
Kalpa Publications in Computing

Volume 8, 2018, Pages 1–10

TNC’18. Trusted Numerical Computations

Policy Iterations Without Selection Property

Assalé Adjé

Laboratoire de Mathématiques et Physique (LAMPS)
Université de Perpignan Via Domitia, France

first.last@univ-perp.fr

Abstract

In this paper, we propose a modified policy iterations algorithm which does not rely on
the selection property. The selection property is the key argument to make improvements
during policy iterations. Indeed, a new policy is computed as an optimal solution of
a minimization problem. However, in some cases, it might be difficult to prove that an
optimal solution exists. To overcome this issue, the new policy is computed as a guaranteed
sub-optimal solution of the minimization problem. The good choice of the perturbation
parameters preserves the advantages of the original policy iterations algorithm such as the
computation of a post-fixed point at each step and the convergence to a fixed point.

1 Introduction

Policy iterations algorithms were introduced for stochastic control problems [11] in 1960 and
for stochastic games [10] in 1966. In those both contexts, the selection property is a natural
assumption. The selection property principle can be formulated as follows: whatever the value
to pay there exist a policy (action) for the (min) player which can reach this value. Even
though the selection property is natural in games, the selection property has a key role in the
improvement of a policy iterations algorithm. The selection property ensures the existence of a
new policy which decreases the value at each step. Numerically, the price to pay is huge since
the new policy is actually an optimal solution of a minimization problem.

The very first use of a policy iterations algorithm in static analysis was in 2005 in [6].
In this context, the number of policies is finite and the selection property holds naturally.
The finiteness also guarantees the selection property in the extension of policy iterations to
relational domains [9]. The extension of policy iterations algorithms to non-linear templates
domains [4, 2, 3] complicates the validity of the selection property. Those extensions lead
to compute a new policy as the optimal solution of a minimization problem with an infinite
feasible set. Hence, the number of available policies is infinite. The selection property is not
obvious without supplementary hypothesis on the constraints set (compactness) and/or on the
objective function (coercivity). In [4], the selection property can be ensured from the Slater’s
constraint qualification. Unfortunately, in the general case, an optimal solution is not proved to
exist. Moreover, to be correct policy iterations algorithms need, in practice, an exact optimal
solution. This exactness cannot be done with numerical optimization solvers based on interior-
points methods [13] which can only provide ε-optimal solutions. Nevertheless, as they are fast,

M. Martel, N. Damouche and J. Alexandre Dit Sandretto (eds.), TNC’18 (Kalpa Publications in Computing,
vol. 8), pp. 1–10



Policy Iterations Without Selection Property Assalé Adjé

such solvers are mainly used to solve convex optimization problems. Second, the programs
implementing the methods deal with floating points and the returned optimal solution may not
be optimal in the real numbers.

Actually, policy iteration algorithms use optimization solvers twice. First, as mentioned
earlier, the computation of a new policy is performed by a optimization solver. In a second
time, when the new policy is selected, the fixed point (or the smallest fixed point) of the map
associated with this policy is computed as the optimal solution of a linear program. Again, we
would like to have some guarantees concerning the optimal solution of a perturbed problem.

In this paper, we propose to overcome the use of optimal solutions and develop a policy
iteration scheme capable to use ε-optimal solutions which always exist. To ensure the conver-
gence of the algorithm we propose to make decrease the sequence of ε to zero geometrically.
Furthermore, we introduce perturbations into the linear programming solving the smallest fixed
point equations.

The paper is organized as follows. Section 2 is devoted to the presentation of the context
and the hypothesis. Section 2 also briefly recalls the classical policy iteration algorithm. Sec-
tion 3 describes the main results and the modified policy iteration algorithm. Finally, section 4
concludes and presents potential future approaches.

