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Abstract

Conditioning plays an important role in revising uncertain information in light of new
evidence. This work focuses on the study of Fagin and Halpern (FH-)conditioning in
the context where uncertain information is represented by weighted or possibilistic belief
bases. Weighted belief bases are extensions of classical logic belief bases where a weight or
degree of belief is associated with each propositional logic formula. This paper proposes
a characterization of a syntactic computation of the revision of weighted belief bases (in
the light of new information) which is in full agreement with the semantics of the FH-
conditioning of possibilistic distributions. We show that the size of the revised belief base
is linear with respect to the size of the initial base and that the computational complexity
amounts to performing O(log2(n)) calls to the propositional logic satisfiability tests, where
n is the number of different degrees of certainty used in the initial belief base.

1 Introduction

Belief revision [15, 20] is an important problem in knowledge representation and artificial in-
telligence. It consists in revising plausible beliefs of an agent in the light of new information,
often considered to be completely certain and reliable. If the new information to be inserted is
consistent with the a priori beliefs, then the revision comes down to simply add this information
to the agent’s beliefs. The problem arises when this new information contradicts a priori beliefs.
In this case, the agent must decide which information to ignore or replace with other weaker,
less informative and less precise information.

Within the framework of uncertainty theories, the process of belief revision is material-
ized by the notion of conditioning. Agents’ beliefs are modeled by uncertainty distributions µ
(probability distribution, mass function [21, 1], possibility distribution [12], ordinal conditional
function OCF [22, 23], etc.) which associate to each element of the universe of discourse (in
our context, a set of propositional logic interpretations) a degree of plausibility.

In probability theory, Bayesian conditioning is widely used, especially in Bayesian networks,
for the propagation of beliefs in the presence of new observations.
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For belief functions, Dempster’s rule of conditioning [21, 16] remains the reference operator
for the revision of uncertain information.

In possibility theory, conditioning is defined in two different approaches, depending on how
the uncertainty degrees are interpreted [12]. The first definition is the so-called product-based
possibilistic conditioning which makes full use of the uncertainty interval [0, 1]. The second
definition is called min-based possibilistic conditioning where only the relative order between
uncertain information matters.

These standard conditioning operators (probabilistic Bayesian conditioning, Dempster’s rule
of conditioning, possibilistic min-based and product-based conditionings) have been very well
studied in the literature, both from representational and computational points of view.

Another form of conditioning, called Fagin and Halpern conditioning (noted FH-conditioning
in the following), is however little considered in the literature, in particular from a computa-
tional point of view. This conditioning was introduced in the framework of belief functions
theory in [13]. FH-conditioning allows to obtain a better characterization of the conditioned
belief function than Dempster’s in the context of belief functions being interpreted as lower
and upper probabilities, induced by a particular family of probability distributions (see also
[6] for a discussion whether FH-conditioning should be considered as a revision or prediction
operator). Besides, still within the framework of the theory of belief functions, other theoretical
justifications of FH-conditioning have been proposed in [7, 18] and recent work have illustrated
their use for object detection in the context of autonomous vehicles [19].

In the context of possibility theory, FH-conditioning has been approached only from a
semantic point of view [9] and there is no work (to the best of our knowledge) that treats
this conditioning from the point of view of syntactic representation of uncertain beliefs. In
this paper, we are interested in addressing this shortcoming by studying FH-conditioning in
a framework where uncertain beliefs are represented by sets of weighted propositional logical
formulas. In possibility theory, the available uncertain information is represented by a so-called
possibilistic belief base, denoted by Σ in the following. This weighted belief base is composed of
a set of pairs (ϕi, αi) where ϕi is a propositional logic formula, and αi is a minimum degree of
certainty (more precisely a degree of necessity in the sense of the possibility theory) associated
with ϕi.

The question considered in this paper is how to revise a possibilistic weighted base Σ, in
the light of a new totally certain information (denoted in this paper by (ψ, 1), where ψ is a
propositional logic formula) while being in full agreement with the possibilistic semantics of
FH-conditioning. To achieve this goal, we first propose an equivalent syntactic reformulation
of the semantic definition of FH-conditioning as a sequence of three transformation operations
of possibility distributions. For each of these semantic transformation operations, we propose
their equivalent characterisation on the weighted belief bases. At the end of the third operation,
we show that the final belief base obtained corresponds exactly to the application of FH-
conditioning on weighted belief bases. We provide at the end of the paper the spatial and
temporal complexity analysis of the syntactic computation of FH-conditioning. We show that
the size of the revised belief base is linear with respect to the size of the initial base. Moreover,
the complexity of computing the FH-conditioning, from the weighted belief bases, comes down
to the complexity of computing the degree of certainty of the new information ψ from the initial
base Σ, which is done in log2(n) calls to a satisfiability test of a set of propositional formulas
(SAT).
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The rest of the paper is organized as follows. Section 2 recalls possibilistic logic and presents
weighted belief bases and their semantics. Section 3 introduces the notion of FH-conditioning
from a semantic point of view. Section 4 contains the computation of the syntactic revision of
the weighted belief bases. The last section concludes the paper.

