-based queries [14, 12, 10]. This
has lead to the development of the DL-Lite family of DLs that are designed such that their
expressiveness admits to perform query answering by the well-known rewriting approach for
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answering conjunctive queries [7, 2]. In the classical rewriting approach, the query is rewritten
such that the resulting query incorporates the relevant knowledge from the ontology. Then, the
rewritten query is answered over the plain (or possibly enriched) data by a database engine di-
rectly. DLs that admit this approach are called first-order rewritable. The rewriting approach
has strong benefits. Since answering conjunctive queries has a complexity of AC0 measured
in the size of the data, rewritability means that query answering is of the same complexity.
Furthermore, the rewriting is data-independent, and thus only has to be performed once, after-
wards the rewritten query can be executed on different databases without further adaptations
or further reasoning steps. This is especially useful for querying big data or frequently changing
data. Another approach to solve OBQA by means of standard database query answering is the
combined rewriting approach, in which the data is enriched based on the ontology before the
rewritten query is executed [11, 9, 8].

Combinations of DL-Lite and concrete domains have been investigated in regard of query
answering early on [13, 15, 3]. In these combinations either the concrete domain predicates
are only unary [13, 15, 3] or the query language does not admit the use of concrete domain
predicates [13]. Both restrictions are severe limitations on the expressiveness.

Recently, Baader et al. identified in [4] a criterion for concrete domains with n-ary predicates
that admits combined rewritability when used in combination with DL-Lite. This so-called cr-
admissibility consists of several properties that the concrete domain must fulfill. Among others,
the concrete domain must be convex and admit polynomial reasoning, it must contain equality
in its set of predicates, and it must be functional, i.e. for any predicate (of non-zero arity)
applied to a tuple of variables, where one of these variables has a fixed value, there is at most
one solution. See [4] for a discussion of all the properties required by cr-admissibility.

Two concrete domains that are identified as cr-admissible in [4], are those over the rational
numbers with predicates including equality and one comparison ∼d ∈ {<d, >d} to arbitrary
values d and a predicate to state a distance +d(v, w) from one value to another. The presence
of both comparison operators or a binary predicate <d could be desirable, but it would destroy
convexity of the concrete domain. This concrete has infinitely many different unary and also
binary predicates. The latter gives more expressiveness as the concrete domains considered in
earlier approaches and admits to express the example from above:

HighBloodPressurePatient v Patient u ∃hasBloodPressure. >180 .

Furthermore it can express that high risk patients are patients whose systolic blood pressure is
above their diastolic blood pressure by 90 (mmHg):

HighRiskPatient v Patient u ∃hasDiastolicBloodPressure, hasSystolicBloodPressure.+90 .

Despite being a polynomial method for evaluating queries, the technique proposed in [4] is a
combined rewriting approach, which means that the data has to be processed before the rewrit-
ten query can be executed. Furthermore, the query rewriting procedure requires full knowledge
of the concrete domain values that occur in the data. This limits the practical applicability of
the technique for large or frequently changing data sets—one of the main advantages of DLs ad-
mitting full first-order rewritability. To solve this issue, we present a data-independent rewriting
procedure for DL-Lite extended with the aforementioned cr-admissible concrete domains.

Our rewriting procedure proceeds in two phases. First, it saturates the terminological part
of the ontology, and second, it rewrites the input query based on the saturated ontology. When
answering conjunctive queries by a data-independent rewriting approach, the rewritten query
must cater for all possibilities how concept membership or satisfaction of a concrete domain
predicate can be derived based on the information in the ontology. For instance, if a concept
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implies a positive distance between a pair of values, and the ontology also states a bound for the
first value, then a bound on the second value can be inferred. Such information does only depend
on the ontology and not on the data. In the first phase, our rewriting approach makes such
information explicit and adds it to the TBox in the form of new axioms. This TBox saturation
can be done even independently of the query. In the second phase, our algorithm computes a
rewriting of a given query in regard to the saturated TBox. In contrast to the classical rewriting
for DL-Lite without concrete domains, here the challenge is that our rewriting procedure needs
to cope with a potentially infinite set of predicates.

This paper is structured as follows. The next section introduces the concrete domains R>

and R<, the resulting logic DL-Liteu(R∼) and answering of conjunctive queries. Section 3 gives
an overview of the rewriting method and Section 4, describes the TBox saturation and its
properties. Section 5 introduces the algorithm to compute the query rewriting and we show
that it is complete and terminating. Finally, we provide our conclusion in Section 6. Proof
details of our results can be found in the extended version of the paper [1].

2 Query Answering in DL-Liteu(R>) and DL-Liteu(R<)

We recall syntax and semantics of DL-Liteu(D) and the main task conjunctive query answering.