2 Problem statement

A policy iterations algorithm solves non-linear fixed point problem for maps F : Rd 7→ Rd of
the form :

x 7→ F (x) = inf
π∈Π

fπ(x) (1)

The set Rd is equipped with the partial order ≤ meaning that x ≤ y if and only if xi ≤ yi for all
i ∈ {1, . . . , d}. Recall that this partial order makes Rd a lattice. The infimum is thus defined
from this partial order i.e. coordinate-wise.

The set Π is called the set of policies, is possibly infinite and makes fπ a policy map. More
formally, the set Π is a set of maps which act from {1, . . . , d} to the union over i ∈ {1, . . . , d}
of sets Πi. A map π associates to i ∈ {1, . . . , d} an element in Πi. The maps fπ are actually

maps of the form (f
π(i)
i )i∈{1,...,d}. Taking the infimum over π ∈ Π is equivalent to compute the

vector of infima (infa∈Πi
fai )i∈{1,...,d}.

Example 1 (Running example). Let us consider the following linear dynamical systems in
discrete-time. This corresponds to the one introduced in [4].

x0 ∈ [−1, 1]2, xk+1 = Axk, ∀ k ∈ N, where A =

(
1 0.01

−0.01 0.09

)
.

To analyze such a system, we are looking for an over-approximation of the reachable val-
ues set i.e. the possible values taken by the state variable xk. We propose here to construct
an over-approximation of the reachable values set using the templates method [4]. More pre-
cisely, given a finite set P of functions from Rd to R called templates, the templates method
consists in computing for each template q an associated extended real value v(q) making the
set {x ∈ Rd | ∀ q ∈ P, q(x) ≤ v(q), } an over-approximation of the reachable values set. As
usual in abstract interpretation [7], the over-approximation is built from a fixed point of the
abstract functional. The abstract functional is constructed from the abstract transformation of
the collecting semantics in the abstract templates domain combined with Lagrange duality [1].

2



Policy Iterations Without Selection Property Assalé Adjé

We specialize the templates method to quadratic templates [4]. The quadratic templates
chosen here are p1(x, y) = x2 (the square of the first coordinate), p2(x, y) = y2 (the square of
the second coordinate) and p3(x, y) = 2x2 +2xy+3y2 (a quadratic Lyapunov function associated
with a matrix that solves the Lyapunov equation relative to the matrix A). In the rest of the
paper, the notation P will stand for the set of quadratic templates.

Recall that we are looking for an over-approximation of the reachable values set and thus we
are interested in the fixed points of the abstract functional. This abstract functional is, for all
v ∈ RP, for all p ∈ P:

F (v)(p) = inf
λ∈RP

+

sup

∑
q∈P

λ(q)v(q) + sup
x∈R2

p(Ax)−
∑
q∈P

λ(q)q(x), (X0)†(p)


The map (X0)† is defined as follows:

(X0)†(p) = sup
(x,y)∈X0

p(x, y) = sup
(x,y)∈[−1,1]2

p(x, y)

Then :

(X0)†(p1) = 1, (X0)†(p2) = 1, (X0)†(p3) = 7

The details on the construction of the map F are given in [1, 4].
As the number of templates is finite (equal to three), the map F can be viewed as a map with

three coordinates (F (·)(p1), F (·)(p2), F (·)(p3)). The policies are then map from π : P 7→ RP
+

which associates to a template a vector of Lagrange multipliers λ i.e. π(p) = λ. The policy map
fπ is defined, for all v ∈ RP, for all p ∈ P by:

fπ(p)(v)(p) = sup

∑
q∈P

λ(q)v(q) + sup
x∈R2

p(Ax)−
∑
q∈P

λ(q)q(x), (X0)†(p)

 .

The computation of the smallest fixed point of the maps fπ is supposed to be easy; for
example they can be computed in polynomial time. Those maps are often the maxima of affine
maps and in this case, the smallest fixed point can be computed using linear programming(
see [9]). In practice, this assumption is crucial since the principle of a policy iterations algorithm
is to replace a very difficult problem (in the sense of the theory of complexity) by a sequence of
simple problems. In theory, this is not necessary. In the rest of the paper, we will precise the
moment when the assumption is mandatory.

