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Abstract

Despite the growing development of image-based machine-learning models, their
integration into clinical practice remains limited. A significant barrier to adoption is the
reliability of these models' predictions. This study demonstrates the use of uncertainty
analysis to evaluate output of a CT-based model trained to segment deltoid muscles in
shoulder arthroplasty patients. By quantifying uncertainty through metrics such as
entropy, mutual information, and variance, we created 46 distinct image-level
uncertainty scores for 108 good-quality and 100 low-quality segmentation outputs. In
addition, these uncertainty scores were used to train a Gaussian Naive Bayes model to
identify low-quality cases, and the results were compared with those from single-metric
thresholding. The results show that boundary 75 percentile entropy is the most
predictive single uncertainly parameters (accuracy: 68%, recall: 68%, precision: 67%)
while the trained model outperformed all single predictive metrics (accuracy: 78%, %,
recall: 76%, precision: 78%). Our study indicates a uses case of utilizing uncertainty
analysis to identify segmentation outputs that may require further manual correction,
which will increase the trust, and potentially help for clinical adoption of ML
segmentation models.

1 Introduction

Shoulder arthroplasty relies on the assessment of radiological images (X-Ray, CT, and MRI scans)
to evaluate the quality and integrity of bones and muscles. However, the current clinical practice for
such evaluations is predominantly based on visual inspection and subjective qualitative evaluation. In
recent years, advances in artificial intelligence (AI) have enabled the use of machine learning models
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to evaluate musculoskeletal structures more objectively. A previous study shows an automated
pipeline for segmentation and quantification of deltoid characteristics in shoulder CT scans with high
accuracy [1]. However, as suggested in the article, an inaccurate segmentation necessitates manual
corrections. Currently, the process of identifying such inaccurate or low-quality segmentation relies
on visual inspection, limiting the scalability due to manual intervention leading to high cost and time
requirements.

To address these challenges, uncertainty estimation has emerged as a promising approach [2, 3].
Uncertainty maps, derived from the probability outputs of segmentation models (e.g., unthresholded
SoftMax outputs), provide additional insights into the confidence of segmented masks. These maps
can highlight regions requiring correction, serving as guidance for technicians and reducing the
reliance on purely manual inspection. Uncertainty estimates can be quantified into meaningful metrics
and be summarized as an image-level single quality indicator (QI) score, providing a standardized
way to assess segmentation reliability. In this study, we aim to test the performance of utilizing
different 46 uncertainty metrics (such as Entropy and top 2 probability difference) for identifying low
quality masks. Furthermore, using a database of expert evaluated and labeled deltoid mask, we train a
model to increase performance of identifying low quality segmented masks.

2 Methods

A previously trained and clinically validated model for segmentation of deltoid muscles using
3D CT scan images was utilized for this study [1]. The model was previously used to segment
pre-operative CT images of 4,009 primary shoulder arthroplasty patients [4]. All segmented
images were visually evaluated by two observers familiar with anatomy of deltoid and classified
to a. acceptable, b. not acceptable, where not acceptable are those that, the model could not
accurately capture the boundary of deltoid muscle. A sample of accepted and not accepted cases
are shown in Figure 1. For this study, we randomly selected 108 segmented masks (gender: 74 F,
31 M, 3 NA; age:71£8 yrs) with acceptable quality and 100 segmented masks (gender: 37 F, 54
M, 9 NA; age:6919 yrs) with poor quality or rejected cases. Utilizing the unthresholded SoftMax
outputs, we calculated pixel-level uncertainty measures entropy, top2 diff probability, and
measured an image-level and then mask boundary level score by quantifying these uncertainties
with metrics Percentiles (P25, P50, P75): percentile value of uncertainty in boundary region;
Mean : Mean value of uncertainty in boundary region; Standard Dev: Standard dev of
uncertainty values in the boundary region; En-o-Ec: Entropy of the expected class, Ex-e-Ec:
Expected entropy of expected class. The dataset was split into training and test sets in an 80:20
ratio. The training set was further divided into training and validation subsets using a 90:10 split.
A check for collinearity was done for the features and those with high correlation were
eliminated by keeping those that has higher performance of testing cohorts. The training data
were used to train the Gaussian Naive Bayes model, while the threshold cut-off was determined
using the validation set. For the remaining test dataset, performance of model was compared
against single feature thresholding.
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3 Results