2.1 The Concrete Domains R> and R<

We define two concrete domains over the real numbers, R> and R<, that are used in our DL.
In general, a concrete domain [5] is a tuple D = 〈∆D,PD, arD, ·D〉 of a set ∆D of concrete
domain elements, a set of PD of concrete domain predicates, where to each Π ∈ P an arity
ar(Π) ∈ N is associated, and an interpretation function ·D which assigns to each Π ∈ P with
ar(Π) = n a set ΠD ⊆ (∆D)n. We focus on two concrete domains, R> and R<, defined
by R∼ = 〈R,PR∼ , arR∼ , ·R∼〉, for one comparison predicate ∼ ∈ {<,>} per concrete domain,
with the set PR∼ of predicates defined as PR∼ = {>1

R∼ ,>
2
R∼ ,⊥

1
R∼ ,⊥

2
R∼} ∪ {=d,∼d,+d | d ∈ R},

arities arR∼(=d) = arR∼(∼d) = arR∼(>1
R∼) = arR∼(⊥1

R∼) = 1 and arR∼(+d) = arR∼(>2
R∼) =

arR∼(⊥2
R∼) = 2, and an interpretation function defined as

(>1
R∼)R∼ = R (⊥1

R∼)
R∼

= (⊥2
R∼)

R∼
= ∅ (∼d)R∼ = {d′ | d′ ∈ R, d′ ∼ d}

(>2
R∼)

R∼
= R× R (=d)R∼ = {d} (+d)R∼ = {〈d1, d2〉 | d1, d2 ∈ R, d1 + d = d2}.

Given two predicates Πa and Πb of the same arity, we write Πa |= Πb iff (Πa)R∼ ⊆ (Πb)
R∼ .

2.2 The Description Logics DL-Liteu(R∼)
We recall DL-Liteu(R∼) with the two concrete domains just introduced. Let NC, NR, NA and NI

be pairwise disjoint, countably infinite sets of respectively concept names, role names, attribute
names and individual names. A role R is an expression of the form r or r−, where r ∈ NR.
DL-Liteu(D) concepts C, D and axioms a are defined according to the following syntax rule,
where A ∈ NC, R, S are roles, U1, . . . , Un ∈ NA, and Πn ∈ PR∼ s.t. arR∼(Πn) = n:

C ::= > | A | C u C | ∃R | ∃U1, . . . , Un.Πn D :: = ⊥ | C | ∀U1, . . . , Un.Πn

a ::= C v D | R v S .
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We assume (nested) conjunctions to be represented as sets, that is, they never contain dupli-
cates, and the order of conjuncts is not important.

A TBox is a finite set of axioms. Let A ∈ NC, a, b ∈ NI, r ∈ NR, U ∈ NA, and d ∈ R. An
ABox is a set of assertions, which are of the forms A(a), r(a, b), and U(a, d). A knowledge base
(KB) is a tuple 〈T ,A〉, where T is a TBox and A an ABox.

Example 1. Assume that A,B1, B2 ∈ NC, r ∈ NR, U,U1, U2 ∈ NA, and b ∈ NI. Then, let
K = 〈T ,A〉 be a knowledge base with T = {B1 v ∃r−, A v ∃U.>3.5, B2 v ∀U1, U2.+10} and
A = {A(b), B2(b), U1(b, 11), U2(b, 21)}.

The semantics of KBs is defined in terms of interpretations. An interpretation is a tuple
I = 〈∆I , ·I ,R∼〉, where ∆I is a set called the domain, ·I is a function, and R∼ is a concrete
domain. The function ·I maps every a ∈ NI to an element aI ∈ ∆I , every concept name
A to a set AI ⊆ ∆I , every role name r to a relation rI ⊆ ∆I × ∆I , and every attribute
U ∈ NA to a relation UI ⊆ ∆I ×R. We require the domain ∆I to be disjoint with the concrete
domain: ∆I ∩R = ∅. The interpretation function is extended to roles by setting (r−)I = (rI)−,
and to concepts by (>)I = ∆I , (⊥)I = ∅,

(C1 u C2)I = CI1 ∩ CI2 , (∃R)I = {e ∈ ∆I | ∃e′ ∈ ∆I : 〈e, e′〉 ∈ RI},
(∃U1, . . . , Un.Π)I = {e ∈ ∆I | ∃〈e, d1〉 ∈ UI1 , . . . ,∃〈e, dn〉 ∈ UIn : 〈d1, . . . , dn〉 ∈ ΠR∼},
(∀U1, . . . , Un.Π)I = {e ∈ ∆I | ∀〈e, d1〉 ∈ UI1 , . . . ,∀〈e, dn〉 ∈ UIn : 〈d1, . . . , dn〉 ∈ ΠR∼}.

Let X, Y be concepts or roles. An interpretation I satisfies an axiom X v Y (in symbols
I |= X v Y ) iff XI ⊆ Y I . I satisfies an assertion A(a) iff aI ∈ AI , r(a, b) iff 〈aI , bI〉 ∈ rI , and
U(a, d) iff 〈aI , d〉 ∈ UI . I is a model of a KB (TBox) if it satisfies all axioms and assertions in
it. Two TBoxes T , T ′ are equivalent (in symbols T ≡ T ′) if they have the same set of models.
An axiom/assertion b is entailed by a KB K (in symbols K |= b) if I |= b for all models I of K.