To avoid that a fixed point of F has a coordinate equal to −∞, we need a supplementary
assumption. The map F is supposed to be lower bounded in Rd meaning that there exists
F ∈ Rd such that for all x ∈ Rd, F ≤ F (x). This assumption is natural in static analysis or
in dynamical systems. Program initializations (or initial conditions) play the role of F . This
hypothesis implies that none of the fixed point of policy maps fπ (or F ) has a coordinate equal
to −∞.

Moreover, we add a complementary hypothesis: we suppose that the smallest fixed point of
any policy map fπ belongs to Rd. Actually from the previous assumption, it suffices to exclude
coordinates equal to +∞. Note that, since Rd is not complete, the smallest fixed point of a
map may not exist in the lattice Rd. This assumption permits to only deal with finite values at
each step of the policy iterations algorithm. This eludes discussions about the propagation of
infinities and the absorption rules (0×∞). This assumption is not so restrictive since it suffices

3



Policy Iterations Without Selection Property Assalé Adjé

to keep in the set Π the policies for which the associated policy map have a smallest fixed point
with only finite coordinates.

Policy iterations algorithms only computes fixed point of monotonic maps. Then, we impose
that the maps fπ are monotonic i.e. ∀x, y ∈ Rd, x ≤ y =⇒ fπ(x) ≤ fπ(y). This latter as-
sumption implies that F is also monotonic. This assumption is completely natural in stochastic
games (vector of probabilities are non-negative) and in static analysis (using collecting seman-
tics). Furthermore, the monotonicity of the policy maps permits to characterize, from Tarski’s
theorem, their smallest fixed point as the infimum of their post-fixed points.

We sum up all the assumptions made on the maps F and fπ as follows.

Assumption 1. The maps F and fπ satisfy:

1. For all π ∈ Π, fπ are monotonic (and so F );

2. For all π ∈ Π, the smallest fixed point of fπ belongs to Rd;

3. There exists F ∈ Rd such that, for all x ∈ Rd, F ≤ F (x).

Example 2 (Assumption satisfaction). The map F of Example 1 satisfies the first and the
third statement of Assumption 1. The second does not necessarily hold but can be overcome as
said earlier. Indeed, since all λ are vectors with non-negative coordinates, then the policy maps
are monotonic. For the third statement, it suffices to see that F (v) ≥ (X0)†. As we said earlier,
we can relax the second statement by only keeping the policy maps for which the smallest fixed
point has finite coordinates. However we cannot easily characterize such a subclass of policies.

From the two first assertions of Assumption 1, we can characterize the smallest fixed point
of policy maps.

Proposition 1. Let g : Rd 7→ Rd be monotonic. Suppose that the smallest fixed point of g
belongs to Rd. Then the smallest fixed point of g is the unique solution of inf{x ∈ Rd | g(x) ≤ x}.

Example 3 (Computation of the smallest fixed points of policy maps). Recall that the policy
maps fπ are of the form:

sup

∑
q∈P

λ(q)v(q) + sup
x∈R2

p(Ax)−
∑
q∈P

λ(q)q(x), (X0)†(p)

 .

Following Proposition 1, we have to solve:

inf
v

v(p1) + v(p2) + v(p3) | ∀ p ∈ P,
∑
q∈P

λ(q)v(q) + η(p) ≤ v(p), (X0)†(p) ≤ v

 . (2)

Note that minimizing v(p1) +v(p2) +v(p3) amounts to minimizing each v(pi) individually. The
number η(p) is equal to supx∈R2 p(Ax) −

∑
q∈P λ(q)q(x) which will be computed just after the

computation of the policy π. Moreover, since the templates q and x 7→ p(Ax) are homogeneous
quadratic forms (of the form z 7→ zᵀQz where Q is a symmetric matrix) then the computation
of new policy will lead to η(p) = 0.

We warn the reader that the λ present in Eq. (2) depends on the template p. Indeed, we
recall that λ is actually the image of p by the policy π. Hence different templates generate
different vector of Lagrange multiplier λ.

