EPiC Series in Computing Sl
omputing

Volume 106, 2025, Pages 16-30

Proceedings of the 20th Asia Joint m
Conference on Information Security (\

Key-Value Commitments with Unlinkability

Towa Tsujimura! and Atsuko Miyaji?

! Graduate School of Engineering, The University of Osaka, Suita, Osaka, Japan
towa.tsujimura@cy2sec.comm.eng.osaka-u.ac.jp
2 @Graduate School of Engineering, The University of Osaka, Suita, Osaka, Japan
miyaji@comm.eng.osaka-u.ac.jp

Abstract

Blockchain technology enables secure transactions without requiring a centralized ad-
ministrator used in various applications. Therefore, efficient verification in terms of com-
putation and memory is desired. To reduce computational and memory costs, Agrawal et
al. proposed Key-Value Commitments (KVC) scheme supporting both new pair insertions
and value updates with efficient data verification. However, in their scheme, each trans-
action reveals the User’s key when a new key-value pair is inserted or an existing value
is updated. As a result, it becomes possible to determine whether multiple transactions
belong to the same User. Furthermore, KVC has two other issues. One is that the proof
consists of three group elements, which yields the computational cost of updating proofs.
The other is that the sign of the value change is leaked during value updates. This re-
search defines the unlinkability in KVC as a condition where each transaction is not linked
to any other transaction and constructs a scheme that satisfies unlinkability by integrating
Oblivious Accumulators into the KVC. The proposed method resolves three issues. Un-
linkability is achieved by outputting a different value each time instead of outputting the
User’s key for each operation. By processing updates as insertions, User performing the
update discards the previous proof and obtains a new one, which simplifies the structure
of the proof and reduces the computational cost of proof updates, and the sign of the
value change is always positive by unifying with the insert operation. The key-binding
of security for the scheme in our proposal is reduced to the GRSA assumption under the
random oracle model and the SRSA assumption without random oracle. If the collision
resistance, preimage resistance, and second preimage resistance of the hash function hold,
KVC in our proposal satisfies unlinkability.

1 Introduction

In recent years, blockchain has gained attention as a decentralized ledger that enables reliable
data management without the need for a centralized administrator. Since the advent of Bit-
coin [1], eryptocurrencies have rapidly developed, with major platforms like Ethereum [2] and
Ripple [3] representing their states as key-value map, where keys are User’s public addresses
and values are their associated attributes (e.g., account balances). However, a major chal-
lenge is that as the blockchain grows in size, the computational and memory costs required for
transaction verification also increase. As a solution, Key-Value Commitments (KVC) scheme was

A. Yamada, H.K. Kim, Y. Wang and T.-T. Tsai (eds.), AsiaJCIS 2025 (EPiC Series in Computing, vol. 106),
pp. 16-30



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

proposed in [4] based on the ideas of the RSA-based accumulator construction of [6] and [9].
The scheme manages key-value pair as a commitment to a compressed list of the key-value map
and enables efficient verification of whether a key-value pair is included by using a membership
proof, where key-binding is required for the security. It can be applied to a wide range of areas,
such as group signatures, anonymous authentication, and verifiable databases. KVC supports
both new key-value pair insertions and value updates. In [4], Agrawal et al. proposed two types
of the scheme, KVC-Ins and KVaC. KVC-Ins allows only the insertion of pairs, and KVaC sup-
ports both insertion and value updates. A related technique to KVC is the vector commitment
(VC), which is a commitment scheme for an ordered set of values that allows position-wise
proof of values. In VC [7], value updates are supported, but the insertion of new elements is
not possible.

Both KVC-Ins and KVaC enable a compact representation of key-value map, facilitating effi-
cient updates and verification of proofs. For each insertion or value update, a new commitment
value C, a proof Ay, and update information upd (key and value changes) are generated. User
updates own proof from upd and verifies that it belongs to the User. Both key-binding of
KVC-Ins and KVaC in [4] are proven under the GRSA assumption with the random oracle
model, and the SRSA assumption without random oracle. However, there are three drawbacks.
The first drawback is that the same key is output for every transaction, which reveals whether
transactions are performed by the same User. The second drawback is the size of each proof,
which consists of three group elements. The first is the commitment value before inserting new
pairs or updating values, the second is used for updating the proof when other User updates
the value, and the third represents the number of value updates. Consequently, each time a
proof is updated, all three group elements must be recomputed, resulting in high computational
cost for the User. The third drawback is that update operations leak the sign of the value, i.e.,
whether the value increases or decreases. In [8], KVC based on pairing is proposed for the first
time, but similarly it leaks whether each transaction is of the same User or not.