2 A brief review of possibilistic logic

Possibilistic logic [17, 8] is a simple extension of a propositional logic. At the syntactical level,
instead of considering that formulas of the propositional belief base have the same level of pri-
ority, we associate to each formula a degree which reflects its level of priority with respect to the
other formulas in the belief base. The result is called a possibilistic belief base. The possibilistic
logic semantics is also an extension of the one of propositional logic, which partitions the set of
interpretations in two parts: the models and counter-models of the belief base. In possibilistic
logic, we get a more refined partition, called a possibility distribution, where the counter-models
of lower priority information will be preferred to counter-models of higher priority information.
The notions of consistency and inference of propositional logic become gradual in possibilistic
logic and give respectively the notions of possibility and necessity measures. Possibilistic logic
ahas a connection with modal logic with points in common, especially on the duality of neces-
sity and possibility, and differences; in particular possibilistic logic is gradual and nonmonotonic
while modal logic is non-gradual and monotonic (see [2] for a more details). Possibility theory
and possibilistic logic have very close links with Conditional Ordinal Functions (OCF), also
called ranking functions, introduced by Spohn [22, 23]. OCFs are models widely used to repre-
sent the epistemic states of agents and to define belief revision methods.

In the following, we consider a finite propositional language L whose formulas are denoted
by Greek letters (except for Ω and ω). Ω is the finite set of interpretations of L and ω an
element of Ω. We denote by |= the satisfaction relation of propositional logic.

2.1 Possibility distributions

A possibility distribution π is a mapping from the set of interpretations Ω to the interval [0, 1].
π(ω) represents the degree of consistency (or compatibility) of the interpretation ω with the
available knowledge. By convention:

• π(ω) = 1 means that it is entirely possible for ω to be the real world.

• π(ω) = 0 means that ω is certainly not the real world.

• π(ω1) > π(ω2) simply means that ω1 is a preferred candidate than ω2 for being the real
state of the world.

From a possibility distribution π, we can define the degree of consistency (or possibility)
and the degree of certainty (or of necessity) of a formula ϕ:

• Π(ϕ) = max{π(ω)|ω |= ϕ} evaluates to what extend ϕ is consistent with the available
knowledge expressed by π.

• N(ϕ) = 1 − Π(¬ϕ) is used to measure to what extent a proposition ϕ is entailed by the
knowledge expressed by π.

A possibility distribution π is said to be normalized if there exists an interpretation which is
completely possible (i.e. ∃ω ∈ Ω|π(ω) = 1).
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2.2 Possibilistic belief bases

At a syntactic level, uncertain information is represented by a prioritized or weighted propo-
sitional logic knowledge bases, called possibilistic belief bases. A possibilistic belief base is a
compact representation of a possibility distribution. Indeed, it is represented by a finite set
of weighted formulas (the higher the weight, the more certain the formula) Σ = {(ϕi, αi), i =
1, ..., n}, where ϕi is an element of L, and αi ∈]0, 1] is the weight, considered as a lower bound
of the degree of necessity N(ϕi). Note that formulas with αi = 0 are note explicitly represented
in the belief base; namely only beliefs which are somewhat accepted by the agent are explicitly
represented in the possibilistic belief base.

Possibilistic belief bases are compact representations of possibility distributions. Indeed,
one can associate with any possibilistic belief base Σ a possibility distribution, denoted by
πΣ. Recall that the degree of possibility of an interpretation is its degree of compatibility or
consistency with the belief base. Consider the case where a possibilistic belief base contains a
single formula {(ϕ, α)}. If an interpretation ω satisfies the formula ϕ then this interpretation is
completely consistent with ϕ, hence πΣ(ω) = 1. If a given interpretation ω does not satisfy the
formula ϕ then πΣ(ω) must be such that the greater the degree of certainty α of ϕ, less πΣ(ω)
is considered possible. In particular, if ϕ is completely certain, i.e. α = 1, then ω is completely
impossible, i.e. πΣ(ω) = 0.

More generally, if Σ contains more than one formula then interpretations satisfying all beliefs
will have the greatest degree of possibility, i.e. 1, and the other interpretations will be ranked
with respect to the belief of greater weight that they falsify. More formally:

Definition 1. The possibility distribution associated with a possibistic belief base Σ is defined,
for all ω ∈ Ω by [8]:

πΣ(ω) =

{
1 if ∀(ϕi, αi) ∈ Σ, ω |= ϕi

1 − max{αi : (ϕi, αi) ∈ Σ, ω ̸|= ϕi} otherwise
(1)

It is easy to check that the possibility distribution πΣ is normalized if and only if the set
of the non-weighted propositional logic formulas obtained from Σ, i.e. {ϕi : (ϕi, αi) ∈ Σ}, is
consistent in the sense of propositional logic.

In the following, we will use the following academic example to illustrate the different notions
of the paper:

Example 1. Let Σ = {(¬q∨s, 0.66), (q∨¬s, 0.70), (¬q∨¬r, 0.15), (q∨s, 0.35)} be a possibilistic
belief base. Table 1 gives the possibility distribution associated with Σ using Equation 1.