In conclusion, we see that Problem (2) is a linear program where the only decision variable
is v.

4



Policy Iterations Without Selection Property Assalé Adjé

Finally, to make improvements and to ensure the convergence of a policy iterations algo-
rithm, policy iterations algorithm needs the selection property.

Definition 1 (Selection property). A map F : Rd → Rd of the form (1) has the selection
property if and only if for all x ∈ L, there exists π ∈ Π such that :

F (x) = fπ(x)

This property is thus equivalent to the existence of an optimal solution for a minimization
problem i.e. for all x ∈ Rd for all i ∈ {1, . . . , d}, the minimization problem :

Fi(x) = Min{fai (x) | a ∈ Πi} (3)

has an optimal solution a∗. This is always the case when the sets Πi are finite. When the sets
Πi are infinite, to be true, restrictive assumptions are required.

Example 4 (Slater’s condition and selection property). The map F of Example 1 has the
selection property if we restrict its domain to the set :

FS := {v ∈ RP | ∃ (x, y) ∈ R2, ∀ p ∈ P, v(p)− p(x, y) > 0} .

This condition seems to be restrictive. However, we can see that for all v ∈ RP, F (v) ∈ FS.
Indeed, for all v ∈ RP, F (v) ≥ (X0)† = (1, 1, 7) and (0, 0) satisfies p1(0, 0) = p2(0, 0) = 02 < 1
and p3(0, 0) = 2×02 +2×0×0+3×02 < 7. Hence for all p ∈ P, p(0, 0) < (X0)†(p) ≤ F (v)(p).

Actually, in constrained optimization theory, we said that the elements of FS satisfy the
Slater’s condition((see for example [15, 8] ).

Algorithm 1 recalls briefly a classical policy iterations algorithm. The presented algorithm
can be generalized to lattices (see [9]). Algorithm 1 does not require the finiteness of the set
of policies. Finiteness of the set of policies implies the finite time convergence. To have the
convergence to a fixed point in the infinite case, we need upper semi-continuity [1, 2, 3].

Data: A map F of the form (1) which satisfies the selection property
Result: A fixed point of F .

1 Choose π0 ∈ Π;
2 k := 0;

3 Compute the smallest fixed point xk of fπ
k

;
4 Evaluate F (xk);
5 if F (xk) = xk then
6 return xk;
7 else

8 Take πk+1 ∈ Π such that F (xk) = fπ
k+1

(xk);
9 Increment k;

10 Go to line 3;

11 end
Algorithm 1: Classical Policy iterations algorithm using the selection property

The line 8 of Algorithm 1 relies on the selection property. Indeed, when xk is not a fixed
point, we have to compute a policy which is optimal at this vector xk.

5



Policy Iterations Without Selection Property Assalé Adjé

Example 5. Let us consider the fixed point computation based on Algorithm 1 of Example 1.
Following [1], we initialize the algorithm with π0 identically equal to the vector of Lagrange
multipliers (0, 0, 1), where the zeros are associated with the templates p1 and p2 and 1 with the
quadratic Lyapunov template p3. Using linear programming [4], we get as first vector x0 =
(7, 7, 7). This is not a fixed point of F and thus since x0 ∈ FS we compute a new policy using
Semi-Definite Programming [4, 14]:

π1(p1) = (0, 0, 0.596), π1(p2) = (0, 0, 0.3961), π1(p3) = (0, 0, 0.9946) .

After five iterations, we get the fixed point:

x5 = (3.5, 2.333, 7) .

However, since the map F is lower bounded, then the optimal value of Problem (3) is finite
as soon as F has a finite coordinates post-fixed point. By definition of the infimum in R,
for all x ∈ Rd, for all i ∈ {1, . . . , d}, for all ε > 0, there exists an element a ∈ Πi such that
fai (x) ≤ Fi(x)+ε. This key idea will be used to replace optimal improving policies by ε-optimal
improving policies.