In this research, we define the unlinkability in KVC as a condition where each transaction is
not linked to any other transaction. We construct a new scheme that satisfies unlinkability and
solve the three issues mentioned above by incorporating the Oblivious Accumulators (OblvAcc) [5]
proposed by Baldimtsi et al. into KVaC [4]. Let us explain how we resolve the first drawback.
Unlinkability is achieved by outputting a different value each time instead of outputting a key for
each operation. Our proposal can achieve both insert and update, whose key-binding is proven
under the GRSA assumption in the random oracle model, and the SRSA assumption without
random oracle in the same way as [4]. If the collision resistance, preimage resistance, and second
preimage resistance of the hash function hold, KVC in our proposal satisfies unlinkability. Let
us explain how we resolve the second and third drawbacks. In our proposal, updates are
treated as insertion, and User updating value discards the previous proof and obtains a new
one. As a result, the number of value updates is not necessary for proof update, and since the
proof consists of only two elements (the commitment value before the new pair insertion), the
computational cost of proof updates for User is reduced. The third drawback is easily resolved
since the sign of value is always positive by unifying with the insert operation.

Table 1 compares our proposal and KVaC from the size of data in possession, number of
proof elements, and number of interactions. Both our proposal and KVaC use the same RSA
group G, but our proposal stores auxiliary information of size ||b| + 1|, where b is the upper
bound on the order of the group G. With the introduction of OblvAcc, in addition to the proof
size Ay for the key-value pair, it is necessary to store the sizes of two auxiliary information
aux; and aurs, and the membership proof A, for OblvAcc. In existing research, the number
of interactions for insertion and value updates is each one, while in our proposal, insertion

17



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

occurs once, the first value update requires three, and subsequent value updates require four.
Table 2 compares them from the computational cost for User, H represents hash computation,
FE represents exponentiation, M represents multiplication, and A represents addition. Table 3
compares them from the security, feature of inserts or updates, and unlinkability properties.

Table 1: Comparison of data and transmission volumes

Research Size of data in possession | #A; | # interactions (Insert, Update)
KVaC [4] 5G| Three (1,1)
This research 3|G| + 2[b| + 1] Two (1,3 or 4)

Table 2: Comparison of computational cost for User

Research Insert | Other than Insert User Update Other than Update User
KVaC [4] 0 1H +4FE +6M 1H+1E+ 1A 1H +4E +6M
This research 0 3E+ 1M 0 5E(4E,3E)+ 1M

Table 3: Comparison between our proposal and related works (RO denotes random oracle)

Research Security Insert | Update | Unlinkability
KVC-Ins [4] GRSA with RO v None -
SRSA without RO
KVaC [4] GRSA with RO v v None
SRSA without RO
7 RSA, CDH None v -
8 Pairings v v None
This research GRSA with RO v v v
SRSA without RO

This paper is organized as follows. Section 2 introduces the background necessary for this
research. Section 3 describes related works and the challenges of existing research. Section 4
explains the proposed method and security proof. Section 5 describes the comparison between
existing research and our proposal. Section 6 concludes this paper.

2 Preliminary

This section describes the necessary background for this research and security assumptions in
Section 2.1 and 2.2.

2.1 Symbols and Definitions

The symbols used in this paper are shown in Table 4.

18



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Table 4: The description of symbols

Symbol | Description
Z The set of all integers
€L The output when an algorithm fails
z &S Uniformly chosen element = from group S
zé A(-) || Input - into algorithm A, and get output x
A Security parameter
Primes()\) || Set of prime numbers less than 2%
[n] Set {1,2,...,n} for a natural number n
C Commitment value in the scheme
k Key information held by a user

Ay Membership proof for the pair (k,v)
upd Update information
aux Auxiliary info known only to the user

z Value output instead of k each time
S Element necessary for calculating aux

C, Commitment value in OblvAcc

A, Membership proof for aux in OblvAcc
upd, Update info in OblvAcc

ZA upd, value when an element is added

ZD upd, value when an element is deleted
User; The ith user
A, Proof for (k,v) after j updates by User;

V5 j Value after the jth update by User;

aux; ; Auxiliary value for (5 + 1)th update computed at jth update

Zij z value output at jth update by User;

Si,j s value needed for (j + 1)th update output at jth update
Aq, Membership proof for auzx at jth update by User;
24 Contents of upd, when User; adds the jth aux
2D, Contents of upd, when User; deletes the jth aux

The definitions used in this paper are represented as follows.

Definition 2.1 (Cryptographic hash function). A cryptographic hash function is a hash func-
tion H : {0,1}* — {0,1}* that satisfies the following properties.

e Collision resistance : It is computationally infeasible to find two distinct inputs x # '
such that H(z) = H(z').

e Preimage resistance : Given a hash value H(x), it is computationally infeasible to find
any input ' such that H(z') = H(x).

e Second preimage resistance : Given an input x, it is computationally infeasible to find a
different input ' # x such that H(z') = H(x).