The interpretation q¬rs, qr is the most preferred one since it is the only one which is
consistent with Σ. Hence, their possibility degree is 1. The interpretation qrs gets the possibility
degree 0.85, because it falsifies the least certain belief in Σ; namely (¬q ∨ ¬r, 0.15). The two
following interpretations ¬qr¬s and ¬q¬r¬s get the possibility degree 0.65, because they falsify
(q∨s, 0.35). Then the next more plausible interpretations are qr¬s and q¬r¬s. Finally, the least
preferred interpretations are ¬qrs and ¬q¬rs, as they falsify the highest belief in Σ, namely
(q ∨ ¬s, 0.70).
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q r s πΣ(ω)
1 1 1 0.85
1 1 0 0.34
1 0 1 1
1 0 0 0.34
0 1 1 0.3
0 1 0 0.65
0 0 1 0.3
0 0 0 0.65

Table 1: The possibility distribution associated with Σ

3 Semantic definition of Fagin-Halpern conditioning

This section concerns the problem of beliefs changes, in possibility theory, which is an impor-
tant topic in artificial intelligence and in the information systems for managing the dynamics
of beliefs.
At the semantic level, the revision of a possibility distribution π consists in changing the plau-
sibility order between the interpretations in order to give priority to new information, denoted
ψ. This revision process is obtained thanks to the notion of conditioning which transforms a
distribution of possibility a priori π and a certain information ψ into a new possibility distri-
bution (a posteriori) denoted by π(.|ψ).

The possibility distribution π(.|ψ) must be normalised or consistent (i.e., ∃ω ∈ Ω such that
π(ω | ψ) = 1)) and where the new information ψ should be completely certain (i.e., ∀ω ∈ Ω
such that ω falsifies ψ, we have π(ω | ψ) = 0)). Besides, the new revised possibility distribution
π(.|ψ) must not change the relative order between the models of ψ (i.e., ∀ω ∈ Ω and ∀ω′ ∈ Ω
such that ω |= ψ and ω′ |= ψ, if π(ω) ≥ π(ω′) then π(ω | ψ) ≥ π(ω′ | ψ)). Even if in this paper
we use the minimum and the maximum operators (particular cases of t-norms and t-conorms),
this work mainly deals with uncertainty and the case of vague or fuzzy information [24] is not
treated in this paper.

Clearly, there are different ways to define π(. | ψ) (e.g., [5]). Two main definitions have
been proposed within the framework of possibility theory (e.g., [11]). The first definition,
called min-based possibilistic conditioning, consists in i) setting the countermodels of ψ (the
new information) to 0, ii) setting the best models of ψ to 1, and iii) letting the degrees of
possibility of the other models of ψ unchanged. The second definition, called product-based
possibilistic conditioning, consists in i) setting the countermodels of ψ (the new information)
to 0, and ii) proportionally shifting the degrees of possibility of the models of ψ up to to obtain
a normalized conditional possibility distribution.

These two definitions are formally described as follows (when Π(ϕ) > 0):

• Minimum-based conditioning:

π(ω |m ψ) =


1, if π(ω) = Π(ψ) and ω |= ψ

π(ω), if π(ω) < Π(ψ) and ω |= ψ

0, if ω ̸|= ψ

(2)
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q r s πΣ(ω |FH q ∨ ¬r ∨ s)
1 1 1 0.85
1 1 0 0.493
1 0 1 1
1 0 0 0.493
0 1 1 0.462
0 1 0 0
0 0 1 0.462
0 0 0 0.65

Table 2: FH-conditioning of the possibility distribution of Example 1

• Product-based conditioning:

π(ω |p ψ) =

{
π(ω)
Π(ψ) , if ω |= ψ

0, otherwise
(3)

There is an alternative to these two definitions which has been very little explored in pos-
sibility theory. This is the conditioning proposed by Fagin and Halpern [14] and introduced
within the framework of belief functions. This definition of conditioning, which we will denote
hereinafter by FH-conditioning, has been adapted to possibility theory and was directly defined
on possibility measures (instead of possibility distributions) as follows [9]):

Π(ϕ |FH ψ) =
Π(ϕ ∧ ψ)

Π(ϕ ∧ ψ) +N(¬ϕ ∧ ψ)
(4)

We recall that in the above equation N(ϕ) = 1 − Π(¬ϕ). Now, if we restrict the definitions
Π(. |FH ψ) to interpretations, we get the definition of FH-conditioning defined on possibility
distributions [9].

Definition 2. Let π be a possibility distribution and let ψ be a propositional logic formula.
Then the FH-conditioning of π by ψ, denoted by π(. |FH ψ), is given by the following equation:

∀ω ∈ Ω, π(ω |FH ψ) =

{
max

(
π(ω), π(ω)

π(ω)+N(ψ)

)
ifω |= ψ

0 ifω ̸|= ψ
(5)

Where again we recall that
N(ϕ) = 1 − Π(¬ϕ),

with
Π(ψ) = max{πΣ(ω) : ω ∈ Ω and ω |= ψ}.

In the rest of the paper, and when there is no ambiguity, we will simply use π(. | ψ) instead
of π(. |FH ψ). Let us continue our example.