This paper concerns the construction of a policy iterations algorithm using ε-optimal poli-
cies (avoiding selection property). The main issue remains in a good choice of ε to keep the
convergence of the algorithm and the computation of a fixed point. Moreover, we must keep
the advantages of the policy iterations algorithms that is the computation of post-fixed point at
each step, the strict decrease of the post-fixed point generated and the convergence to a fixed
point.

3 A policy iterations algorithm without selection prop-
erty

First, we remark that we can choose an ε per coordinate of F . Thus, we will work with positive
parameters in Rd. We denote by Rd+∗ the set of vectors of Rd with strictly positive coordinates.
In a second time, to get convergence of our policy iterations algorithm, we have to impose the
geometric convergence of the parameters to zero. We introduce the sequence (εn)n∈N which
verifies the following hypothesis:

∀n ∈ N, εn ∈ Rd+∗, and εn+1 ≤ 1/2εn . (4)

We also assume that there exists ε0 ∈ Rd+∗ such that the inequality:

F (y) + ε0 ≤ y (5)

admits a solution. Let us choose an arbitrary solution that we call x0.
From, this sequence (εn)n∈N, We construct a policy iterations algorithm as follows:
In Algorithm 2, two new parameters appear. First, we add a stopping criteria α. As we will

see at Theorem 1 the produced sequence (xn)n≥0 will satisfy F (xn) + εn ≤ xn and then there
does not exist n such that F (xn) = xn since for all n ∈ N, εn has strictly positive coordinates.
This α ensures the finite convergence of the algorithm. This parameter can be chosen as is
usually done for classical numerical algorithms, for example α = 10−6 or α = 10−8. Second,
the sequence (εn)n∈N satisfying Eq. (4). In practice, we will choose the geometric sequence
εn = ε0/(2

n). The crucial point is to choose ε0. For the moment, this choice is heuristic and

6



Policy Iterations Without Selection Property Assalé Adjé

Data: The sequence (εn)n∈N satisfying (4), x0 the chosen solution of (5) and a
stopping criteria α.

Result: An approximation of a fixed point of F .
1 n = 0;
2 while ‖xn − F (xn)‖∞ > α do
3 Define πn such that: fπn(xn) ≤ F (xn) + εn+1;
4 if n > 0 and fπn−1(xn) < fπn(xn) then
5 πn := πn−1;
6 end
7 Compute the smallest fixed point xn+1 of fπn + εn+1;
8 Do n = n+ 1;

9 end
Algorithm 2: Policy iterations algorithm without selection property

a deeper analysis should be performed. We remark that ε0 can be determined from Eq. (5).
Then we modify the initial vector of the classical policy iterations algorithm, x0. If x0 verifies
x0 − F (x0) > 0 then we set ε0 = x0 − F (x0). Otherwise, for the coordinates of x0 such that
x0,i = Fi(x0) we add a strictly positive real (1 for the running example). The choice of this
positive real has a big influence on the performance of the algorithm. To choose a too big real
increases the number of iterations whereas a too small real can generate numerical accuracies.

Example 6. Now we use Algorithm 2 to compute a fixed point of the map F defined at the
running example Example 1.

The first modification is that we cannot initialize with the same x0 = (7, 7, 7) that we used in
Example 5. Indeed, since for all v ∈ RP, F (v) ≥ (1, 1, 7) and x0(p3) = 7, there does not exist ε0

with strictly positive coordinates such that F (x0) + ε0 ≤ x0. Then we use a different x0 and we
choose x0 = (7, 7, 8) and we set ε0 = x0 − F (x0) > 0 since, from Semi-Definite Programming,
F (x0) = (4.7683, 3.1685, 7.9565). The sequence εn is thus defined by ε0/(2

n).