Frothy six single metrics were measured as single score that quantify segmentation quality,
summary of top performed metrics is reported in Table 1. After removing redundant features by
identifying the collinearity, 13 parameters remained. Table 1 describes the performance of
different metrics as well as trained model on identifying cases with low quality. Among single
metrics P75 of Entropy had the highest performance (accuracy of 68.27%, recall 68.0%,
precision of 66.67%), while the model could outperform all single metrics (accuracy of 78%,
recall 76%, precision of 78).
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Figure 1: A. Workflow of quantifying uncertainty for segmentation masks. B. Sample

of selected acceptable and not acceptable cases.

Table 1: Report of uncertainty analysis measurements.
Metrics 50 50 P- Threshold ~ Accuracy  Recall  Precision F-
Percentile  Percentile  value (50 score
of low- of high- Percentile
quality quality of 300
Case Case samples)

1 B P75 Entropy 0.269 0.248 <0.05 0.255 68.27 68.00 66.67 67.33
2 B En-o-Ec Entropy 0.407 0.384 <0.05 0.393 68.27 69.00 66.35 67.65
3 B Mean Entropy 0.141 0.129 <0.05 0.134 68.75 68.00 67.33 67.66
4 B Ex-e-Ec Entropy 0.327 0.302 <0.05 0.314 67.79 69.00 65.71 67.32
5 B P50 Entropy 0.096 0.071 <0.05 0.082 68.27 68.00 66.67 67.33
6 B Ex-e-Ec Top2 diff 0.322 0.294 <0.05 0.308 66.83 67.00 65.05 66.01
7 B P25 Entropy 0.016 0.010 <0.05 0.013 63.46 65.00 61.32 63.11
8 Mean Entropy 0.048 0.044 <0.05 0.046 63.94 64.00 62.14 63.05
9 P25 Entropy 0.001 0.0007 <0.05 0.0009 63.94 54.00 65.06 59.02
10 Std. dev Entropy 0.091 0.089 <0.05 0.090 62.02 61.00 60.40 60.70
11 Mutual Info. Entropy 0.064 0.063 <0.05 0.0635 53.37 60.00 51.28 55.30
12 KL div Entropy 2.79e5 2.45e5 <0.05 2.64e5 60.58 61.00 58.65 59.80
13 HU Mean Entropy 0.003 0.002 <0.05 0.0025 61.06 74.00 57.36 64.63
14 Q-indicator Model - - - - 78.0 76.0 78.0 77.0

*B,HU, En-o-Ec, and Ex-e-Ec refer to boundary, Hausdorff uncertainty, entropy of expected class, and expected entropy of expected
class respectively.
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4 Discussion

While numerous studies have developed image-based machine learning models, very few
have reached clinical practice. There are several studies proposing different methodology and
metrics to evaluate the quality of image segmentation and mostly designed to identify areas of
segmentation error or to guide human-in-the-loop annotation [5, 6]. The results of our study
demonstrated the application of uncertainty analysis in identifying cases that were incorrectly
segmented by our deltoid model. Utilizing this approach could improve machine learning models
by prioritizing cases with higher uncertainty for correction and incorporating them into the
training dataset. This study has some limitations. First, while the model in this study is designed
to evaluate one of the soft-tissue segmentations, its applicability to other soft-tissue
segmentations such as that of rotator cuff and bone segmentations such as of scapula and glenoid
remains unvalidated. Second, although the study focuses on prediction of uncertainty, it does not
address inherent bias due to underlying segmentation model. Third, our training and testing
dataset was relatively small, and additional external validation is necessary to ensure consistent
model performance across different populations and imaging centers. In future work, we plan to
incorporate other uncertainty estimation methods, such as epistemic approaches, to assess
uncertainties arising from the model’s limited knowledge.

5 Conclusions

In this study, we demonstrated an application of uncertainty analysis to identify quality of
deltoid segmentations. Integrating this approach into clinical workflows can streamline
evaluations, improve model reliability, and prioritize cases requiring manual correction for
iterative model development.
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