In the following, cryptographic hash function is simply described as hash function.
Definition 2.2 (Key-Value Commitments [4]). Key-Value Commitments (KVC) is a protocol for

proving affiliation to key-value map using a commitment scheme. key-value map M C K xV is

19



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

a set of key-value pair (k,v) € K x V. Each key-value pair is assigned a proof A belonging to the
set. KVC consists of the following five algorithms, each of which is outlined below.

o Key generation (pp,C) & KeyGen(1)
Input: security parameter A

Output: public parameter pp (defined key space K and value space V) and initial commit-
ment C which corresponds to an empty key-value map.

o Pair insertion (C, Ay, upd) < Insert(C, (k,v))
Input: commitment C, key-value pair (k,v) € K x V Output: new commitment C, mem-
bership proof Ay, update information upd

o Value update (C,upd) « Update(C, (k,0d))
Input: commitment C, key k € K, difference of value &
Output: new commitment C and update information upd

e Proof update Ay, < Proofupdate(k, Ay, upd)
Input: key k € IC, membership proof Ay for key k, and update information upd
Output: updated membership proof Ay

o Verify proof 1/0 < Ver(C, (k,v), Ag)
Input: commitment C, key-value pair (k,v) € K x V, membership proof Ay
Output: 1 (accept) or 0 (reject)

For correctness, we define the correctness game. In this game, adversary A is introduced to
capture the order in which inserts and updates are applied to commitment.

Definition 2.3 (correctness game [4]). We define the random variable g{it*" s through the
following game between a challenger CH and an adversary A:

1. CH generates (pp,C) & KeyGen(1*) and sends (pp,C) to A. CH maintains the initial
commitment C, the initial key-value map M C IC XV, and a map P that associates each
key with its corresponding proof.

2. A executes one of the following queries:

o (Insert,(k,v)): CH checks whether the key k already exists in M. If it does, output
L. Otherwise, CH updates M by adding (k,v), executes Insert(k,v) to obtain a new
commitment C, a proof Ay corresponding to k, and update information upd. CH
finally outputs P U {(k, Ax)}.

o (Update,(k,d)): CH checks whether the key k exists in M. If it does not, output L.
Otherwise, CH updates M to (M U{(k,v+9)})\ {(k,v)}. CH executes Update(k, )

to obtain a new commitment C and update information upd.

Whenever A executes a query, CH processes the query in one of the above ways, then
performs the following updates and checks.

e For each key-proof pair (k,Ax) € P, CH ezecutes Proofupdate(k, Ay, upd) using the
obtained update information upd.

e For each pair (k,v) € M and the corresponding (k,Ar) € P, CH computes by, +
Ver(C, (k,v),Ag). If there exists any k such that by = 0, CH outputs failure and
terminates.

20



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

3. CH outputs success.

Definition 2.4 (correctness [4]). KVC is correct if the following probability is identically zero
for every PPT adversary A,

Adv,c(‘(}”gff()\) =Pr [failure & gﬁﬁfcreftA ) (1)

The security requirement for KVC is key-binding. To define key-binding, we define the
key-binding game.

Definition 2.5 (key-binding game [4]). We define the random variable g%%i’)\’A through the
following game between a challenger CH and an adversary A:

1. CH generates (pp, C) & KeyGen(1*) and sends (pp,C) to A. CH maintains the initial
commitment C, the initial key-value map M C I x V, and a map P that associates each
key with its corresponding proof.

2. A executes one of the following queries:

o (Insert,(k,v)): CH checks whether the key k already exists in M. If it does, output
L. Otherwise, CH updates M by adding (k,v), executes Insert(k,v) to obtain a new
commitment C, a proof Ay corresponding to k, and update information upd. CH
finally outputs P U {(k, Ax)}.

e (Update,(k,0)): CH checks whether the key k exists in M. If it does not, output L.
Otherwise, CH updates M to (M U{(k,v+0)})\{(k,v)}. CH executes Update(k,?d)
to obtain a new commitment C and update information upd.

3. Fventually, A sends a final output to CH in one of the following forms:

o Type 1: A key k, value v, and proof Ay where k does not exist in M.

o Type 2: A key k that exists in M together with two distinct values v and v’ (v £ '),
and corresponding proofs Ay, and Aj,.

4. Upon receiving A’s output, CH proceeds as follows:

o Type 1: If Ver(C, (k,v),Ar) = 1, then CH outputs failure; otherwise, outputs success.
o Type 2: If both Ver(C,(k,v),Ar) = 1 and Ver(C, (k,v"),A},) = 1, then CH outputs
failure; otherwise, outputs success.

Definition 2.6 (key-binding [4]). KVC is key-binding if the following probability is negligible
for every PPT adversary A,

Adv&i\%{A()\) = Pr | failure & gﬁ@lcd))\ﬂA} . (2)

2.2 Security assumptions

In this section, we define RSA assumption, GRSA assumption, and SRSA assumption as the
security assumptions used in this research. In all definitions, we use a polynomial-time algorithm
GGen(\) that, given a security parameter A, outputs two integers a, b and a group G whose order
lies within the range [a, b], but whose exact order remains unknown.

21



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Definition 2.7 (RSA assumption [4]). RSA assumption holds if for any PPT adversary A,
the following probability is negligible in \,

(a,b,G) & GGen(\)
wé G

& Primes(\)

u A(a,b,G,w, L)

Definition 2.8 (Generalized RSA assumption [4]). GRSA assumption holds if for any PPT
adversary A, the following probability is negligible in A,

Adui‘%(}\) =Pr|u'=w :

(3

(4,0, @) & GGen(N), [b] = ¢
s
ADCFS AN = Pr |ut = . WS C ' !
va " (A) =Pr|u =w ¢ & Primes(C+ 1) \ [b] v

ud A(a,b,G,w,?)

