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Abstract

The deltoid muscles play a crucial role in maintaining balanced arm function and
enabling abduction following shoulder arthroplasty. Currently, pre-operative assessments
of deltoid integrity rely primarily on visual inspection of medical images and subjective
ratings. A recent work has shown accuracy of machine learning based pipeline to
correctly segment and quantify characteristics of deltoid muscle in shoulder CT scans. In
this paper, with the inputs from medical experts, we evaluated clinical acceptance and
non-inferiority of the ML-based segmentations compared to the corrections provided by
expert surgeons. The non-inferiority of the ML model was assessed by comparing model-
generated masks to surgeons’ and inter-surgeon variations in metrics such as volume and
fatty infiltration percentage. Expert validation showed 97% of masks to be clinically
acceptable, with only 6% of ML generated masks requiring any major corrections. The
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median error in the volume and fatty infiltration measurements was <1% between the
ML-generated masks and the masks corrected by surgeons. The non-inferiority analysis
demonstrated no significant difference between the generated masks to surgeons’ and
inter-surgeon variations (p<0.05).

1 Introduction

Treatment planning of patients who need shoulder arthroplasty relies on various pre-operative
factors, including the integrity and condition of patient’s joint, bone, and muscle. In the native shoulder,
the range of motion and stability are largely dependent on function of the deltoid and the rotator cuff
muscles. Deltoid muscles are the primary elevator and the rotator cuff, while also contributing to
motion, dynamically stabilizes the joint. Degenerative changes to muscles, such as excessive fat
infiltration or loss of muscle mass due to atrophy, can impact muscle function, joint stability, and range
of motion. Degenerative changes to muscles, such as excessive fat infiltration (FI) or loss of muscle
mass due to atrophy, can impact muscle function, joint stability, and range of motion [1, 2]. We recently
developed an CT-based pipeline to segment and quantify shape and texture of deltoid muscle [3]. Then
segmentation was based on fine-tuning of pretrained SwinUNETR [4], using manually labeled deltoid
mask of 97 randomly selected patients [3]. Applying the pipeline on 1,057 patients revealed that the
shape of the deltoid muscle, particularly its flatness, plays a significant role in predicting arthroplasty
success [5]. Herein, we aim to: a) assess the clinical acceptance rate of the ML-generated deltoid masks,
b) quantify segmentation and error between ML and surgeon-generated masks, and c) test the non-
inferiority of ML to surgeon compared to inter-surgeon variations.

2 Methods

The population for the validation study was randomly selected from a multi-center clinical outcome
database [6]. The population was chosen to represent at least three samples of patients from different
demographics (age, gender, diagnosis, and treatment) and image-specific variables (image kernels, CT
scan manufacturer). The selected cases underwent review to ensure they were not part of the
development process. A total of 32 patients, 47% female, were selected for expert validation. Most
patients were diagnosed with osteoarthritis (78%), followed by rotator cuff arthropathy (16%) and
rotator cuff tear (19%). Patients received imaging with various CT scanners (50% GE, 28% SIEMENS,
and 22% Toshiba).

Three qualified surgeons (fellowship-trained shoulder) and three technicians with experience in the
manual segmentation of medical images participated in this study. The masks and the respective CT
scans were randomly distributed among surgeons such that each surgeon reviewed about 20 cases, and
each case was reviewed by at least two surgeons. Each mask evaluation consists of answering two
questions: (a) Is the quality of the segmented mask clinically acceptable? (b) Does the mask benefit
from minor or major corrections? For masks that required correction, a ground-truth was generated by
technicians based on surgeon’s comments with verification of the final mask by the surgeon. The
differences between the ML and expert-curated masks were quantified using Dice coefficient, distance
map, percentage of surface mesh with a gap more than 0.5 mm, correction ratio, percentage of corrected
volume to ground-truth volume, and percentage error in volume and Fatty infiltration (FI).

A non-inferiority analysis was used to test whether the error in ML segmentation and quantification
is substantially worse than the variation between the two surgeons reviewing a common set of masks.
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For non-inferiority analysis, we followed a framework proposed by Ostmeier et al., [7] non-inferiority
margin (A) was assumed as follows: for Dice coefficient as (1 — the minimum inter-surgeon Dice
coefficient), for other error metrics as maximum of inter-surgeon error. The following summarizes our
null hypothesis for non-inferiority analysis.

(1) Diceinter-surgeon 2DICEmI surgeon™ Apice
(2) L7707 inter Jurgeoﬂii 7707 ml-surgeon— A grror

A non-parametric one-sided Wilcoxon rank-sum was used to test the hypothesis, with a significance
level of (p< 0.05).

