EPiC Series in Computing =i
omputing

Volume 43, 2017, Pages 36-41

ARCH16. 3rd International Workshop on Applied %
Verification for Continuous and Hybrid Systems (.\

AS .
£ Chrq, 3

Verification of Fault-Tolerant
Clock Synchronization Algorithms

(Benchmark Proposal)

Sergiy Bogomolov?, Christian Herrera*, and Wilfried Steiner!

* Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
t TTTech Computertechnik AG, Chip IP Design, Vienna, Austria
+IST Austria, Vienna, Austria

Abstract

In this paper, we propose a benchmark for verification of properties of fault-tolerant
clock synchronization algorithms, namely, a benchmark of a TTEthernet network, where
properties of the clock synchronization algorithm as implemented in a TTEthernet net-
work can be verified, and optimization techniques for verification purposes can be applied.
Our benchmark, which assumes non-faulty components, aims to be a basis for verifying
configurations which include faulty components, information consistency mechanisms, and
for verifying other clock synchronization algorithms.

1 Introduction

Distributed real-time systems are present in many commercial hardware and software products,
e.g. the avionics of the Orion Space Program [1]. These systems require a generic architecture
that complies with even the most demanding safety-critical real-time requirements.
TTFEthernet is an implementation of the traditional Ethernet standard which complies with
time-critical, deterministic and safety-critical real-time requirements [2]. Safety critical systems
using the TTEthernet standard rely on the availability of a global time base for tolerating
faulty behavior of these systems. This global time base is a common perception of time for
the distributed components of these systems, i.e. any two logical clocks of two distributed
components must read the same values at any time. In the TTEthernet standard this common
perception of time can be established by the periodic synchronization of the physical local clock
of each component. This synchronization is performed by an internal clock synchronization
algorithm [2] which compensates for the physical imperfections of these clocks. The maximal
difference between the values of two logical clocks of two components is the precision achieved
by the algorithm.

A typical TTEthernet network consists of switches and end systems connected by a com-
munication channel, i.e. a bidirectional point-to-point link. A standard configuration consists
of end systems connected to a single switch, while a fault-tolerant configuration consists of end
systems connected to two independent switches [2]. Each switch belongs to one and only one
communication channel. In this paper, we present a benchmark inspired by the fault-tolerant

G.Frehse and M.Althoff (eds.), ARCH16 (EPiC Series in Computing, vol. 43), pp. 36-41

Verification of Fault-Tolerant Clock Synchronization Algorithms Bogomolov, Herrera and Steiner

configuration of a TTEthernet network described in [3], and we use the framework of hybrid
automata [4, 5, 6] to analyze and model the exhibiting complex continuous behavior of a net-
work using this configuration. Our benchmark aims to be a simplified model where properties
of the TTEthernet network, e.g. the precision of the synchronization algorithm, can be ver-
ified, and optimization techniques for verification purposes, e.g. detection and reduction of
quasi-dependent variables [7], can be applied.

The paper is organized as follows. Section 2 presents an overview of the clock synchronization
algorithm. Section 3 describes our proposed benchmark. Section 4 presents the results of our
experiments. We conclude in Section 5.

2 Clock Synchronization Overview

In a network with a fault-tolerant configuration, switches and end systems assume the roles
of Compression Master (CM), and Synchronization Master (SM), respectively. Furthermore,
each SM is connected to each CM by one and only one communication channel. In the clock
synchronization algorithm which we use, SMs and CMs send information to each other, e.g.
the current value of the local clock of a given SM, by using Protocol Control Frames (PCF).

The clock synchronization algorithm which we use in our benchmark consists of two steps.
Firstly, each SM sends a PCF to each linked CM. Then each CM extracts from the arrival point
in time of the sent PCF the current value of the local clock of a given SM, with this information
then the CM executes a first compression function to obtain the median from the received clock
values of each SM. Secondly, each CM sends in a new PCF the result of the first compression
function to all SMs, then each SM executes a second compression function in order to obtain
the median of the values received from the CMs. The result of this second function is used to
correct the value of the clock of each SM.