2.3 Conjunctive Queries for DL-Liteu(R∼) KBs

Let NV be a countably infinite set of variables pairwise disjoint with NC, NR, NA, and NI.
Elements from NI ∪ NV are abstract terms and elements from R ∪ NV are concrete terms. The
union of abstract and concrete terms is called terms. Let A ∈ NC, r ∈ NR, U ∈ NA, Π ∈ PR∼

with arity n, ta, t
′
a be abstract terms and tc1 , . . . , tcn be concrete terms. An atom is an expression

of the forms A(ta), r(ta, t
′
a), =(ta, t

′
a), U(ta, tc) or Π(tc1 , . . . , tcn). A conjunctive query (CQ) is

an expression of the form φ = ∃x1, . . . , xn.α1 ∧ . . .∧αm, where x1, . . . , xn ∈ NV, and α1, . . . , αn

are atoms. We denote terms in α (/φ) by terms(α) (/terms(φ)), and variables in α (/φ) by
var(α) (/var(φ)). Variables in φ that are not bound by an existential quantifier are called
answer variables. A union of CQs (UCQ) is a non-empty set of CQs, where each CQ has the
same set of answer variables. We denote the set of answer variables of a UCQ Ψ by varans(Ψ).
A UCQ Ψ is called Boolean if varans(Ψ) = ∅. Given a UCQ Ψ, an answer to Ψ is a mapping
a : varans(Ψ)→ NI ∪ R, and we denote by a(Ψ) the Boolean UCQ obtained by replacing every
answer variable x by a(x). Answer variables and answers are defined accordingly for CQs.

Given an interpretation I, a Boolean CQ φ is satisfied by I (in symbols I |= φ) if there exists
a homomorphism h : terms(φ) → ∆I ∪ R s.t. for every =(ta, t

′
a) ∈ φ we have h(ta) = h(t′a),

for every d ∈ terms(φ) ∩ R we have h(d) = d, for every a ∈ terms(φ) ∩ NI we have h(a) = aI ,
for every A(t) ∈ φ we have h(t) ∈ AI , for every r(t1, t2) ∈ φ we have 〈h(t1), h(t2)〉 ∈ rI ,
for every U(t1, t2) ∈ φ we have 〈h(t1), h(t2)〉 ∈ UI , and for every Π(t1, . . . , tn), we have
〈h(t1), . . . , h(tn)〉 ∈ ΠR∼ . We might then also write I |= h(φ). A Boolean UCQ Φ is satis-
fied by I iff I |= φ for some φ ∈ Φ. A Boolean UCQ is entailed by a KB K if it is satisfied in
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every model of K. A Boolean CQ/UCQ Φ is unsatisfiable in a TBox T if for every model I of
T , we have I 6|= Φ. An answer a to a UCQ Ψ is a certain answer to Ψ if K |= a(Ψ).

Example 2. Let K be a KB as shown in Example 1. Let φ1 and φ2 be CQs s.t. φ1 =
∃x, v.U(x, v), and φ2 = ∃v1, v2.(U1(x, v1) ∧ U2(x, v2) ∧ +10(v1, v2)). We have varans(φ1) = ∅,
and varans(φ2) = {x}. Furthermore, φ1 is Boolean and K |= φ1. The answer a for φ2 with
a(x) = b is a certain answer to φ2 in K, since K |= a(φ2).

3 Overview of the Query Rewriting Method

Our aim is to develop a practical rewriting method for answering UCQs with concrete domain
predicates over R∼ w.r.t. DL-Liteu(R∼) ontologies. While in principle, a single rewriting step can
be sufficient to enable query answering, it does not yield a practical algorithm that lends itself
to implementation. This is mainly due to consequences that follow from the concrete domain
alone, or from its combination with the TBox. For example, axioms of the form C v ∀U1, U2.+d

make both attributes U1 and U2 functional for instances of concept C. Consequences of this
sort hold independently of the query and the data, and thus would need to be re-discovered for
each answered UCQ in a classical rewriting system. A more efficient way is to compute these
consequences once and reuse them. To this end, we present an approach that consists of two
steps. The first one is a preprocessing step of the TBox T , which is called TBox saturation,
and the second is the rewriting of the query w.r.t. the saturated version of T .

In the TBox saturation step, a set of saturation rules augments the TBox with additional
axioms. The rewriting step is then similar to the classical one for DL-Lite [7], and employs a set
of rewriting rules. Starting from some CQ φ in the input UCQ Φ, and for every rewriting rule
R, if φ satisfies the premise of R, and the side condition of R is also met, then the conclusion
of R, as a new CQ φ′, is added to Φ. This process is repeated for every CQ in Φ until a fixed-
point is reached. As we present later on, the side conditions of the rewriting rules check for the
existence of certain axioms that follow from T , but are not necessarily present in T . But since
the query rewriting step is based on the saturated version of T , a syntactic check suffices to
inspect the satisfaction of these side conditions. In the extended version of this paper, we show
that this method yields a sound and complete procedure for query rewriting for DL-Liteu(R∼).

4 TBox Saturation

We introduce the calculus for generating the saturated version of a given TBox T , which is
then used by the query rewriting procedure. Afterwards, we discuss properties of this calculus.