Example 2. Let us apply the possibilistic FH-conditioning at the semantic level to the possibility
distribution πΣ given in the example 1 by the new piece of information q∨¬r∨ s. Table 2 gives
the FH-conditioned possibility distribution.

Let us explain the result of FH-conditioning with the input propositional logic formula
q ∨ ¬r ∨ s.
The interpretation ¬qr¬s is not model of q∨¬r∨s. Therefore, its conditional possibility degree
is equal 0.
The others interpretations are models of q∨¬r∨s. Therefore, after conditioning, their possibility

degree will be equal to max
(
π(ω), π(ω)

π(ω)+N(ψ)

)
.
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4 Syntactic counterpart of possibilistic Fagin-Halpern
conditioning

There is a clear interest in FH-conditioning for the revision of uncertain information within the
framework of belief functions theory, both at the theoretical level and at the level of applica-
tions.
In the framework of possibility theory, the very few works that exist (e.g., [9]) mainly concern
semantic definitions of FH-conditioning (e.g., defined on the set of interpretations of proposi-
tional logic) or on discussions whether the FH-conditioning is a revision operator, or a prediction
operator or what is called a focusing operator (see [10] and [6] for more details).

However, unlike min-based and product-based conditioning (and also their hybrid version
[3]) which have been well studied in the literature, there is no work (to the best of our knowledge)
that deals with syntactic computation of possibilistic FH-conditioning applied on possibilistic
belief bases.

Defining a syntactic FH-conditioning, i.e. at the level of possibilistic knowledge bases, has
clear computational advantages over an application of FH-conditioning at the semantic level,
since obviously the size of the set interpretations is exponential with respect to the number of
propositional symbols of the used language.

Figure 1 summarizes the purpose of this section and is explained as follows:

• Inputs of our syntactic FH-conditioning computation are:

– a possibilistic belief base Σ; and

– a totally certain new piece of information (ψ, 1) that must be taken into account.

• Let πΣ be the possibility distribution associated with Σ using Equation 1.

• Let πΣ(.|ψ) be the conditional possibility distribution, resulting from the semantic appli-
cation of FH-conditioning on πΣ after the integration of the new computing (ψ, 1) using
the Equation 5.

• Our goal is to compute, from Σ and the totally certain information (ψ, 1), a new possi-
bilistic belief base, denoted ΣFH , such that:

∀ω ∈ Ω, πΣFH
(ω) = πΣ(ω | ψ). (6)

where πΣFH
is the possibility distribution associated with ΣFH using the equation 1.

The satisfaction of Equation 6 is necessary for having a syntactic computation that fully
agrees with the semantic definition of FH-conditioning in possibility theory.

The following subsection first gives an equivalent decomposition of the definition of FH-
conditioning into three elementary steps of transforming possibility distributions. Then, we
give the syntactic counterpart of each of these three steps; before finally putting together all
the syntactical computations to achieve the objective of this section.
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Figure 1: The aim of this section

4.1 Possibilistic FH-conditioning in three main steps

The computation of the syntactic counterpart of Equation 5 is not straightforward. We are
therefore going to describe it progressively in an alternative form by breaking down the semantic
definition of FH-conditioning (given by Equation 5) into three elementary steps of modification
of possibility distributions.

Let πΣ be the initial possibility distribution associated with the initial possibilistic belief
base Σ (using Equation 1). Let (ψ, 1) be the new piece of information that should be taken
into account. We define the three steps as follows:

• Step 1: shifting the initial possibility distribution. This step mainly consists of
shifting each possibility degree πΣ(ω) by integrating the necessity degree associated with
the new information. The result of this modification of the initial possibility distribution
is simply denoted π1 and is formally defined as follows:

π1(ω) =
πΣ(ω)

πΣ(ω) +N(ψ)
,

where we recall that N(ψ) = max{πΣ(ω) : ω ∈ Ω and ω |= ψ}.

• Step 2: combining possibility distributions. This second step consists in combining
with the maximum operator, the result of the possibility distribution of step 1 with the
initial possibility distribution πΣ.

The possibility distribution obtained at this stage is again simply denoted by π2 and is
defined as follows:

π2(ω) = max(πΣ(ω), π1(ω)).
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• Step 3: integrating new information. This third and final step consists simply of
integrating the new information (ψ, 1) into the possibility distribution obtained in step
2. For this, we simply encode the new information (ψ, 1) by a binary possibility distri-
bution, where only possibility degree 1 (totally possible) and possibility degree 0 (totally
impossible) are used. The possibility degree 1 is associated with models of ψ while the
possibility degree 0 is associated with its countermodels.

The possibility distribution obtained in step 3 is again simply denoted by π3 and is defined
as:

π3(ω) = min(π2(ω), πψ(ω)),

where,

πψ(ω) =

{
1, ω |= ψ,

0, otherwise.

It is not difficult to show, that at the end of the third step, the final obtained possibility
distribution is exactly that resulting from applying FH-conditioning on πΣ with (ψ, 1) and given
by Equation 5; i.e. we have:

∀ω ∈ Ω, π3(ω) = π(ω |FH ψ).