Definition 2.9 (Strong RSA assumption [4]). SRSA assumption holds if for any PPT adversary
A, the following probability is negligible in A,

. (a,b,G) & GGen()\)
u =w $
w < G . (5)
$

AdvP54(\) = Pr . :
£ € Primes \ {2}
u + A(a,b,G,w)

3 Related Works

This Section describes Key-Value Commitments [4], the challenges of the existing research [4],
and Oblivious Accumulators [5] in Sections 3.1, 3.2, and 3.3, respectively.

3.1 Key-Value Commitments [4]

In [4], two types of Key-Value Commitments were proposed: Key-Value Commitments with
key-value pair insertion capability (KVC-Ins), and Key-Value Commitments with both insertion
and value update capabilities (KVaC). In this section, we focus on KVaC, which allows both in-
sertion and value updates, and omit the description of KVC-Ins which only supports insertions.
In KVaC, a variable u; is introduced to represent the number of times the value corresponding to
key k; has been updated. KVaC consists of the following algorithms. Algorithms 1 is executed
by the Center, while Algorithms 2, 3, and 5 involve interactions between the Center and User.
Algorithms 4 is performed individually by User.

Algorithm 2 Insert

Input: C = (C1,C?) € (G x G), (k,v) € (K xV)
Output: (C,Ag,upd)
User executes : Send (k,v) to Center.
Center executes :
z = H(k) € Primes(¢ + 1)\[b]
C=(C{-C3,C5) e (GxG)
3: Ap = ((C1,C2),(9,1,1),0) € (GXxG,G x G X
G, Z>0)
4: upd = (insert, (k,Vv))
Send Ay to User secretly, and upd to all User.

Algorithm 1 Keygen

Input: security parameter A

Output: (pp7 C) = ((a7 b,G, g, H)7 (17 g))
Center executes :

. (a,b,G) & GGen()), g & G

YV =[0,a) and K ={0,1}",( = |b]

: H:{0,1}" — Primes(¢ + 1)\[b]

: pp=(a,0,G,g,H)

C= (17 g)

Send pp to all User.

[y

N

22



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Algorithm 3 Update

Input: C = (C1,C2) € (G x G), (k,0) € (K xZ)
Output: (C,upd)
User; executes : Send (k,d) to Center.
Center executes :
1: z = H(k) € Primes(¢ + 1)\[b]
2: C=(C7-C8,C5) € (G xG)
3: upd = (update, (k, d))
Send upd to all User.

Algorithm 4 ProofUpdate Algorithm 5 Ver
Input: Ar = ((Ak,1, Ak,2), (Ak,3, Akoa, Aks), ur) Input: Ax = ((Ak,1,Ak2), (Ak,3, Ak, Ak s), uk),
€ (G x G,G X G X G, Zzo) €(GxG,GxGxG,Zso)
upd = (updy, (upd,, upd;)),k € K C = (C1,Cs) € (G xG),(k,v) € (K xV)
Output: Ag Output: 1or 0
All User executes : Verifier who has ((k,v), Ax) executes :
1: z = H(k) € Primes(¢ + 1)\[b] Send ((k,v), Ax) to Center.

2: if upd, = k then Center executes :

3 Ak = ((Ak1, (Ae2)®), (Aks, Akas Aes), unt 1: z = H(k) € Primes(¢ + 1)\[?]
1) 2: if the following 3-7 holds then
€ (Ex GG xExG,Zx0) 3 wveVandke K and uy € Zso
4: els? o o . 4: (Ap2)* = Co €G
2 z ; . (upd,) € Primes(¢ + 1)\[b] ;. (Akyl)zuk-%—l (Aea) = Cr € G
: wp+1
7 a-z+p-2=1 6:  (Ak3)® " Z%EG
8 y=p8Aks mod z 7 (Aka)® - (Aks)™t5 =g €G
9: ’y~2—|—77~,z=Ak5 8: return 1
100 Ak = ((Ak1)?, (Ag2)"P3), (Ax3)®, Apa - 9: else
AZ 377)7uk) 10: return 0
€ (G xG,G x G x G, Zs0) 11: end if |
11: end if - Send the result to the verifier.

3.2 The challenges of the existing research

e The linkability
Since Algorithms 2 and 3 output (insert, (k,v)) and (update, (k,0)), respectively, these
transactions are linked from the output information of the same key k.

e The size of each proof

The proof consists of three components, denoted as Ay € (G X G,G x G x G, Z>¢).These
five elements in G must be updated via exponentiations or multiplications in G when the
value is updated by other Users. Since the number of group elements in the proof directly
affects the computational cost, it is desirable to keep the proof as simple as possible.

e The sign of the value

In Algorithms 2, the sign of the value is always positive, whereas in Algorithms 3, it can
be either positive or negative. As a result, the update operations leak the sign of the
value, i.e., whether the value increases or decreases.