4.1 TBox Saturation Calculus

Our calculus consists of the rules shown in Figure 1. In these rules, Π1,Π2 ∈ PR∼ are some
predicates from R∼, $ ∈ {<,=, >} is a comparison operator from PR∼ , that together with a
value d gives rise to the unary predicate $d, and Q ∈ {∀,∃} is a quantifier. The preconditions
are to be checked syntactically and the derived statements are added as axioms to the TBox.

The rules in the calculus are grouped according to the kind of inference they yield. The rules
in Rinit infer the straightforward properties of attributes. For example, rule Rinit-6 states that
if an element has two attribute values with distance d, and both of these are (locally) functional,
then all pairs of values of these attributes must have a distance d. The rules in R+ infer implicit
distances between attribute values, since the binary predicate +d behaves additive for the real
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Rinit-rules:

C v QU1, U2.Π

C v QU1.>R∼ , C v QU2.>R∼
(1)

C1 v ∃U.Π C2 v ∀U,U.+0

C1 u C2 v ∀U.Π
(2)

C1 v ∀U.Π1 C2 v ∃U.Π2

C1 u C2 v ∃U.Π1
(3)

C1 v ∀U1, U2.+d

∃U1.>R∼ u ∃U2.>R∼ u C1 v ∃U1, U2.+d
(4)

C v QU1, U2.+d

C v QU2, U1.+−d
(5)

C1 v ∃U1, U2.+d C2 v ∀U1, U1.+0 C3 v ∀U2, U2.+0

C1 u C2 u C3 v ∀U1, U2.+d
(6)

R+-rules:
C1 v ∃U1, U2.+d1

C2 v ∃U2, U3.+d2
C3 v ∀U2, U2.+0

C1 u C2 u C3 v ∃U1, U3.+(d1+d2)
(1)

C1 v ∀U1, U2.+d1
C2 v ∀U2, U3.+d2

∃U2.>R∼ u C1 u C2 v ∀U1, U3.+(d1+d2)
(2)

C1 v ∀U1, U2.+d1
C2 v ∃U2, U3.+d2

∃U1.>R∼ u C1 u C2 v ∃U1, U3.+(d1+d2)
(3)

R$-rules:
C1 v ∀U1, U2.+d1

C2 v ∃U1.$d2
C3 v ∃U2.Π

C1 u C2 u C3 v ∃U2.$(d1+d2)
(1)

C1 v ∀U1, U2.+d1
C2 v ∃U1.$d2

C1 u C2 v ∀U2.$(d1+d2)
(2)

C1 v ∃U1, U2.+d1
C2 v ∀U1.$d2

C1 u C2 v ∃U2.$(d1+d2)
(3)

R⊥-rules:

C1 v D1 C2 v D2

C1 u C2 v ⊥
provided |= D1 uD2 v ⊥ (1)

C1 v D1 C2 v D2

C1 u C2 v ∀U.⊥R∼ / ∀U1, U2.⊥R∼
provided |= D1 uD2 v ∀U.⊥R∼ / ∀U1, U2.⊥R∼ (2)

C1 u ∃U.>R∼ v D
C1 u C2 v D

provided C2 v ∃U.Π (3)

Figure 1: TBox saturation rules.

numbers, and distances can simply be propagated down (/up) the number line. Rules in R$

lead to the inference of an attribute value based on the following: if the distance between
two attribute successors and the value of one of them are known, then the value of the other
attribute successor can be inferred. Lastly, the rules in R⊥ lead to axioms stating which
concepts cannot have certain attribute successors or which concepts are unsatisfiable. Observe
that the saturation rules can refer to (the presence of) data while staying data-independent.
This is achieved by the use of ∃U.>R∼ in the left-hand side of the inferred statements.

4.2 Properties of the Saturation Calculus

In Algorithm 1, the saturation rules are used to infer all axioms from the TBox which are
relevant to our rewriting procedure. The relevance of these axioms is determined mainly by
rewritability and termination. To illustrate relevance of axioms for rewritability, let us take the
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following case as an example. Assume we are given the TBox T = {C2 v ∃U1.=3, > v ∃U2.>R∼ ,
C1 v ∀U1, U2.+2}, the ABox A = {C1(b), C2(b)}, and the CQ φ = ∃v.(U2(x, v) ∧=v(5)). It
is easy to see that 〈T ,A〉 |= φ, but 〈∅,A〉 6|= φ. In order to be able to rewrite φ into Φ s.t.
〈∅,A〉 |= Φ, we need some axiom a in T of the form C1 u C2 v ∃U2.=5. Thus, a is a relevant
axiom from the rewritability aspect, and therefore, a rule to generate such an axiom, from such
a TBox, is needed. In this example, this rule is R$-1. Let us consider φ′ = ∃v.(U2(x, v)), where
a1 = (C1 uC2 v ∃U2.>R∼) is needed to get the rewriting of φ, but actually a1 is not a relevant
axiom because its effect is already covered, since (C1 uC2 v ∃U2.=5) |= (C1 uC2 v ∃U2.>R∼).
This type of entailments is handled by the rewriting rules from Section 5.