The algorithm from above describes the steps for synchronizing clocks in a network with
non-faulty components, however, the interested reader can find in [3] a more detailed description
of the clock synchronization algorithm in networks with faulty components.

In the next section, we present our benchmark as a network of hybrid automata, discuss
optimizations for verification purposes, and briefly mention some possible extensions.

3 Benchmark of a Fault-Tolerant TTEthernet Network

In the following, we use the definitions of hybrid automata as described in [7]. For simplicity we
propose a typical industrial network of hybrid automata using a fault-tolerant configuration with
two CMs, namely, CM1 and CM2, and five SMs from SM1 to SM5. In Figure 1 automaton CM1
consists of the real variables x (the local clock with rate 1), and ¢m1 which stores the result of
the first compression function, and the locations waiting (initial), receive, correct! and correct2,
while automaton SM3 consists of the real variables sm3 (the local clock with rate 1); drift3
which ranges from —mazdrift to maxdrift, where mazdrift describes the absolute value of the
maximum drift offset that a SM’s clock can achieve before the execution of the synchronization
algorithm, and the locations work (initial), send, sync! and sync2. The exchange of PCFs
between CMs and SMs is realized in our benchmark by using edges in SMs and CMs labeled
with snd and sync. The rest of the CMs and SMs follow a similar structure.

37

Verification of Fault-Tolerant Clock Synchronization Algorithms Bogomolov, Herrera and Steiner

back

z < delay z <0 z <0 z <0
CM] : snd
x:=0 x > delay sync sync
—— | waiting receive correctl
cml =0 x:=0 cml:=
sm3
t=1,eml =0 t=1,eml =0 i=1,eml =0 t=1,eml1 =0

back

SM3:

sm3 :=0 /_\ snd m sync m sync
work send syncl
U sm8i= U sm3:=
sm3+drift3 (ecm1+4cm2)/2

sm3 =1 sm3 =1 sm3 =1 sm3 =1

Figure 1: Components CM1 and SM3 of a network with two CMs and five SMs.

At the start of the system each automaton delays exactly delay time units, with delay > 0,
at the unique location where a delay greater than 0 time units is possible, namely, at its initial
location. Then after this delay the CMs and SMs respectively transit simultaneously to locations
receive and send by taking the edges labeled with snd. By performing this transition each SM
sends the drifted value of its clock to both CMs. Then by transiting to locations correct1, CM1
and CM2 store in their variables cm! and cm?2, respectively, the result of the first compression
function, which in Figure 1 we assume is the drifted value of the clock sm3. The second
compression function, performed to correct the value of the clock of each SM, is executed when
CMs and SMs transit simultaneously to locations correct2 and sync2, respectively, by taking
the edges labeled with sync pointing to the mentioned locations. Finally, all automata return
to their initial location by simultaneously taking the edges labeled with back.

It is important to point out that we assume non-faulty components, hence, consistency
mechanisms for detecting PCF's from faulty components are not included in our benchmark.

3.1 Optimization for Verification Purposes

Our benchmark is a candidate for the optimization techniques that we have presented in [7],
namely, detection and reduction of quasi-dependent variables. Quasi-dependency of variables
is a generalization of quasi-equality of clocks [8, 9, 10]. Intuitively, between two variables x and
y of a hybrid automaton H, there exists a quasi-dependency, namely, quasi-depends on y via
function f, if and only if at all runs of H and at all points in time, the value of x is the value of
f applied to the value of y, except when the values of x and y are updated by discrete actions.

The technique in [7] allows us to detect in our TTEthernet network two sets of quasi-
dependent variables, namely, the set consisting of clocks from each SM, and the set consisting
of clocks from each CM. This detection allows us as well to implement a reduction of the
detected quasi-dependent variables together with a syntactical transformation of the original
network, in order to produce a transformed network where the original complexity is reduced,
and where properties of the original network are reflected, that is, a forbidden configuration is
reachable in the transformed network if and only if it is reachable in the original network. The
most remarkable result of this transformation is a dramatic performance improvement of the
verification time of properties of the transformed network. We refer the interested reader to [7]
for more details on the detection and reduction of quasi-dependent variables.