23



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

3.3 Oblivious Accumulators [5]

In [5], the concept of Oblivious Accumulators (OblvAcc) was proposed. The goal of OblvAcc is
to hide the details of the basic operations executed on the accumulator. OblvAcc provides only
membership proofs and allows elements to be added and deleted. The existence of OblvAcc
with non-membership proofs is an open problem. A set S C D is a collection of elements x €
D where D is the Acc domain. We define OblvAcc by the following algorithm.

e Setup (pp,C) & Setup(1?) :

Input: security parameter A
Output: public parameter pp (defined Acc domain D) and initial commitment C' which
corresponds to an empty S.

e Element Addition (C,w,,upd,aux) < Add(C,x, U) :

Input: commitment C, element x € S, the digest of all update information U
Output: new commitment C, membership proof w,(z € §), update information upd,
auxiliary information auz (only known to the user that holds z)

e Element Delete (C,upd) + Del(C, z, U, aux) :

Input: commitment C, element z € S, the digest of all update information U, auxiliary
information aux
Output: new commitment C, update information upd

o Membership ProofUpdate
wy < MemProofUpdate(w,, upd) :

Input: membership proof w,, update information upd
Output: updated membership proof w,

e Verify Membership proof
0/1 «+ MemVer(C, z, w,, aux) :

Input: commitment C, element & € S, membership proof w,, auxiliary information aux
Output: 1 (accept) or 0 (reject)

For correctness, MemVer(C, z, w,, aux) must always return 1 for any € S with correctly
generated C, w,, and auzx. The security requirement for OblvAcc is weak soundness. To satisfy
weak soundness, it must be computationally infeasible for a polynomially bounded adversary
(with knowledge of pp) to come up with a valid proof for an element not added to an honestly
generated accumulator. In addition, OblvAcc has the following properties.

Definition 3.1 (Element hiding [5]). For any PPT adversary A, if the following probability
can be bounded by a negligible advantage over %, then OblvAcc satisfies Element hiding.

(pp, Co) & Setup(1*)

zo, 21 & A(pp, Co)

b & {01}

(C1, wgy , w1, aux) & Add(Co, zy, D)
(Ca,u2) & Del(Ch, xp, {u1}, aux)

v & AC, Cayun, us)

Pr|b' =b

The above property is meant to provide the guarantee that an adversary who observes the
publicly available information does not learn about the elements in the accumulated set S.

24



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Definition 3.2 (Add-Delete indistinguishability [5]). For any PPT adversary A, if the fol-
lowing probability can be bounded by a negligible advantage over %, then OblvAcc satisfies Add-
Delete indistinguishability.

(pp, Co) & Setup(1*)

To, T1 <i A(pp, Co)

(C1, wey, u1, auzo) & Add(Co, zo, D)
Pr|b'=b| & (0,1},21 & D )
if b=0:(C2,we,,usz, auzs) & Add(Cy, @1, fur})
if b=1:(Ca,uz) & Del(Ch, o, {u1}, auzo)

v & AC, Ca,ur, un)

The above property is meant to provide the guarantee that an adversary who observes the
publicly available information does not learn whether an operation is an Add or a Delete.

4 Proposed method

This Section describes the goal of this research, the detailed algorithms, and the security proof
of unlinkability and key-binding in Sections 4.1, 4.2, and 4.3, respectively.

4.1 The goal of this research

The goal of this research is to achieve unlinkability of transactions corresponding to the same
User from the key k output at each operation. In addition, we aim to reduce the burden of
proof updating and to prevent leakage of the sign of the value change when updating values.
These objectives are achieved by applying OblvAcc to KVaC.

Definition 4.1 (Unlinkability). Our scheme is said to satisfy unlinkability if both insertion
and update operations meet the following conditions:

e Given two update information values upd; = (2;,v;) and upd; = (z;,v;) output by inser-
tion operations of User; and User;, it is infeasible to determine whether they were generated
by the same user or by different users.

e Given the update information upd;, = (z;,v;) output by the insertion operation of User;,
and the update information upd; = (zj,v5) output by the update operation of User;, it is
infeasible to determine whether they were generated by the same user or by different users.

e Given two update information values upd; = (z;,v;) and upd; = (z;,v;) output by update
operations of User; and User;, it is infeasible to determine whether they were generated by
the same user or by different users.

4.2 Proposed method

We describe the algorithms of the proposed method, OblvAcc-KVC, which integrates OblvAcc
into KVaC. OblvAcc-KVC consists of the following algorithms: Key generation 6 composed
of 14, 16 executed by the Center; Pair insertion 7 composed of 15, Value update 8, 9 composed
of 13, 15, 17, 18, and Verification proof 12, 13, which involved interactions between the Center
and User; and Proof update 10, 11 performed individually by User.

We consider User; who holds the key k; and value v; o. When j = 0, it is the output of the
initial pair insertion operation for User; by Algorithm 7. During the value update, by executing

25



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Algorithm 18 within Algorithm 9, the maximum number of elements in the aux stored in
OblvAcc can be limited to the number of User.