The other criterion for relevance is termination. The interaction between the rules, or
even between the conclusion and the premise of the same rule, enables infinitely many rule
applications. Axioms inferred using the R⊥ can be utilised to prevent such behaviour: note that
an axiom of the form C v ∀U.⊥R∼ makes all other axioms of the form C v ∀U.Π superfluous,
which can be used to limit the number of inferred axioms to be kept. Therefore the R⊥ rules
are applied preferred to any other rule, see Algorithm 1.

Let T be a TBox, R a saturation rule from Figure 1, and a an axiom. The axiom a is
derivable by R from T (in symbols T `R a) iff the premise(s) of R occur in T and a is of the
form of the conclusion of R. T ` a denotes that a is derivable from T using any saturation rule
in the calculus. We show in the extended version of the paper, that the calculus yields a sound
TBox saturation procedure.

Lemma 1 (Soundness). Let T be a TBox and a be an axiom. Then, T ` a only if T |= a.

To ensure termination of the TBox saturation process, we refer to “superfluous axioms”.

Definition 2 (Redundant axiom). Let T be a TBox and a1, a2 ∈ T . Then, a2 is redundant
to a1 w.r.t. T if at least one of the following conditions is satisfied:

1. a1 is of the form C v D, and a2 is of the form C u C ′ v D;

2. a1 is of the form C v ∀U.⊥R∼ , and a2 is of the form C u C ′ v ∀U.Π; or

3. a1 is of the form C v ∀U1, U2.⊥R∼ , and a2 is of the form C u C ′ v ∀U1, U2.+d.

The axiom a2 ∈ T is a redundant axiom in T iff there exists some a1 ∈ T such that a2 is
redundant to a1 w.r.t. T .

From this definition, it follows that for any TBox T , we have T ≡ T \{a2} where a1, a2 ∈ T ,
and a1 makes a2 redundant in T . Therefore, a refinement function of T can be defined as
refine(T ) = {a ∈ T | a is not redundant in T \ {a}}. Algorithm 1 specifies the computation of
the saturated TBox (in symbols: saturate(T )). In the extended version of the paper, we prove
that for any TBox T , and due to redundancy elimination, Algorithm 1 terminates on any input.

Algorithm 1: Computation of saturate(T )

Input: TBox T .
while T ` a for some a and a not redundant in T do

while T `R⊥ a′ for some a′ and a′ not redundant in T do
set T := refine(T ∪ {a′}).

set T := refine(T ∪ {a}).
return T ;
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Theorem 3 (Termination of saturation). Algorithm 1 always terminates.

In the following, we show an example of the saturation process of a given TBox T .

Example 3. Consider the TBox T = {A v ∃U1.=2.6, B v ∀U2, U1.+0.4}. We show the
computation of some axioms in saturate(T ), by applying the rules from Figure 1 as follows:

T ∪ { Rinit−5−−−−−→ B v ∀U1, U2.+−0.4 ,
Rinit−4−−−−−→ ∃U1.>R∼ u ∃U2.>R∼ uB v ∃U2, U1.+0.4 ,

Rinit−5−−−−−→ ∃U1.>R∼ u ∃U2.>R∼ uB v ∃U1, U2.+−0.4 ,

R+−2−−−−→ ∃U2.>R∼ uB v ∀U1, U1.+0 , ∃U1.>R∼ uB v ∀U2, U2.+0 ,

Rinit−2−−−−−→ ∃U2.>R∼ uA uB v ∀U1.=2.6 ,
R$−1−−−−→ ∃U2.>R∼ uA uB v ∀U2.=2.2 , . . .}.

5 Query Rewriting

This section presents the computation procedure for rewriting a given UCQ Φ w.r.t. a saturated
TBox. The idea is to apply a set of rules on Φ, so that the union over the resulting set of CQs Φ′

has exactly those certain answers over 〈∅,A〉 as Φ has over 〈T ,A〉. We make the following sim-
plifying assumptions on CQs φ in Φ: i) for every atom of the form =(ta, t

′
a) ∈ φ, ta ∈ varans(φ),

and ii) terms(φ) ∩ R = ∅. These assumptions are w.l.o.g. since for i), if =(ta, t
′
a) ∈ φ and

ta 6∈ varans(φ), we can replace ta by t′a exhaustively in the query, and equality between different
constants that would make the query unsatisfiable can be easily detected; and for ii), since we
can replace every real number d ∈ terms(φ) by a variable vd, for which we add the atom =d(vd).
To keep queries in that form, we use a slightly non-standard notion of substitutions.

Definition 4 (Substitution). Let φ be a CQ, α an atom s.t. α ∈ φ. A substitution on φ is a
function σ : terms(φ) → NV ∪ NI, with the additional requirement that σ(t) = t if t ∈ NI. The
result of applying σ on atom α (in symbols: ασ) is an atom obtained by replacing every term
t ∈ terms(α) by σ(t). The result of applying σ on CQ φ (in symbols: φσ) is obtained from φ
by replacing every atom α ∈ φ of the form =(t1, t2) by =(t1, σ(t2)) and every other atom α by
ασ, and adding an atom =(x, t) for every answer variable x s.t. σ(x) = t 6= x.

