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Abstract

X-ray crystallography is one of the main methods to establish the three-dimensional
structure of biological macromolecules. In an X-ray experiment, one can measure only
the magnitudes of the complex Fourier coefficients of the electron density distribution
under study, but not their phases. The problem of recovering the lost phases is called the
phase problem. Building on earlier work by Lunin/Urzhumtsev/Bockmayr, we extend their
constraint-based approach to the phase problem by adding further 0-1 linear programming
constraints. These constraints describe geometric properties of proteins and increase the
quality of the solutions. The approach has been implemented using SCIP and CPLEX,
first computational results are presented here.

1 Introduction

Knowledge about the three-dimensional structure of biological macromolecules is an essential
foundation of structural biology and biotechnology. In X-ray crystallography the arrangement
of atoms within a crystal is determined from a three-dimensional representation of the electron
density. From X-ray experiments one gets diffraction data depending on the molecular struc-
ture, i.e., the intensities of reflections of X-rays diffracted by the crystal. X-rays are scattered
exclusively by the electrons in the atoms, so one is searching for a relation between the mea-
sured intensities of the beams diffracted at the object in question and the crystal structure,
which can be described by the electron density distribution. The electron density represents
probabilistically where electrons can be found in the molecule. With the help of diffraction data
and the usage of mathematical as well as experimental methods, an electron density map can
be derived. Direct methods use mathematical techniques to compute an electron density map
from the diffraction data without any further experiments. The main problem here is the phase
problem: experiments provide only the intensities of the X-rays diffracted in different directions
and so the electron density magnitudes can be calculated, whereas the information about the
phase shift is lost.

Lunin, Urzhumtsev and Bockmayr [8] proposed a 0-1 linear programming approach to direct
phasing. This approach yields a set of solutions. In order to increase the quality of this solution
set, we formulate some geometric properties of proteins as additional 0-1 linear programming
constraints. In [3], we described the basic ideas of the 0-1 linear programming approach by
Lunin, Urzhumtsev and Bockmayr [8], now we derive the new geometric constraints and present
first computational results.

2 The phase problem

Every crystal consists of identical molecules, resp. complexes of molecules strictly ordered in all
three dimensions. This means that we can find a parallelepiped called unit cell containing such
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a complex of molecules which builds up the whole crystal if it is repeatedly stacked together in
all three dimensions. We will denote the unit cell’s volume with Vcell. Let b1,b2,b3 ∈ R3 span
the unit cell. Then we can write every vector r ∈ R3 in this basis, i.e., r = x1b1 +x2b2 +x3b3,
where x = (x1, x2, x3)

T ∈ [0, 1]3 is the vector of coordinates of r with respect to the basis
{b1,b2,b3}. We are searching for the electron density distribution ρ(x) over the crystal. Due
to the crystal structure, ρ is a periodic function and therefore can be developed into a Fourier

series [6]

ρ(x) =
1

Vcell

∑

h∈Z3

F(h) exp(−2πi(hTx)), x ∈ V. (1)

The Fourier coefficients F(h),h ∈ Z3, which are called structure factors in crystallography, are
given by the formula

F(h) =

∫

V

ρ(x) exp(2πi(hTx))dx. (2)

Since these are complex numbers, the structure factors can be written in the form F(h) =
F (h) exp(iϕ(h)), where F (h) = |F(h)| is the magnitude and ϕ(h) ∈ [0, 2π[ the phase.

The only experimental data we get in X-ray-crystallography are the reflection intensities.
The intensity I(h) of a reflection is proportional to the magnitude of the squared structure
factors, with a known constant of proportionality, i.e., C · I(h) = |F(h)|2, C ∈ R. Thus, all
we can calculate from our experimental data are the structure factor magnitudes. The phase
information is lost and must be restored by other means. This is called the phase problem.

3 0-1 linear programming approach

Now, the main ideas of the approach proposed in [8] are presented. Instead of calculating the
electron density distribution in the whole unit cell, we will work on a grid. Using discrete
Fourier transforms, we calculate electron densities at the grid points. Consider a grid Π =
[0,M1 − 1] × [0,M2 − 1] × [0,M3 − 1] ⊆ Z3, where M = M1M2M3 is the total number of
grid points. Denote by M the diagonal matrix diag(M1,M2,M3), with diagonal elements
M1,M2,M3 ∈ N. The values of the electron density function ρ(x), x ∈ V at the grid points are
described by the grid electron density function ρg(j) = ρ(M−1j), ∀j ∈ Π. We define the grid

structure factor Fg(h) by the discrete Fourier transform

Fg(h) =
1

M

∑

j∈Π

ρg(j) exp(2πi(h
TM−1j)), ∀h ∈ Π. (3)

If we know the grid structure factors, we can restore the grid electron densities

ρg(j) =
∑

h∈Π

Fg(h) exp(−2πi(hTM−1j)), ∀j ∈ Π, (4)

using the inverse discrete Fourier transform.
In the context of direct phasing, it may be sufficient to find a binary envelope of the regarded

molecules, i.e., a binary function representing areas where the electron density is above a certain
cut-off level κ [8]. Using this idea, we may replace the unknowns ρg(j) by binary variables
zj ∈ {0, 1}, for each grid point j ∈ Π, satisfying zj = 0, if ρ(j) ≤ κ and zj = 1 otherwise.