Now we compute a first policy π0 such that fπ
0

(x0) ≤ F (x0) + ε0/2. The policy returned by
the Semi-Definite Programming solver (Mosek [5] interfaced with Yalmip [12] in Matlab):

π0(p1) = (0.1816, 0.0453, 0.5082), π0(p2) = (0.0889, 0.1735, 0.3689),
π0(p3) = (0.0015, 0.0009, 0.9941)

The smallest fixed point of fπ
0

+ ε0/2 is given, using linear programming by:

x1 = (6.0606, 6.1043, 7.0218)

After 25 iterations of Algorithm 2, we get the same (truncated) fixed point found with the
classical policy iterations.

The number of iterations grows due to the small steps realized by the new policy iterations
algorithm. Indeed, the computed policy are sub-optimal and the smallest fixed points of policy
maps are perturbed by εn+1. So we cannot decrease as much as the original algorithm. How-
ever, with more complex templates (piecewise quadratic or polynomial) where Slater’s condition
cannot be ensured, the presented algorithm is the one to use.

Definition 2 (Upper semi-continuous function). A map G is upper-semicontinuous if and only
if for all y ∈ Rd for all sequences (yn)n that converge to y then:

lim sup
n→+∞

G(yn) ≤ G(y)

7



Policy Iterations Without Selection Property Assalé Adjé

Compared to the original policy iterations algorithm, the modified policy iterations keeps
the same mathematical properties up to the term of the sequence (εn)n∈N.

Theorem 1 (Convergence of Modified Policy Iteration). The following statements hold:

1. For all n ∈ N, F (xn) + εn ≤ xn

2. The sequence (xn)n∈N is strictly decreasing and converges.

3. The limit x∞ of (xn)n∈N satisfies F (x∞) ≤ x∞.

4. If F is upper-semicontinuous, then x∞ is a fixed point of F .

Proof. 1. Let n ∈ N. If n = 0, then the result holds by hypothesis. Now, let n ∈ N∗. We
have, by definition of F ,

F (xn) + εn ≤ fπn−1(xn) + εn = xn

The last equality follows from the fact that xn is the smallest fixed point of fπn−1 .

2. We have to prove that for all n ∈ N, xn+1 ≤ xn and xn+1 6= xn. Let n ∈ N. From Prop. 1,
it suffices to show that fπn(xn) + εn+1 ≤ xn. Indeed, xn+1 being the smallest point of
the set {x | fπn(x) + εn+1 ≤ x}, the conclusion follows.

Let us prove that fπn(xn) + εn+1 ≤ xn. By definition of πn, we have fπn(xn) + εn+1 ≤
F (xn) + 2εn+1. Note that, even if fπn−1(xn) < fπn(xn), we get the same inequality.

By definition of the sequence (εn), we get fπn(xn) + εn+1 ≤ F (xn) + εn. We conclude
from the first statement, that fπn(xn) + εn+1 ≤ xn.

Now suppose that xn+1 = xn. Then fπn(xn+1) + εn+1 = fπn−1(xn) + εn. This leads
to fπn(xn) = fπn(xn+1) = fπn−1(xn) + εn − εn+1 > fπn−1(xn). According to line 5 of
Algorithm 2, we have πn = πn−1 and thus xn+1 = xn implies that fπn(xn) + εn+1 =
fπn(xn) + εn and εn+1 = εn which is not possible.

The maps F is supposed to be lower bounded, then, from the first statement, (xn)n is
also lower-bounded. Then since the sequence (xn)n strictly decreases then it converges
to x∞.

3. The map F is monotonic and (xn)n is strictly decreasing then F (x∞) ≤ F (xn) for all
n ∈ N. From the first statement, it follows that F (x∞) ≤ xn for all n ∈ N. Taking the
limit as n tends to +∞ leads to F (x∞) ≤ x∞.

4. For all n ∈ N, xn+1 ≤ xn and by monotonicity of fπn we have fπn(xn+1) ≤ fπn (xn) ≤
F (xn) + εn+1 by definition of πn (the case where fπn−1(xn) < fπn(xn) leads to the
same conclusion). Hence, xn+1 = fπn(xn+1) + εn+1 ≤ F (xn) + 2εn+1. Taking the
limsup as n tends to +∞ of both sides implies that x∞ ≤ lim supn→+∞ F (xn). Thus
x∞ ≤ F (x∞) from the upper semi-continuity of F . We conclude from the third assertion
that x∞ = F (x∞).