Note the special treatment of atoms of the form =(t1, t2): by assumption i), these are only
used to express equality of answer variables with other terms. Definition 4 ensures that we can
substitute answer variables in the remaining query without affecting the answers of the query.

Before we discuss the rewriting rules, we need to address the syntactic mismatch between
queries and axioms. Specifically, the rewriting rules may operate on roles or complex concepts as
they can refer to axioms. Since the syntax of CQs does not admit these, we employ equivalences
that “bridge” this gap between query and rules. The idea is that the syntactic matching of
rules to a CQ is done modulo these equivalences. Let φ be a CQ, {x, y} ⊆ NV, and X be a
role or a concept allowed on the left-hand side of an axiom. If X is a role and X = r−, then
(φ∧ r−(x, y)) ≡ (φ∧ r(y, x)). Let v, w ∈ NV \ var(φ). If X is a concept, then, depending on the

structure of X, the CQ φ̂ = (φ ∧X(x)) is equivalent to:

• φ ∧ C1(x) ∧ C2(x), if X = C1 u C2;

• φ ∧ U(x, v) ∧Π(v), if X = ∃U.Π; but it is
φ ∧ U(x,w), if C = ∃U.>R∼ ;

• φ∧U1(x, v)∧U2(x,w)∧Π(v, w), if X = ∃U1, U2.Π;

• φ ∧A(x), if X = A ∈ NC;

• φ, if X = >;

• φ ∧R(x,w), if X = ∃R;

22



Practical Query Rewriting for DL-Lite with Numerical Predicates Alrabbaa, Koopmann, and Turhan

RR1
φ ∧X(~t )

φ ∧ Y (~t )

Y v X ′,
|= X ′ v X RR2

φ ∧Π1(v)

φ ∧ C(x) ∧ U(x, v)

C v ∀U.Π2,
Π2 |= Π1

RR3
φ ∧+d(v1, v2)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v2)
C v ∀U1, U2.+d

RR4
φ ∧ U(x, v)

φ ∧ C(x) ∧=d(v)
C v ∃U.=d

RR5
φ ∧ U1(x, v1) ∧ U2(y, v2) ∧+d(v1, v2)

φ[y 7→ x] ∧ C(x) ∧ U1(x, v1)

C v ∃U1, U2.+d,
v2 6∈ var(φ)

RR6
φ ∧ U1(x, v1) ∧$d1(v1)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧$d1+d2
(v2)

C v ∀U1, U2.+d2

RR7
φ ∧ U1(x, v1) ∧$d1

(v1)

φ ∧ (C1 u C2)(x) ∧ U2(x, v2) ∧+d2(v1, v2) ∧$d1+d2(v2)

C1 v ∀U2, U2.+0,
C2 v ∃U1, U2.+d2

RR8
φ ∧ U1(x, v1) ∧+d1(v2, v1)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v3) ∧+d1+d2
(v2, v3)

C v ∀U1, U2.+d2

RR9
φ ∧ U1(x, v2) ∧+d1

(v1, v2)

φ ∧ (C1 u C2)(x) ∧ U2(x, v3) ∧+d1+d2
(v1, v3) ∧+d2

(v2, v3)

C1 v ∀U2, U2.+0,
C2 v ∃U1, U2.+d2

Figure 2: Query rewriting rules dependant on the TBox. (If a variable x occurs only in the
conclusion of a rule, we assume φ contains an atom of the form U ′(x, v′).)

RC1
φ ∧+d1

(v1, v2) ∧+d2
(v2, v3)

φ ∧+d1(v1, v2) ∧+(d1+d2)(v1, v3)
RC2

φ ∧+d(v1, v2)

φ ∧+(−d)(v2, v1)

RC3
φ ∧=d1

(v1) ∧=d2
(v2)

φ ∧=d1
(v1) ∧+(d2−d1)(v1, v2)

RC4
φ ∧=d1

(v1) ∧+d2
(v1, v2)

φ ∧=d1
(v1) ∧=(d1+d2)(v2)

RC5
φ ∧+d2

(v1, v2) ∧$d1
(v1)

φ ∧+d2(v1, v2) ∧$(d1+d2)(v2)
RC6

φ ∧Π1(v) ∧Π2(v)

φ ∧Π1(v)
, Π1 |= Π2

RC7
φ ∧ U1(x1, v1) ∧ U2(x2, v1)

φ ∧ U1(x1, v1) ∧ U2(x2, v2) ∧+0(v1, v2)
RC8

φ ∧$d(w)

φ

RC9
φ ∧ U(x, v) ∧ U(x,w) ∧+0(v1, w)

φ ∧ U(x, v)
RC10

φ ∧+d(v, w)