Thus, finding the syntactic counterpart of Equation 5 is equivalent to finding the syntactic
counterpart of π3.

The following three subsections give the syntactic counterparts of the possibility distribu-
tions obtained at each of the three steps described above (Subsection 4.1).

4.1.1 Syntactic computation of Step 1: shifting the initial possibility distribution

We begin by giving the syntactic counterpart of the possibility distribution obtained in Step
1 and denoted by π1. Proposition 1 provides a possibilistic belief base, denoted by Σ1, which
compactly encodes the distribution π1. More precisely, the resulting possibilistic belief base Σ1

is composed of two parts. The first part, denoted in Proposition 1 by Σ11, consists in modifying
the possibility degrees associated with each of the formulas of the initial base Σ, in order to
reflect the shift made in this step 1 on the initial possibility distribution. The second part is
composed of a single formula, which is a weighted contradiction, that expresses the fact that
π1 can be sub-normalized (i.e. there can be no interpretation ω, such as π1(ω) = 1)). We
will see in the computation of the possibilistic belief base associated with the Step 2 that this
sub-normalization will be lifted and the result obtained at this step 2 is always normalized and
consistent.

The precise result of the computation of the possibilistic belief base associated with the
possibility distribution of step 1 is given in the following Proposition 1.

Proposition 1. Let Σ = {(ϕi, αi), i = 1, ..., n} be the initial belief base. Let (ψ, 1) be the new
piece of information. Let Σ1 = {(⊥, 1 − 1

1+N(ψ) )} ∪ Σ11 be a belief base obtained from Σ, with

Σ11 = {(ϕi, 1 − 1−αi

1−αi+N(ψ) ), (ϕi, αi) ∈ Σ}. Then, ∀ω ∈ Ω, we have:

πΣ1
(ω) = π1(ω) =

πΣ(ω)

πΣ(ω) +N(ψ)
, (7)
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where πΣ1(ω) is the possibility distribution associated with Σ1 and π1 is the possibility dis-
tribution obtained at Step 1 described in subsection 4.1.

Proof. Let ω ∈ Ω. There are two cases to consider:

1. ω is a model of all formulas of Σ. Namely, πΣ(ω) = 1. In this case, ω is also a model of
all formulas of Σ1. Therefore:

πΣ1(ω) = 1 − (1 − 1

1 +N(ψ)
)

=
πΣ(ω)

πΣ(ω) +N(ψ)
.

2. ω falsifies at least a weighted formula from Σ. This also means that ω falsifies at least a
weighted formula from Σ1. In this case:

πΣ1
(ω) = min{1 − (1 − 1

1 +N(ψ)
), πΣ11

(ω)}

= min{ 1

1 +N(ψ)
, πΣ11

(ω)}

= πΣ11
(ω).

Indeed, πΣ11(ω) is necessarily of the form 1−αi

1−αi+N(ψ) for some (ϕi, 1 − 1−αi

1−αi+N(ψ) ) in

Σ11. And we have 1−αi

1−αi+N(ψ) <
1

1+N(ψ) (we recall that αi > 0). Now, we develop the

expression associated with πΣ1 :

πΣ1
(ω) = πΣ11

(ω)

= min{1 − [1 − 1 − αi
1 − αi +N(ψ)

] : (ϕi, 1 − 1 − αi
1 − αi +N(ψ)

) ∈ Σ11 and ω ̸|= ϕi}

= min{ 1 − αi
1 − αi +N(ψ)

: (ϕi, 1 − 1 − αi
1 − αi +N(ψ)

) ∈ Σ11 and ω ̸|= ϕi}

=
min{1 − αi : (ϕi, αi) ∈ Σ and ω ̸|= ϕi}

min{1 − αi +N(ψ) : (ϕi, 1 − 1−αi

1−αi+N(ψ) ) ∈ Σ11 and ω ̸|= ϕi}

=
πΣ(ω)

πΣ(ω) +N(ψ)
.

The following example 3 illustrates the computation of the possibilistic belief base given in
the Proposition 1 on our running example.

Example 3. Let us consider the possibility distribution πΣ(ω) of Example 1. Let ψ = q∨¬r∨s
be the new piece of information. Note that from Table 1, Π(¬q ∧ r ∧ ¬s) = 0.65. Hence,
N(q ∨ ¬r ∨ s) = 0.35 The following table gives the values of:

π1(ω) = πΣ(ω)
πΣ(ω)+N(q∨¬r∨s) .

Let us compute the belief base Σ1 associated with π1.
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q r s π1(ω)
1 1 1 0.708
1 1 0 0.493
1 0 1 0.74
1 0 0 0.493
0 1 1 0.462
0 1 0 0.65
0 0 1 0.462
0 0 0 0.65

Table 3: The possibility distribution π1(ω)

From Proposition 1, the general form of Σ1 is:

Σ1 = {(⊥, 1 − 1
1+N(ψ) )} ∪ Σ11, with Σ11 = {(ϕi, 1 − 1−αi

1−αi+N(ψ) ), (ϕi, αi) ∈ Σ}.
Replacing ψ by q ∨ ¬r ∨ s, we get:

Σ1 = {⊥, 0.26} ∪ {(¬q ∨ s, 0.507), (q ∨ ¬s, 0.538), (¬q ∨ ¬r, 0.292), (q ∨ s, 0.35)}.
One can easily check that if we compute the possibility distribution πΣ1 associated with the

possibilitic belief base Σ1, using Equation 1, we get exactly the one given in the above table,
which means that ∀ω ∈ Ω, πΣ1

(ω) = π1(ω).