While User; executes Algorithm 7, other Users update their proofs from upd = (2;,0, v; 0) by
using Algorithm 10. The proof verifications of all User are performed by using Algorithm 12.

While User; executes Algorithm 8, User storing aux in OblvAcc updates their A, for aux
from upd = (2;,0,vi,0) by using Algorithm 11, and other Users update their proofs from upd =
(2i,1,vi,0+61) by using Algorithm 10. The proof verifications of all User are performed by using
Algorithm 12. User; discards the previous proof Ay, , as it is no longer needed. Also, v; o + 1
is always positive.

While User; executes Algorithm 9, User storing aux in OblvAcc updates their A, for aux from
upd, = 2p, ;, 24, ,,, by using Algorithm 11, and other Users update their proofs from upd =
(2i,j+1, i + 0j+1) by using Algorithm 10. The proof verifications of all User are performed by
using Algorithm 12. User; discards Aai,j associated with the deleted aux; ;_1 and the previous
proof Ay, ; as it is no longer needed. Also, v; ; + ;11 is always positive.

Algorithm 6 OblvAcc-KVC.KeyGen Algorithm 7 OblvAcc-KVC.Insert
Input: A (Pair (k;,v;,0) insertion by User;)
Output: pp,C, pp,,Ca Input: C, (ki,vio)

1: pp, C < Algorithm 14 (\) Output: auz;,o,C, Ay, o,upd

2: pp,,Ca < Algorithm 16 (\) +Algorithm 15 (C, (ki,vi0))

Algorithm 9 OblvAcc-KVC.Update2

(j+1th (j > 1) value update by User;
Algorithm 8 OblvAcc-KVC.Update Vij = Vi j +041)

(1st value update by User; v; o — vi o + 01)

Input: Cq,k;, aux; j—1,auz; j, A

g 5417
Input: kai,a’u,l'i,o,/\ai,l,siyo,C, (ki,Ui,O +61) C, Si,j7(ki,’vi7j +5j+1) a
Output: Co, Ag; ;,upd,, 0 or 1, Output: Co,upd, = 2D, ;, 24, ;115 Nai 11
auz;,1,C, Ay, ;,upd 0 or 1, auxi jt1,C, Ay, ;,,,upd
1: Ca, Aa, ;,upd, <Algorithm 17 (C, ki, auxio) 1: Ca,upd, <+Algorithm 18 (Cu, ks, auz; ;1)
2: Oor 1 2: Cqy A, ;44,upd,
«Algorithm 13 (Ca, Aq, ;, ki, auzi o, si,0) +Algorithm 17 (Cq, ks, auw; ;)
3: if Output 1 then 3: 0or 1
4:  Delete past pair (k;, vi,0) from key-value map <Algorithm 13 (Ca, Aa; ;1 ki, auws 5, 56,5)
5. aux;1,C, Ay, ;,upd 4: if Output 1 then
+Algorithm 15 (C, (k;,vi,0 + 61)) 5:  Delete past pair (k;, vs,;) from key-value map
6: else 6:  auw;jt1,C, Ak, ;,,,upd
7. return 0 < Algorithm 15 (C, (ki, vs,j + 841))
8: end if 7: else
8: return 0
9: end if

Algorithm 10 OblvAcc-KVC.ProofUpdate

Input: Ay = (Ar1Ak2) € (G x G) Algorithm 11 OblvAcc-KVC.MemProofUpdate
upd = (upd,, upd,) Input: A, € G,upd,
Output: Ay Output: A,
All User execute : User storing aux in OblvAcc execute :
1 Ar = (Ak1)™ - (Ar2)'2, (Ak2) ™) € (Gx  1: Ay = AP € G
G)

26



Key-Value Commitments with Unlinkability

Algorithm 12 OblvAcc-KVC.Verification

Input: Ap = (Ar,1,Ax2) € (G X G)

C = (C1,C2) € (G xG),(k,v) € (KxV),aux

Output: 1or0

Verifier who has ((k,v), Ak, aux) executes :

Send ((k,v), Ak, auz) to Center.
Center executes :
z = H(auz) € Primes(¢ + 1)\[?]
. if the following 3-5 holds then
veEVand ke K
(Ap2)*=C2€G
(Akyl)z . (Akyg)v = 01 eG
return 1
else
return 0
: end if
Send the result to the verifier.

© P> T

Tsujimura and Miyaji

Algorithm 13 OblvAcc-KVC.Mem Verification

Input: C, € G, A, € G, k,auz, s
Output: 1 or 0

@ NPT W

Verifier who has (Aq, k, aux) executes :
Send (Aq, k, auz) to Center.
Center executes :

: za = H(auz||k) € Primes(¢ + 1)\[b]
: if the following 3-4 holds then
auzr = H(s||k)
(Aa) A =Co e G
return 1
else
return 0
: end if

Send the result to the verifier.

Algorithm 14 KVC.Keygen

Algorithm 15 KVC.Insert

Input: security parameter \

Output: (pp,C) = ((a,b,G, g1, H), (1, 91))
Center executes :

. (a,b,G) & GGen()), g1 & G

Y =10,a) and K ={0,1}*,¢ = |b|

: H:{0,1}" — Primes(¢ + 1)\[b]

:pp=(a,b,G,q, H)

C= (1791)

Send pp to all User.