φ

Figure 3: Query rewriting rules independant on the TBox. (Here, w denotes a unique non-
distinguished variable.)
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The rewriting rules are grouped into TBox-dependent rules (see Figure 2) and TBox-
independent rules (see Figure 3). RR1 is the standard rewriting rule for DL-Lite, and RR2 and
RR3 are the variant dealing with universal restrictions, already used in [4]. RR5 corresponds
to a special case of RR1 in which an additional substitution step is required. The main func-
tion of most rules in Figure 3 is to reformulate the concrete domain expressions in the query in
an equivalence preserving way. While the TBox saturation already computes some inferences
between concrete domain predicates, not every possible combination of concrete domain predi-
cates that may occur in a query can be treated oblivious of the query. It is thus possible that
the query contains concrete domain predicates saturation has not considered yet, but which
can be transformed into the required form. This is done by Rules RC1 to RC5 and RC7.
The purpose of other rules is to reduce the number of occurrences of a variable, to make other
rules applicable. This is the main motivation behind RR4, RC6, RC9 and RC10, and is also
achieved by RR6 to RR9. Note that we have to be careful here not to lose the “link” of any
variable occurring in the rest of the query: if we would drop a variable occurring elsewhere, we
would allow for additional matches not covered by the original query. In [4], shared variables
in the query are eliminated using a special splitting-rule, which splits shared occurrences of a
variable by assigning a fixed value to them, where the set of values is determined based on the
TBox and the ABox. Since we want to obtain a data-independent and goal-oriented procedure,
our rewriting procedure does not use a splitting rule.

However, in order to achieve full data-independence, a bit more has to be done. Note that
the fillers of concrete domain attributes can be determined by both: numbers occurring in the
data and axioms in the TBox. If a predicate in the query refers to an attribute filler implicit
in the data, we may need to “push” the concrete domain predicates in the query towards those
attribute fillers explicit in the data. This is the purpose of rules RR6 to RR9. Note that these
rules, similar to some of the TBox saturation rules, may make use of local functionalities of an
attribute expressed by an axiom of the form C v ∀U,U.+0.

To obtain a rewriting procedure that is both complete and terminating, two problems have
to be addressed. First, the rules need not be applicable to a query, as some rules require certain
variables to occur only once or twice in the query. If a CQ contains a variable multiple times,
it is often possible to reduce the number of occurrences by applying appropriate substitutions.
Second, termination of the rewriting has to be ensured. Note that rules RR6 to RR9 rely on
predicate atoms of the form $d(v) (or +d(v, v′)) in their precondition and generate predicate
atoms with same kind of predicate, but with a new value for d and thus with a new predicate and
with different variables. This generation process can continue, but it generates only redundant
queries. We adress the two problems in the following.

Achieving applicability of rules can require to unify soame variables, which is usually
achieved by applying substitutions. From a single CQ, a set of many CQs can be derived from
the same CQ by such substitutions. One can easily see that not all possible substitutions are
relevant here, but only those that unify different atoms. We make this intuition formal. Let
A = {α1, . . . , αn} be a set of atoms. Set A unifies (to a singleton) if there exists a substitution σ
s.t. α1σ = . . . = αnσ. We then call σ a unifier of A. For each such set, we select a most general
unifier mgu(A), which is defined as a unifier σ of A s.t. for every other unifier σ′ of A, there
exists some substitution σ′′ s.t. σ ◦ σ′′ = σ′. We define the set of all CQs that can be obtained
by unifying any set of atoms in the CQ φ as reduce(φ) = {φσ | σ = mgu(A), A ⊆ φ,A unifies}.

Let Φ be a UCQ. For every φ ∈ Φ, due to our notion of redundancy that is to be defined
next, every φ′ ∈ reduce(φ) is redundant. This is why reduce(φ) is not defined as a rewriting
rule, but as a separate procedure.
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Achieving termination of rule application depends on limiting the number of new predi-
cates introduced by rules, and on limiting the number of variables introduced. The latter effect
can be remedied by avoiding redundant queries in the query set.

Definition 5 (Redundant query). Given two CQs φ1 and φ2, φ2 is redundant to φ1, iff there
exists a substitution σ s.t. φ1σ ⊆ φ2. CQ φ2 is redundant in a UCQ Φ if there exists φ1 ∈ Φ to
which φ2 is redundant.

By Lemma 6, removing redundant CQs from Φ does not affect the entailment of Φ.

Lemma 6 (Query redundancy elimination). Let Φ be a Boolean UCQ, and φ1, φ2 ∈ Φ s.t. φ2
is redundant to φ1. It holds for every interpretation I, that I |= Φ iff I |= Φ \ {φ2}.

Proof. Let I be an arbitrary interpretation s.t. I |= Φ\{φ2}. By the definition of entailment of
UCQs, and since Φ \ {φ2} ( Φ, we have I |= Φ. For the reverse direction, let I be an arbitrary
interpretation, and assume I |= Φ and I 6|= Φ \ {φ2}. This means two things. First, I |= φ2,
and therefore there exists a homomorphism h : terms(φ2)→ ∆I ∪ R. Second, I 6|= φ1. But
since φ2 is redundant to φ1, there exists a substitution σ s.t. φ1σ ⊆ φ2. We know that σ is a
mapping from terms in φ1 to terms in φ2, and h is a mapping from terms in φ2 to elements
in ∆I ∪ R. Therefore, we can construct a mapping h′ = σ ◦ h s.t. h′ : terms(φ1) → ∆I ∪ R.
The function h′ is indeed a homomorphism from terms of φ1 into I. Hence I |= φ1, and
consequently, I |= Φ \ {φ2}, which contradicts the original assumption.