4.2 Syntactic computation of Step 2: combining possibility distribu-
tions

We now present the syntactic computation of Step 2. It consists of the computation of a
possibilistic belief base, which we will denote Σ2, whose associated distribution is equal to that
obtained from step 2 and denoted by π2.
We recall that π2 is the maximum of π1 and the possibility distribution πΣ associated with the
initial belief base Σ. There exists in the literature (e.g., [4]) a characterization of the combination
by the maximum operator. However, such a characterization would yield a resultant possibilistic
belief base of size equal to the product of the two sizes of the belief bases to be combined (in our
case in O(| Σ |)×(| Σ1 |)), where | Σ | (respectively | Σ1 |) is the number of weighted formulas in
Σ (respectively in Σ1)). Proposition 2 gives a better spatial complexity result. Indeed, we show
that the resulting base, associated with the syntactic combination based on the maximun of π1
and πΣ, is of linear size with respect to those of the possibilistic belief bases to be combined;
and more precisely in O(max(| Σ |), | Σ1 |))).
Besides, as πΣ is normalized then trivially the distribution π2 (defined as being the maximum of
the distributions πΣ and π1) is also normalized. As a result, the weighted contradiction formula
that was present in the resulting possibilistic belief base of step 1, will no longer be present in
the belief base obtained at the end of step 2.
In summary, the computation of the possibilistic belief base associated with the possibility
distribution of stage 2 is given in the following Proposition 2.

Proposition 2.

• Let Σ = {(ϕi, αi), i = 1, ..., n} be the initial belief base and ψ be the new piece of informa-
tion.

• Let Σ1 be the belief base obtained from proposition 1; namely, Σ1 = {(⊥, 1− 1
1+N(ψ) )}∪Σ11,

with Σ11 = {(ϕi, 1 − 1−αi

1−αi+N(ψ) ), (ϕi, αi) ∈ Σ}.
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• Let Σ2 = {(ϕi,min(αi, 1 − 1−αi

1−αi+N(ψ) )), (ϕi, αi) ∈ Σ} be a belief base obtained from Σ.

Then, ∀ω ∈ Ω, we have:

πΣ2
(ω) = π2(ω)

= max (πΣ(ω), πΣ1
(ω))

= max

(
πΣ(ω),

πΣ(ω)

πΣ(ω) +N(ψ)

)
,

where πΣ, πΣ1
and πΣ2

denote the possibility distributions associated with the belief ’s bases
Σ,Σ1 and Σ2 respectively. The distribution π2 is the one obtained at Step 2 and described in
subsection 4.1.

Proof. Let ω ∈ Ω. There are two cases to consider:

1. ω is a model of all formulas of Σ. Namely, πΣ(ω) = 1. In this case:

πΣ1(ω) =
1

1 +N(ψ)
, and πΣ2(ω) = 1.

Therefore, we indeed have: πΣ2
(ω) = max (πΣ(ω), πΣ1

(ω)) = 1.

2. ω falsifies at least a weighted formula from Σ. For sake of simplicity, we note:

• π, π1, and π2 instead of πΣ, πΣ1
, and πΣ2

.

• βi instead of 1 − 1−αi

1−αi+N(ψ) .

• m the number of formulas from Σ (resp Σ1) falsified by ω. Note that, by construction,
Σ and Σ1 contain exactly the same formulas. However, they differ on the weights
associated with these formulas. Hence, m is the same for both Σ and Σ1.

• {α1, ..., αm} and {β1, ..., βm} be the sets of weights associated with falsified formulas
in Σ and Σ2 respectively.

By definition, we have for all ω ∈ Ω:

π2(ω) = min{1 − min(αi, βi) : (ϕi, αi) ∈ Σ and (ϕi,min(αi, βi)) ∈ Σ2}
= min{max(1 − αi, 1 − βi) : i = 1, ...,m}.

(for sake of simplicity, we avoid repeting (ϕi, αi) ∈ Σ)

By distributing min over the max, we obtain:
π2(ω) = max{min{x1, ..., xm} : xi ∈ {1 − αi, 1 − βi}, i = 1, ...,m}

Note that when all x′is are respectively equal to (1−αi)′s then: min{xi, ..., xm} = min{1−
α1, ..., 1 − αk, ..., 1 − αm} = 1 − αk = π(ω), for some k ∈ {1, ...,m}.

Similarly, when all x′is are respectively equal to (1−βi)′s then: min{xi, ..., xm} = min{1−
β1, ..., 1 − βt, ..., 1 − βm} = 1 − βt = π1(ω), for some t ∈ {1, ...,m}.