TU W N

Input: C = (C1,C3) € (G x G), (k,v) € (KX V)
Output: (auz, C, Ay, upd)

SR W

User executes : Send (k,v) to Center.
Center executes :

c s & {0,131
1 aux = H(s||k) € Primes(¢ + 1)\[b]

z = H(aux) € Primes(¢ + 1)\[b]
C=(Ci-C2.C5) € (G xG)

A, =C e (G xG)

upd = (z,v)

Keep s corresponding to aux secretly

Send Ay, aux to User secretly, and upd to all User.

Algorithm 16 OblvAcc.Setup

Input: security parameter A

Output: (ppa7 Ca) = ((a7 b, G, g2, H)7 92)
Center executes :

: (a,b,G) & GGen(N), g2 & G,¢ = |b|

: H:{0,1}" — Primes(¢ + 1)\[b]

: pp, = (a,b,G, g2, H)

Ca = g2

Send pp, to all User.

=W N

Algorithm 17 OblvAcc.Add

Input: C, € G, k, aux
Output: (Cq,Aq,upd,)

W e

User executes : Send (k, auz) to Center.
Center executes :

. za4 = H(auzl||k) € Primes(¢ + 1)\ [b]
Co=Ci"€G

A =0Co€G
upd, = 24

Send A, to User secretly, and upd, to all User.

Algorithm 18 OblvAcc.Del

Input: C, € G, k, aux
Output: (Cg,,upd,)
User executes : Send (k, auz) to Center.
Center executes :
: zp = H(k|lauz) € Primes(¢ + 1)\[b]
Co=C3P €G
tupd, = zp
Send upd, to all User.

27



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

By utilizing OblvAcc for KVaC, we solve three challenges 3.2. Let us explain how we resolve
the linkability. Instead of outputting key information %k at each operation, unlinkability is
achieved by outputting different values z each time, as shown in Algorithm 15. When User
requests an insertion, Center randomly selects s each time and computes auzr using the hash
function H with the requested k. The calculation of z is performed by inputting auzx into
H. Since s is randomly selected each time during pair insertions, each time someone with
the same key k updates v, different information z is obtained. auz is the information known
only to User who holds the pair (k,v). Since s is necessary for verification, Center stores it as
the value corresponding to aux. To perform a value update, User must add auxz to OblvAcc.
Let us explain how we resolve the size of each proof and the sign of the value. By processing
updates as insertion, User updating value discards the previous proof and obtains a new one.
As a result, the number of value updates is not necessary for proof update, and since the proof
consists of only two elements (C' before the new pair insertion), the computational cost of proof
updates for User is reduced. Also, the sign of the value is always positive by unifying with the
insert operation. Furthermore, by utilizing OblvAcc, the leakage of aux is prevented due to
the Element hiding (Definition 3.1), which ensures that aux cannot be determined, and Add-
Delete indistinguishability (Definition 3.2), which ensures that additions and deletions of aux
are indistinguishable.

4.3 Security proof

Theorem 4.1. If the properties of the hash function hold, KVC in our proposal satisfies un-
linkability.

Proof. If an adversary can find two distinet inputs auz # auz’ such that H(auz) = H(auz’),
it breaks the Collision resistance. If the adversary is given a hash value H(aux) and can find
the corresponding input auz’ such that H(auz’) = H(aux), it breaks the Preimage resistance.
If the adversary is given an input auz and can find a different input auz’ # aux such that
H(aux') = H(auz), it breaks the Second preimage resistance. I

The soundness of OblvAcc is the same as the [5], we describe the key-binding in our proposal.

Theorem 4.2. If GRSA assumption holds, OblvAcc-KVC satisfies key-binding under the ran-
dom oracle assumption for the hash function H.

Proof. We consider the following Lemma 4.1

Lemma 4.1. In the random oracle model, assume the existence of a PPT adversary A satisfying
the following equation 8

bind
Advozl;llvAcc-KVC,.A(/\) =€ (8)
Then, there exists a PPT adversary B satisfying the following equation 9

AdvGR5A(N) > % — negl(\) (9)
A

where Ty denotes the running time of A defined by .

The proof of Lemma 4.1 can be constructed based on [4]. If Lemma 4.1 holds, then the
existence of an adversary A that breaks the key-binding of OblvAcc-KVC with non-negligible
probability € implies the existence of an adversary B that breaks the GRSA assumption with
at least probability TLAQ From the above, Theorem 4.2 is proven. 1

28



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

Moreover, based on properties derived from the random oracle model and the GRSA as-
sumption, we can modify the properties to be based on the SRSA assumption.

Theorem 4.3. If SRSA assumption holds, OblvAcc-KVC satisfies key-binding without random
oracle assumption.