The algorithm to compute the rewriting of a UCQ Φ, written as rew(Φ), uses the
rewriting rules shown in Figures 2 and 3, where X and Y are both either roles or concepts.
The complete UCQ rewriting is depicted in Algorithm 2.

Example 4. Let T = {a1 = A v ∃U3, U1.+3, a2 = A v ∀U1, U2.+1, a3 = B v ∃U2.>R∼} be a
TBox, A = {A(c), B(c), U1(c, 10)} an ABox, and φ = ∃v3.(U3(x, v3) ∧ >5(v3)) a CQ. Then, a
with a(x) = c is a certain answer to φ in 〈T ,A〉. In the following, we show how it is obtained.
First, we compute saturate(T ), which contains a4 = ∃U2.>R∼ uA v ∀U1, U1.+0, among other
axioms. This axiom is derived by applying Rinit-5 on a2, and then R+-2 on the result and a2.
To obtain the CQ for which a is a certain answer in 〈∅,A〉, we compute rew(φ), which consists
of φ and the following queries:

RR7(a1,a4)
// A(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧ +3(v3, v1) ∧ >8(v1)

RC10 // A(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧ >8(v1)
RR1(a3)

// A(x) ∧ U1(x, v1) ∧ B(x) ∧ >8(v1) = φ′.

In 〈∅,A〉, φ′ has a match, and therefore a is a certain answer to rew(φ).

Let T be a saturated TBox, φ a CQ, and RR some rewriting rule. In Algorithm 2, we

denote by φ RR,T
// φ′ a rewriting step w.r.t. T s.t. some atom(s) in φ satisfy the premise(s)

of RR, and the resulting query φ′ is in the form of the conclusion of RR.
In order to prove termination of the algorithm, we need to show that the number of generated

rewritings (CQs) is bounded. Actually, whether a rewriting rule depends on some axiom a ∈ T
or not, it is in theory possible to generate an infinite number of CQs using our rewriting rules,
unless we restrict the addition of new CQs appropriately. The reason behind this is that some
of these rules may introduce an unbounded number of variables and atoms with new concrete
domain predicates. We show, in the extended version of the paper, that queries which would
trigger an unbounded application of rewriting rules are indeed either redundant or unsatisfiable.
Thus, eliminating such queries prevents the generation of an unbounded number of CQs.
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Algorithm 2: Computation of rew(Φ)

Input: UCQ Φ, saturated TBox T .
for φ ∈ Φ do

for φr ∈ reduce(φ) and ψ such that φr
RR,T

// ψ do

if ψ is satisfiable w.r.t. T and not redundant in Φ then
set Φ := {ψ′ ∈ Φ | ψ′ is not redundant to ψ} ∪ {ψ};

return Φ;

Theorem 7 (Termination of rewriting). Algorithm 2 always terminates.

In the extended version of the paper, we show that the obtained rewriting yields a sound
and complete query rewriting procedure. We start by proving that for any Boolean CQ φ,
〈T ,A〉 |= φ iff 〈∅,A〉 |= rew(φ). Once this is proven, and because of the definition of entailment
of UCQs, we obtain the following theorem.

Theorem 8 (Soundness and completeness of rewriting). Let T be a saturated TBox and A be
an ABox s.t. K = 〈T ,A〉 is satisfiable. Then, for any UCQ Φ, and any answer a to Φ, a is a
certain answer to Φ in K iff a is a certain answer to rew(Φ) in 〈∅,A〉.

6 Conclusion

In this paper, we have considered extensions of DL-Lite with concrete domains over R. In this
setting, we have presented a query rewriting approach that handles not only unary concrete
domain predicates, but also binary ones. The key idea is that entailments that are caused
by the TBox and the functionality of the cr-rewritable concrete domains employed here, are
computed beforehand and are added to the TBox during saturation. Although this step can be
costly, it only needs to be performed once (for all queries) and can be done “off-line”, before
query execution. Furthermore, we have shown that our approach yields a sound, complete, and
terminating query rewriting procedure. This procedure is, in contrast to earlier approaches [4],
data-independent. The latter is crucial for gaining practicality on larger data sets, and our
method allows for a more goal-oriented computation of rewritings than the other approaches.
In order to support this claim, we are currently working on an implementation of our approach,
where the resulting UCQ is translated into a union of SQL queries which then can be answered
using any RDBMS. We plan to use the rewritings not only on classical data sets, but also on
probabilistic data in which concrete domain values are characterised by continuous probability
distributions. OBQA for this setting has been theoretically investigated in [6].

As for future work, there are various directions we are considering. First, we would like to
investigate the possibility of extending the concrete domains with more binary predicates, e.g.
multiplication, while preserving first order rewritability of CQs. On the other hand, we would
like to study query rewriting w.r.t. with other concrete domains, for instance those over strings.
We believe that the rules we have introduced in this paper could serve as a basis for a more
generalised procedure supporting those domains.
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