The modified policy iterations algorithm keeps the same advantages of the original policy
iterations algorithm.

Corollary 1. 1. The modified policy iterations algorithms still computes a sequence of valid
invariants which are more and more precise.

8



Policy Iterations Without Selection Property Assalé Adjé

2. The modified policy iterations algorithms can still be stopped at any iteration step with a
valid invariant.

The advantage to avoid selection property in policy iterations algorithm is double. First,
this allows to replace optimization problem by feasible problems to compute a new policy. In
a second time, this allows to introduce guarantees in the sense of numerical accuracy.

4 Conclusion and Future Works

In this paper, we succeed to construct a policy iterations algorithm avoiding the selection
property. The constructed algorithm keeps the same advantages of the original policy iterations
algorithm. We replace optimal policies by ε-optimal policies which always exist. To avoid the
selection property permits to construct a policy iterations algorithm in situations where we are
not able to prove the existence of optimal solutions. Those situations happen when the number
of policies is infinite.

To make our algorithm converge, we impose a geometric decrease for the ε parameters. The
price to pay is the increase of the number of iterations (for the running example, from 5 to 25).
Indeed, the presented algorithm makes small steps since the policy is sub-optimal.

This approach might also be used as a guaranteed method if we constraint the computed
policies and abstract elements to have floating number coordinates. Indeed, to allow sub-optimal
policies permits to only regard policies with floating numbers in the theoretical development.
However, in the presented algorithm, the smallest fixed points of policy maps are still the optimal
solutions of some linear programs. In order to allow sub-optimal solutions with floating number
coordinates in the theory, we should differently tune the perturbation parameter which appears
in the computation of smallest fixed points of policy maps.

References

[1] A. Adjé. Policy iteration in finite templates domain. Electronic Notes in Theoretical Computer
Science, 317:3 – 18, 2015. The Seventh and Eighth International Workshops on Numerical Software
Verification (NSV).

[2] A. Adjé. Coupling policy iterations with piecewise quadratic lyapunov functions. In Proceedings
of the 20th International Conference on Hybrid Systems: Computation and Control, HSCC 2017,
Pittsburgh, PA, USA, April 18-20, 2017, pages 143–152, 2017.

[3] A. Adjé, P.-L. Garoche, and V. Magron. A sums-of-squares extension of policy iterations. Nonlinear
Analysis: Hybrid Systems, 25:60 – 78, 2017.

[4] A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite relaxation to
compute accurate numerical invariants in static analysis. Logical Methods in Computer Science,
8(1), 2012.

[5] E. D. Andersen and K. D. Andersen. The Mosek Interior Point Optimizer for Linear Programming:
An Implementation of the Homogeneous Algorithm, pages 197–232. Springer US, Boston, MA,
2000.

[6] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration algorithm for
computing fixed points in static analysis of programs. In International Conference on Computer
Aided Verification, pages 462–475. Springer, 2005.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

9



Policy Iterations Without Selection Property Assalé Adjé

[8] R. G Eustaquio, E. W Karas, and A. A Ribeiro. Constraint qualifications for nonlinear program-
ming. Federal University of Parana, 2008.

[9] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy iteration on relational
domains. In Rocco De Nicola, editor, Programming Languages and Systems, pages 237–252, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[10] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management Science,
12(5):359–370, 1966.

[11] R. A. Howard. Dynamic programming and markov processes. 1960.

[12] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

[13] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming,
volume 13. Siam, 1994.

[14] M. V. Ramana and P. M. Pardalos. Semidefinite Programming, pages 369–398. Springer US,
Boston, MA, 1996.

[15] M. Slater. Lagrange multipliers revisited. Cowles Commission Discussion, 403, 1950.

10


	Introduction
	Problem statement
	A policy iterations algorithm without selection property
	Conclusion and Future Works