3 Results

During the clinical validation, one mask was removed because delineation of the deltoid was
not possible due to the presence of hematoma. The evaluation durations for surgeons A, B, and C
were 90 minutes, 120 minutes, and 180 minutes, respectively. There was 100% agreement among
surgeons on clinical acceptance/rejection ratings for all cases. The acceptance rate was 95% for
Surgeons A and C, and 100% for Surgeon B, indicating a total acceptance rate of 97%. Most masks
(81%) were suggested for minor correction. Only two masks (6%) were suggested for major
correction, and one was clinically rejected. Figure 1 shows the ML and surgeon-generated masks
for three samples: two clinically accepted with minor correction, and one rejected with major
corrections. In total there were two cases suggested for major correction, where deltoid muscle
presented with high degree of fattiness, resulting in darker area as shown in Figure 1 sample 3.
Table 1 summarizes the non-inferiority results. The non-inferiority margin for Dice coefficient was
0.08. For the error metrics, the margins for the distance map, correction ratio, volume difference,
and fat difference were 44%, 17%, 10%, and 3%, respectively. In summary, the model to surgeon
error was non-inferior compared to the inter-surgeon variation for all metrics and surgeons. For
surgeons A and B, the error between the model to surgeon was smaller than the inter-surgeon
variations. For surgeon C, model to surgeon error was higher, but still found to be non-inferior to
the inter-surgeon error.
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Figure 1: Comparing masks generated by ML and surgeons.

Table 1. Summary of Non-Inferiority Analysis:
Values represent the median followed by the 5" and 95" percentiles of the metrics.

Surgeon A Surgeon B Surgeon C
Errors ML tofInter- Non ML to|Inter- Non ML to|Inter- Non
Surgeon  [Surgeon |Inferior Surgeon Surgeon  [Inferior Surgeon Surgeon  Inferior
-value -value p-value
Dice 1.00 1.00 P=.001 1.00 1.00 1.00 1.00 P<.001
coefficient [0.97, [0.98, [0.98, [0.98- <.001 [0.98, [0.98,
1.00] 1.00] 1.00] 1.00] 1.00] 1.00]
Distance 0.56% 2.84% P<.001 1.025% 3.00% P<.001 2.84% 2.84% P<.001
Map [0.00%, [[0.00%, [0.00%, [0.00%, [0.00%, [0.00%,
Error 9.01%)] 8.45%] 7.24%)] 8.88%] 6.25%] 10.3%]
Correction 0.16% 0.96% P<.001 0.30 0.725 P<.001 0.8 0.65 P<.001
Ratio [0.00%, [[0.00%- [0, [0.00, [0.00%, [0.00%,
6.26%] 4.46%] 3.345] 3.58] 3.31%] 3.51%]
0.16% 0.53% P<.001 0.20% 0.39% P<.001 0.79% 0.30% P<.001
olume Diff |[0.00%, [[0.00%, [0.00%, [0.00%, [0.00%, [0.00%,
3.51%] 3.77%] 3.44%] 1.98%] 3.31%] 1.85%]
= 0.04% 0.12 P<.001 0.09% 0.105%  |P<.001 0.06% 0.08% P<.001
Diff [0.00%, [[0.00, [0.00%, [0.00%, [0.00%, [0.00%,
3.52%)] 2.38%] 1.42%] 2.47%] 2.19%)] 2.49%)]

4 Discussion

Commonly, ML studies are being validated using internal datasets and by quantifying mathematical
metrics such as the Dice coefficient, which may not necessarily reflect the clinical acceptance of the
ML models [8] [9]. Validation of ML models with the users for whom the model is intended and with
external datasets that are generated outside of the development process can help assess clinical readiness
and acceptability. In this study, we conducted an expert validation to evaluate clinical acceptability and
tested the non-inferiority of the ML model compared to experienced orthopedic surgeons. Our findings
confirmed high clinical acceptance of generated deltoid mask and demonstrated its non-inferiority in
the measurement of volume or fatty infiltration.
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Our study has some limitations. Due to inherent manual and costly process of expert validation the
results are based on relatively small sample of patients who were already determined to undergo
surgery. We also did not evaluate non-inferiority to the case where surgeons generate ground-truth from
scratch likely exhibiting greater variability. Another limitation of the current study is lacking normal
subjects as all scans were collected from patients who were selected for surgery. Also, further test is
required to evaluate model performance on patients with high fatty infiltration or atrophy.

5 Conclusions

In this study, we evaluated a ML model for segmentation of deltoid muscles by demonstrating its
high clinical acceptance rate and showing the non-inferiority of ML error compared to the variation
between the expert surgeons. These findings contribute to the implementation of image-based ML
models in clinical settings, leading to more effective treatment planning and patient satisfaction.
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