By restricting the possible phase values ϕ(h) ∈ [0, 2π[, ∀h ∈ Π to four ones, i.e., ϕ(h) ∈
{±π

4 ,±
3
4π}, ∀h ∈ Π, the phase problem can be stated as a system of linear inequalities in 0-1
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variables for representing the electron density values at grid points and for representing the
phases. By penalizing the amount of violation, a suitable objective function can be introduced
[8, 3].

In general, the resulting 0-1 linear program for solving the phase problem does not have a
unique optimal solution, but a set of different optimal solutions. In order to reduce the number
of those and at the same time increase the quality of the remaining ones, additional constraints
can be added.

4 Additional constraints

In the electron density distribution of a protein, no peaks of very high or very low electron
density occur, if an appropriate resolution is used. This means, in the grid electron density
distribution, no isolated points of high electron density surrounded by low electron density
values as well as no isolated points of low electron density surrounded by high electron density
values are expected to occur.

Definition 1 (Neighbour relation). Two grid points j1 ∈ Π and j2 ∈ Π are neighbours, denoted

by j1nj2, if and only if ‖ j1 − j2 ‖2= 1.

Definition 2 (Isolated point). A binary grid point zj ∈ Π is called isolated if and only if

zj = 0 ⇒ zi = 1, ∀ inj and zj = 1 ⇒ zi = 0, ∀ inj.

Every interior grid point has six neighbours, thus the condition −5 ≤ zj −
∑

inj

zi ≤ 0, for all

j ∈ Π states the exclusion of isolated interior grid points.

5 Connectivity

At low resolution and a high enough cut-off level κ, the high-level region Ωκ
def
= {j : ρ(j) > κ} is

expected to consist of a small number of connected components, which should be equal to the
number of molecules inside the unit cell [9]. At lower cut-off level these components merge into
fewer regions. So it is possible to give an upper bound for the number of molecules in advance.

We define a graph representing properties of the binary grid electron density maps. Let
GΠ = (VΠ, EΠ) be an undirected graph with M = M1 ·M2 ·M3 vertices denoted by vj, j ∈ Π.
Vertices vj ∈ VΠ and vi ∈ VΠ with j and i being neighbours are connected by edges, i.e.,
EΠ = {e = (vj, vi) | jni}. Let V ∗

Π ⊆ VΠ be the set of vertices with a corresponding electron
density above the cut-off level, i.e., the set of vertices satisfying V ∗

Π = {vj | zj = 1, j ∈ Π}.
With E∗

Π ⊆ EΠ we denote the set of edges in the subgraph G∗

Π = (V ∗

Π , E
∗

Π) induced by V ∗

Π .
The binary grid electron density distribution contains K ∈ N components, if and only if the

corresponding graph G∗

Π = (V ∗

Π , E
∗

Π) contains K connected components. Figure 2 shows the
graph representing the binary grid electron density distribution. Black filled vertices represent
grid electron density values above the cut-off level, neighboured black vertices are connected by
solid edges.We introduce 0-1 variables ej1,j2 for j1, j2 ∈ Π with j1 n j2. These variables should take the
value 1, if the corresponding edge connects two neighbouring nodes j1, j2 ∈ Π with zj1 = zj2 = 1,
and 0 otherwise. The constraint −1 ≤ 2ej1j2 − zj1 − zj2 ≤ 0, for all j, j1, j2 ∈ Π with j1 n j2,
ensures this condition.

Now, a 0-1 linear programming approach will be presented to model that a binary grid
electron density distribution satisfies the ‘K-component-constraint ’, i.e., it contains at most
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Figure 1: Unit cell of Protein G
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Figure 2: The graph G∗

Π = (V ∗

Π , E
∗

Π)

K ∈ N components. For any subset ∅ 6= T ( Π we introduce a binary variable uT indicating
whether T contains grid points j ∈ Π where the variable zj takes the value 1.

uT
def
=

{

1, if
∑

j∈T

zj ≥ 1

0, otherwise.
(5)

If this is the case for more than K disjoint subsets, there have to be edges connecting some of
these components, otherwise the ‘K-component-constraint’ would be violated.

Theorem 1 ([7] ). A binary grid electron density distribution z∗ ∈ {0, 1}M1×M2×M3 contains
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at most K components if it satisfies the following constraints:

−1 ≤ 2ej1j2 − zj1 − zj2 ≤ 0, (6)

1

|Ti|

∑

j∈Ti

zj ≤ uTi
≤

∑

j∈Ti

zj, (7)

K+1
∑

i=1

uTi
−K ≤

∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2 (8)

uTi
, zj, ej1j2 ∈ {0, 1}, (9)

∀∅ 6= T1, . . . , TK+1 ( Π,

K+1
⋃

i=1

Ti = Π, Ti ∩ Tj = ∅, ∀i 6= j, i, j ∈ {1, . . .K + 1},

∀j, j1, j2 ∈ Π, with j1 n j2.