For the other cases, some x′is are equal to (1 − αi) while others x′is are equal to (1 − βi),
then we have three cases to consider:

(a) min{x1, ..., xm} = 1 − αy for some y ∈ {1, ...,m} and αy ̸= αk. Then xk = 1 − αk =
π(ω), and π1(ω) ≥ min{x1, ..., xm}.
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(b) min{x1, ..., xm} = 1 − βz for some z ∈ {1, ...,m} and βz ̸= βt. Then xt = 1 − αt =
π(ω), and π(ω) ≥ min{x1, ..., xm}.

(c) min{x1, ..., xm} = 1 − αy = 1 − αk = π(ω), or min{x1, ..., xm} = 1 − βz = 1 − βk =
π1(ω). Then trivially, max(π(ω), π1(ω) ≥ min{x1, ..., xm}).

Therefore for any combination min{x1, ..., xm} where there exist some x′is equal to (1 −
αi)

′s and also some x′js equal to (1 − βi)
′s we have: π(ω) ≥ {x1, ..., xm} and π1(ω) ≥

{x1, ..., xm}.

Therefore:

π2(ω) = max{min{x1, ..., xm} : x ∈ {1 − αi, 1 − βi}, i = 1, ...,m}
= max{π(ω), π1(ω)}.

Note that in Proposition 2, if a given ω ∈ Ω is a model of all formulas of Σ, then πΣ1
(ω) =

1
1+N(ψ) . However, for inteptretation ω ∈ Ω that are not models of some formulas of Σ, πΣ1

(ω) =
πΣ(ω)

πΣ(ω)+N(ψ) . The following Example 4 illustrates Proposition 2.

Example 4. Let us consider the possibility distributions πΣ(ω) and π1(ω) of the examples 1 and
3 respectively. Let ψ = q∨¬r∨s be the new piece of information. Rcall that N(q∨¬r∨s) = 0.35.
Table 4 gives the values of π2(ω) = max (πΣ(ω), π1(ω)).

q r s πΣ(ω) π1(ω) π2(ω)
1 1 1 0.85 0.708 0.85
1 1 0 0.34 0.493 0.493
1 0 1 1 0.74 1
1 0 0 0.34 0.493 0.493
0 1 1 0.3 0.462 0.462
0 1 0 0.65 0.65 0.65
0 0 1 0.3 0.462 0.462
0 0 0 0.65 0.65 0.65

Table 4: The possibility distribution π2(ω)

Let us compute, using Proposition 2, the belief base:
Σ2 = {(ϕi,min(αi, 1 − 1−αi

1−αi+N(ψ) )), (ϕi, αi) ∈ Σ}
for the new piece of information ψ = q ∨ ¬r ∨ s. We have:

Σ2 = {(¬q ∨ s,min(0.66, 0.507)), (q ∨ ¬s,min(0.7, 0.538)), (¬q ∨ ¬r,min(0.15, 0.292)),

(q ∨ s,min(0.35, 0.35))}
= {(¬q ∨ s, 0.507), (q ∨ ¬s, 0.538, (¬q ∨ ¬r, 0.15), (q ∨ s, 0.35)}.

Finally, one can check that computing the possibility distribution πΣ2
(ω) for the belief base

Σ2, using Equation 1, leads exactly to the one of the above table, which means that ∀ω ∈
Ω, πΣ2(ω) = π2(ω).
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4.3 Syntactic computation of Step 3: integrating new information

The last step consists in integrating, in the possibility distribution obtained in step 2, the fact
that the new information ψ is totally certain. The computation of the syntactic counterpart of
this step is immediate as it simply amounts to adding to the possibilistic belief base, resulting
from step 2, the weighted formula (ψ, 1). More specifically, we have:

Proposition 3. Let Σ = {(ϕi, αi), i = 1, ..., n} be the initial belief base. Let ψ be a new piece
of information. Let Σ2 be the belief base obtained from proposition 2. Let Σ3 = Σ2 ∪ {(ψ, 1)} .
Then, ∀ω ∈ Ω:

πΣ3(ω) =

{
πΣ2

(ω), ifω |= ψ,

0, otherwise.
(8)

Proof. The proof is immediate using the definition of a possibility distribution associated with
a belief base. Indeed, let ω be an interpretation. If ω is not model of of ψ, then πΣ(ω) = 0 as
it falsifies a fully certain formula (ψ, 1). If ω is a model of ψ, then trivially π3(ω) = π2(ω).

To sum up, propositions 1-3 allow us to provide the syntactic counterpart of the possibilistic
Fagin-Halpern conditioning defined by the equation 5. The final possibilistic belief base is
summarized by:

ΣFH = {(ψ, 1)} ∪ {(ϕi,min(αi, 1 − 1 − αi
1 − αi +N(ψ)

)), (ϕi, αi) ∈ Σ}. (9)

Our last example confirms that the final computation of the possibilistic belief base at the
end of Step 3 represents the FH-conditioning defined on the initial distribution πΣ.