Proof. We consider the following Lemma 4.2

Lemma 4.2. Assume the existence of a PPT adversary A satisfying the following equation 10
bind
Advdpivacekve,a(A) = € (10)
Then, there exists a PPT adversary B satisfying the following equation 11
AdvgFSA(N) > € — negl(\) (11)

The proof of Lemma 4.2 can be constructed based on [4]. If Lemma 4.2 holds, then the
existence of an adversary A that breaks the key-binding of OblvAcc-KVC with non-negligible
probability € implies the existence of an adversary B that breaks the SRSA assumption with at
least probability €. From the above, Theorem 4.3 is proven. 1

5 Comparison

This Section compares our proposal with KVaC [4] from the point of view of update information,
computational cost, and data size.

We compare the upd. Table 5 shows the comparison on upd output during insert and update
operations by User;, as described in Section 4.2.

Table 5: Comparison of upd

Research Insertion (k;,vi,0) Update (ki,vi,;) — (ki,vi,j + 0j4+1)
KVaC (insert, (ki, vio0)) (update, (ki, d;j41))
This research (Zi’(), vi,o) (zi,j,vi,j + 6j+1)

As shown in Table 5, KVaC reveals the key k and the sign of the value change 41, which
can be positive or negative in updates. In contrast, our scheme outputs a different value z each
time instead of k. By treating updates as insertion, the sign of v; ; + ;11 is always positive,
thus preventing the leakage of the sign.

We compare the computational cost. Compared to KVaC, in our proposal, the computational
cost required for proof update is reduced as shown in Table 2. If a User; inserts a pair, for User
other than User;, the cost is reduced by one hash computation, one exponentiation, and five
multiplications. For the updating User;, the computational cost becomes zero. If a User;
updates value, for User other than User;, the cost is reduced by one hash computation and five
multiplications. However, if User stores auzx in OblvAcc, the number of exponentiations for the
updating User; in the first update (Algorithm 8) remains the same as in [4]. If the updating
User; performs a second or later update (Algorithm 9), the number of exponentiations increases
by one. If User doesn’t store aux in OblvAcc, the number of exponentiations decreases by one.

We compare the data size. In KVaC, User holds a proof Ay, of size |5G|. In this research, with
the introduction of OblvAcc, User needs to hold Ay of size |2G|, and two aux; and auxs of size
[|b] 4+ 1], and a membership proof A, of size |G| for the OblvAcc, as shown in Table 3. The total

29



Key-Value Commitments with Unlinkability Tsujimura and Miyaji

data size is |[3G| + 2||b| + 1|. Also, in the existing research, the number of interactions between
User and Center is one for both the insertion and the update. In our proposal, the number of
interactions is one for insertion (Algorithm 7), three for the first value update (Algorithm 8),
and four for subsequent value updates (Algorithm 9).

6 conclusion

In [4], KVC (KVaC) that supports new pair insertions and value updates was proposed, but
it has the following three issues. First, the same key is output for every transaction, which
reveals whether transactions are performed by the same User. Second, the proof consists of
three group elements, leading to a high computational cost for proof update. Third, the sign
of the value change is leaked during updates. In this research, we define the unlinkability in
KVC as a condition where each transaction is not linked to any other transaction, construct a
new KVC that satisfies unlinkability and solve the three issues by incorporating the OblvAcc
into KVaC. Instead of outputting key k for each operation, we output a different value z each
time, thereby achieving unlinkability. By processing updates as insertion, User performing the
update discards the previous proof and obtains a new one, enabling proofs to consist of only
two elements, which reduces the computational cost of proof updates. Also, the sign of the
value change is always positive by unifying with the insert operation.

References

[1] Bitcoin. https://bitcoin.org/.

[2] Ethereum. https://www.ethereum.org/.

[3] Ripple - one frictionless experience to send money globally. https://www. ripple.com.
(4]

4] Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commitments for blockchains
and beyond. In Advances in Cryptology—ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December
7-11, 2020, Proceedings, Part I1I 26, pages 839-869. Springer, 2020.

[5] Foteini Baldimtsi, loanna Karantaidou, and Srinivasan Raghuraman. Oblivious accumulators. In
IACR International Conference on Public-Key Cryptography, pages 99-131. Springer, 2024.

[6] Dan Boneh, Benedikt Biinz, and Ben Fisch. Batching techniques for accumulators with applica-
tions to iops and stateless blockchains. In Advances in Cryptology—-CRYPTO 2019: 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I 39, pages 561-586. Springer, 2019.

[7] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public-Key
Cryptography—PKC 2013: 16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26-March 1, 2013. Proceedings 16, pages 55-72. Springer,
2013.

[8] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: registration-based
encryption and key-value map commitments for large spaces. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 166—200. Springer, 2023.

[9] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership
proofs. In International Conference on Applied Cryptography and Network Security, pages 253—
269. Springer, 2007.

30



	1 Introduction
	2 Preliminary
	2.1 Symbols and Definitions
	2.2 Security assumptions

	3 Related Works
	3.1 Key-Value Commitments AR20
	3.2 The challenges of the existing research
	3.3 Oblivious Accumulators BKR23

	4 Proposed method
	4.1 The goal of this research
	4.2 Proposed method
	4.3 Security proof

	5 Comparison
	6 conclusion
	References