38

Verification of Fault-Tolerant Clock Synchronization Algorithms Bogomolov, Herrera and Steiner

3.2 Possible Extensions of the Benchmark

In the following, we mention some possible extensions and uses for our benchmark:

1. it can be used as a basis for modeling TTEthernet networks where we can verify the
precision of the synchronization algorithm under failures of a single SM, a single CM, and
under concurrent SM and CM failures as studied in [3],

2. it can be also used as a basis for verifying clock synchronization algorithms like the inter-
active convergence algorithm[11] and the byzantine clock synchronization[11],

3. it can be useful for studying and implementing the elimination of the remaining syntactical
assumptions for networks of hybrid automata, similar to the work for networks of timed
automata with quasi-equal clocks as described in [10], and

4. it can be used for scalability analysis by introducing additional CMs and SMs.

3.3 Open Problems of the Benchmark

Note that in our benchmark we assume that the rate of each clock is 1. However, in practice this
assumption may not always hold due to the imperfection of the physical clocks, for instance, the
clock of a SM may have rate 1 for at most n time units before dropping below 1, that is, that
clock will tick slower than rate 1 after n time units. In this case a rate correction algorithm as
in [12] will correct the rate of that clock. A more realistic benchmark would consider scenarios
where the clock of a given SM has several rates before the execution of the synchronization
algorithm. However, remains unclear how to detect and reduce quasi-dependent variables in
benchmarks with the mentioned scenarios, since that detection and reduction assumes that the
rate of the variables in a model is constant at all points in time. Therefore, further studies wrt.
quasi-dependent variables with different rates for the same variables are required.

4 Experiments

In the following section we present the results of our experiments, where our aim is to show
that in our benchmark we have: (a) verified that the precision of the synchronization algorithm
holds within a given time bound and, (b) applied the techniques for detecting and reducing
quasi-dependent variables. We have verified the precision of the synchronization algorithm in
settings of our benchmark with 2 CMs and from 5 to 9 SMs.

We recall that our benchmark is a fault-tolerant TTEthernet network with non-faulty com-
ponents. In this benchmark, we verify for a given time bound ¢ that the maximal difference
between the values of any two logical clocks of two SMs is bounded by 2 x maxdrift, i.e.
¢ :Vi#£jeNe smy >sm; = sm; —sm; < 2% mazdrift. Note that [3] uses a di-
fferent bound, namely, a bound on the length of all trajectories that satisfies ¢. In addition, in
order to enable efficient handling of large scale benchmark instances, we have applied a model
transformation based on quasi-dependent variables [7].

The results for both, original and transformed networks, are reported in Table 1. In this
table, we compare the analysis runtime needed by the model checker SpaceEx [13, 14, 15] for
the original and the transformed networks (the latter denoted in the table by the suffix K). Note
that transformed models use only one clock for the CMs and one clock for the SMs. We observe
that the transformation leads to a drastic performance improvement due to the reduction of
quasi-dependent variables.

39

Verification of Fault-Tolerant Clock Synchronization Algorithms Bogomolov, Herrera and Steiner

Network C t(s)

TT-5 7 25.18

TT-5K 2 2.05

TT-7 9 218.51 Experimental environment: Intel i3, 2.3 GHz, 3 GB, Ubuntu 11.04.
TT-7K 2 2.06 SpaceEx server VM (VMX) v0.9.8b. PHAVer scenario.

TT7-9 11 1,511.65

TT-9K 2 2.17

Table 1: Row X-N(K) gives the figures for case study X with N components, the suffix ‘K’
denotes the models after the quasi-dependent variables transformation, ‘C’ gives the number
of clocks in the model and ‘t(s)’ verification time in seconds. Detection of clocks does not
contribute to the verification time.