Example 5. Let us consider the possibility distribution π2(ω) of Example 4. Recall that the
new piece of information is ψ = q ∨ ¬r ∨ s. The following table gives the values of π3(ω) =
min(π2(ω), πψ(ω)), where we recall that:

πψ(ω) =

{
1, ω |= ψ

0, otherwise

Using Equation 9, we get:

q r s π2(ω) πψ(ω) π3(ω)
1 1 1 0.85 1 0.85
1 1 0 0.493 1 0.493
1 0 1 1 1 1
1 0 0 0.493 1 0.493
0 1 1 0.462 1 0.462
0 1 0 0.65 0 0
0 0 1 0.462 1 0.462
0 0 0 0.65 1 0.65

Table 5: The possibility distribution π3(ω)

ΣFH = {(q ∨ ¬r ∨ s, 1)} ∪ {(¬q ∨ s, 0.507), (q ∨ ¬s, 0.538), (¬q ∨ ¬r, 0.15), (q ∨ s, 0.35)}.

Finally, one can check that computing the possibility distribution πΣFH
associated with the belief

base ΣFH , using Equation 1, gives exactly the same distribution given in the table above. This
result is also identical to the possibility distribution given in Example 2 when applying the
semantic FH-conditioning with ψ = q ∨ ¬r ∨ s.
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We finish this section by giving the complexity results. It is easy to check from Equation
9 that the spatial complexity is linear with respect to the size of the initial base Σ and more
precisely the size of the final belief base is in O(| Σ |). This very good result is obtained
thanks to the decomposition of the FH-conditioning into three elementary operations. Indeed,
as explained in subsection 4.2, a direct application of existing results in the literature (e.g.,
[4]) regarding Step 2 (the max-based combination of possibility distributions) would generate a
quadratic spatial complexity with respect to the size of the initial belief base (i.e., in O(| Σ |2)).
Regarding time complexity, the difficult task in Equation 9 is the computation of the degree
of necessity N(ψ) from the initial base. The complexity of reasoning in possibilistic logic has
been well studied in the literature (e.g., [17]). The degree N(ψ) is equal to the highest degree
αi such that {ϕi|(ϕi, αj) ∈ Σ and αi ≥ αj} is consistent and infers ψ, where the notions of
inference and consistency are those of propositional logic. If such a degree does not exist then
N(ψ) = 0. If we note n the number of different degrees in the possibilistic belief base Σ, then
it is easy to provide a dichotomous search algorithm for calculating this largest weight αi in
log2(n) calls to the propositional logic satisfiability test.

5 Conclusion

The contribution of this paper concerns the question of the revision of uncertain information.
We focused on Fagin and Halpern conditioning adapted to possibility theory. In particular,
we have proposed a method which makes it possible to calculate the result of possibilistic
FH-conditioning of a weighted base in order to take into account uncertain information. We
have shown that our syntactic computation is in full agreement with the semantics given by
FH-conditioning on possibility distributions. This syntactic computation was done without
additional cost compared to the two other forms of possibilistic conditioning (min-based and
product-based conditionings). Finally, we showed that the spatial complexity of the condi-
tioned belief base is linear with respect to the size of the initial belief base. The Fagin and
Halpern conditioning was defined in the framework of belief functions. Possibility theory can
be interpreted as a particular case of belief functions when the focal elements (ie the elements
that have a non-zero mass) are nested (also called consonant belief functions). A future work
is to see to what extent our syntactic results can be extended to belief functions, in particular
when the latter are represented in a compact way by graphical models.
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tion de données hétérogènes et incertaines de réseaux d’eaux urbains) and from the ANR project
EXPIDA (EXplainable and parsimonious Preference models to get the most out of Inconsistent
DAtabases), grant number ANR-22-CE23-0017.

178



On the computation of conditioning in weighted belief bases Ettarguy et al.

References

[1] John C. Aldrich, A. Philip Dawid, Thierry Denoeux, Prakash P. Shenoy, and Vladimir Vovk.
Glenn shafer - A short biography. Int. J. Approx. Reason., 141:5–10, 2022.

[2] Mohua Banerjee, Didier Dubois, Lluis Godo, and Henri Prade. On the relation between possibilistic
logic and modal logics of belief and knowledge. Journal of Applied Non-Classical Logics, pages
1–19, 03 2018.

[3] Salem Benferhat, Celia da Costa Pereira, and Andrea Tettamanzi. Syntactic computation of
hybrid possibilistic conditioning under uncertain inputs. pages 739–745, 08 2013.

[4] Salem Benferhat and Claudio Sossai. Merging uncertain knowledge bases in a possibilistic logic
framework. CoRR, abs/1301.7359, 2013.

[5] Bernadette Bouchon-Meunier, Giulianella Coletti, and Christophe Marsala. Independence and
possibilistic conditioning. Ann. Math. Artif. Intell., 35:107–123, 05 2002.

[6] Thierry Denœux, Didier Dubois, and Henri Prade. Representations of Uncertainty in AI: Beyond
Probability and Possibility, pages 119–150. Springer International Publishing, Cham, 2020.

[7] Jean Dezert, Albena Tchamova, and Deqiang Han. Total belief theorem and conditional belief
functions. Int. J. Intell. Syst., 33(12):2314–2340, 2018.
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