Here δ(T1, . . . , TK+1) denotes the set of all edges connecting two different components Ti, Tj,

with i 6= j ∈ {1, . . .K + 1}.

The number of constraints in (8) grows exponentially in the number of nodes. Using a
separation algorithm within a branch-and-cut framework [7], only certain violated inequalities
will be added to the formulation.

In the constraint programming literature, global constraints for restricting the number of
connected components have been studied in [5].

6 Computational results

In order to evaluate the approach, real protein data from the Protein Data Bank [1] was taken.
For the implementation, we used SCIP Version 1.2.0 [2] together with CPLEX 11.0 [4] as IP-
solver. SCIP can solve mixed-integer as well as constraint integer programming problems. The
running time to calculate a solution on a 6 × 6 × 6-grid (216 independent grid points) on a
i686 with 4 processors, a 3GHz CPU and 3GB RAM was about 10 minutes CPU time without
additional constraints, and about 50 minutes CPU time with all constraints added. In the
latter case, about 900 search nodes and 23MB of memory were needed, without the additional
constraints 250 search nodes and 28MB of memory.

Once a set of solutions has been calculated, we evaluate the quality of those solutions.
Using the minimal molecular volume that has been defined in the solution process to specify
the number of non-zero grid values, the grid electron density distribution of the original protein
is binarised. The distance D(zexact, z

i
calc) between the resulting binary electron density zexact

and the calculated ones zicalc, i ∈ {1, . . . , N}, where N ∈ N is the number of computed solutions,
is defined by

D(zexact, z
i
calc)

def
=

∑

j∈Π

∣

∣zexact(j)− zicalc(j)
∣

∣ . (10)

The smaller the distance value, the better the quality of the considered solution. The smallest

distance reached in the test run is Dmin
def
= min

i=1,...,N
D(zexact, z

i
calc).
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As the exact solution normally is not known in advance, we use a method to get an average
solution from the set of computed solutions. One possibility to calculate such an average
solution for a set of N ∈ N solutions is the following one:

zav(j)
def
=

1

N

N
∑

i=1

zicalc(j), ∀j ∈ Π, Dav
def
= D(zexact, zav). (11)

Obviously, in general zav is not a binary function. Using the defined molecular volume value,
it can be binarised and compared to the exact solution.

Another possibility would be to choose the solution with a minimum distance from all other
solutions. For every solution, the distances to all others are summed up, the solution for which
this sum is minimal is chosen as reference solution zref :

Dsum(i)
def
=

N
∑

j=1

∑

j∈Π

∣

∣

∣
zicalc(j) − z

j
calc(j)

∣

∣

∣
, ∀i ∈ {1, . . . , N}, (12)

zref
def
= zicalc, with Dsum(i) = min

j=1,...,N
Dsum(j), Dref

def
= D(zexact, zref). (13)

In the table below some test results on 6×6×6-grids are shown, based on the data for Protein G
[1]. In order to get reasonable running times, a small grid size was chosen. For real applications
it would be desirable to handle bigger grid sizes. A covering of 30% is forced, the original binary
electron density distribution then consists of 1 component. The 70 best solutions (with respect
to the objective function specified in [3]) were considered. Only 28 of them also consisted of 1
component, 49 of them consisted of at most 2. The maximum number of components in one of
these 70 solutions was 9.

Constraints # sol pmin pav pref

none 70 72% 56% 54%
iso 67 72% 62% 54%
connected (2) 49 72% 66% 63%
connected (1) 28 72% 74% 65%
iso, connected (2) 49 72% 69% 68%
iso, connected (1) 28 72% 74% 70%

In the first column, the used additional constraints are specified: either only the con-
straint excluding isolated points (iso), or the constraint excluding isolated points and the
‘K-component-constraint’ (connected). In brackets the maximum number of components al-
lowed is specified. The second column shows the number of solutions from the original solution
set satisfying these constraints.

In the other columns, the percentage of correct solution values is given for the different
distance measures, i.e.,

pmin =
|Π| −Dmin

|Π|
, pav =

|Π| −Dav

|Π|
, pref =

|Π| −Dref

|Π|
. (14)

Obviously, the values of pav as well as pref increase by adding stricter constraints, showing the
increasing quality of the regarded solutions.
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7 Conclusions and further work

Based on the 0-1 linear programming approach to model the phase problem presented at WCB
2008 [3], we derived a way to model additional 0-1 linear programming constraints representing
geometric properties of proteins. First results show that adding those to the original 0-1 program
results in a higher quality of the set of solutions. Now, this approach will be tested on more
data and also on bigger grids. Concerning future work, one could think of better ways to create
a solution from the resulting solution set or of including further constraints.
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