5 Conclusion

We have presented a benchmark inspired by the fault-tolerant configuration of a TTEthernet
network, and we have used the framework of hybrid automata to analyze and model the exhibit-
ing complex continuous behavior of that network. Our benchmark is a simplified model where
properties of the TTEthernet network can be verified, and optimization techniques for verifica-
tion purposes can be applied. The benchmark can incorporate new CMs and SMs and be used
in scalability analysis. Furthermore, our benchmark can be extended and used for verifying
synchronization algorithms under failures of its components. Interesting open problems wrt.
this benchmark require further studies, e.g. clocks in components with multiples rates for some
time units and their implications wrt. detection and reduction of quasi-dependent variables.

Acknowledgments. This research was supported in part by the European Research Council
(ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award). Christian Herrera acknowledges sup-
port from CONACYT (Mexico) and DAAD (Germany).

References

[1] C. E. Howard. Orion avionics employ COTS technologies. Avionics Intelligence, 2009.

[2] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The Time-Triggered Ethernet (TTE)
Design. In ISORC, pages 22—-33. IEEE Computer Society, 2005.

[3] W. Steiner and B. Dutertre. Automated Formal Verification of the TTEthernet Synchronization
Quality. In NASA Formal Methods, volume 6617 of LNCS, pages 375-390. Springer, 2011.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The Algorithmic Analysis of Hybrid Systems. TCS, 138(1):3-34, 1995.

[5] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. Johnson, H. Ladan, A. Podelski, and M. Wehrle.
Abstraction-Based Guided Search for Hybrid Systems. In SPIN, LNCS. Springer, 2013.

[6] S. Bogomolov, G. Frehse, R. Grosu, H. Ladan, A. Podelski, and M. Wehrle. A Boz-based Distance
between Regions for Guiding the Reachability Analysis of SpaceEz. In CAV, volume 7358 of LNCS,
pages 479-494. Springer, 2012.

[7] S. Bogomolov, C. Herrera, M. Muniz, B. Westphal, and A. Podelski. Quasi-dependent variables
in hybrid automata. In HSCC, pages 93-102. ACM, 2014.

[8] C. Herrera, B. Westphal, et al. Reducing Quasi-Equal Clocks in Networks of Timed Automata. In
FORMATS, volume 7595 of LNCS, pages 155-170. Springer, 2012.

40

Verification of Fault-Tolerant Clock Synchronization Algorithms Bogomolov, Herrera and Steiner

9
[10]
[11]
12

[13]

[14]

[15]

C. Herrera, B. Westphal, and A. Podelski. Quasi-Equal Clock Reduction: More Networks, More
Queries. In TACAS, volume 8413 of LNCS, pages 295-309. Springer, 2014.

C. Herrera and B. Westphal. Quasi-equal Clock Reduction: Eliminating Assumptions on Networks.
In HVC, volume 9434 of LNCS, pages 173-189. Springer, 2015.

L. Lamport and P. M. Melliar-Smith. Byzantine Clock Synchronization. In PDC, pages 68-74.
ACM, 1984.

W. Steiner and B. Dutertre. Layered Diagnosis and Clock-Rate Correction for the TTFEthernet
Clock Synchronization Protocol. In PRDC, pages 244-253. IEEE Computer Society, 2011.

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceFEx: Scalable Verification of Hybrid Systems. In CAV, volume 6806 of LNCS,
pages 379-395. Springer, 2011.

S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. Johnson, H. Ladan, A. Podelski, and M. Wehrle.
Guided search for hybrid systems based on coarse-grained space abstractions. JSTTT, pages 1-19,
2015.

S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S. Pasareanu, A. Podelski, and T. Strump.
Assume-Guarantee Abstraction Refinement Meets Hybrid Systems. In HVC, volume 8855 of LNCS,
pages 116—131. Springer, 2014.

41

	Introduction
	Clock Synchronization Overview
	Benchmark of a Fault-Tolerant TTEthernet Network
	Optimization for Verification Purposes
	Possible Extensions of the Benchmark
	Open Problems of the Benchmark

	Experiments
	Conclusion

