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Abstract

Education is a fundamental component of universities and is linked with the non-trivial
possibly time-consuming task of creating suitable timetables for teaching. The correspond-
ing problem is known as Curriculum-Based Course Timetabling, which takes into account
various constraints while seeking a conflict-free timetable. We addressed this problem by
following a knowledge representation and reasoning approach, describing constraints and
feasible assignments of courses to time slots. Possible assignments are gathered through a
prototypical web interface, and the corresponding constraints are respected by automat-
ically finding a timetable using an AI. We discuss the resolved redundancies, time saved
and potential future benefits when comparing the traditional and new approach regarding
the needs of teachers, students and administration at the University of Potsdam.

1 Motivation

Education is a fundamental component of universities, usually addressed by offering a variety
of courses that may include lectures, exercises, seminars, projects, etc., within defined study
programs. In order to obtain optimal timetables, all offered courses must be assigned to a time
slot and room, while respecting some hard and soft constraints. A time slot is a combination
of a day and a time.
The associated problem is known as Curriculum-Based Course Timetabling (CB-CTT; [4]),
which takes into account various constraints when seeking a conflict-free timetable. A solution
to a CB-CTT problem is an assignment of courses to time slots and rooms, such that each
corresponding hard constraint is satisfied. For instance, there should be no more than one
course assigned to a room and time slot, except when explicitly stated. An optimal solution is
a solution with minimal penalties regarding soft constraints.
Traditionally, solving CB-CTT problems involve human efforts, consuming a significant amount
of time and requiring numerous agreements. Especially when multiple individuals are involved
in developing timetables, redundancies and conflicts among the resulting plans may arise. In
addition, the obtained timetables are often not guaranteed to be optimal and may possibly
violate soft or hard constraints.
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In our work, we model the relevant soft and hard constraints within the context of the University
of Potsdam (UP) to obtain conflict-free and optimal timetables derived by an AI. Thanks to its
simple modeling language and high-performance solving capabilities, Answer Set Programming
(ASP; [3]) is a well-suited approach for knowledge representation and reasoning in modeling
CB-CTT problems, as demonstrated by [2]. We developed a prototypical web interface allowing
planners and lecturers to enter availabilities for teaching times and suitable rooms regarding
courses. This interface can automatically generate a timetable within seconds, ensuring compli-
ance with the required constraints among curricula across all involved institutes and planners.
The idea is to find a solution from the time slots specified by lecturers rather than permitting
any course to potentially take place at any time slot. As a goal, the obtained timetables should
automatically result into corresponding room reservations at universities course catalog.
The remaining article first compares the traditional and new appraoch of solving CB-CTT prob-
lems at the UP in Section 2. In Section 3, we introduce basics of our knowledge representation
and reasoning approach and illustrate modeled constraints. Afterwards, in Sections 4 and 5,
we sketch resolved redundancies, time savings and possible future benefits.

2 Overall Approach

In the following, we describe the traditional and new approach of finding a timetable and link
it to the course catalog at UP. To this end, let us first describe the structure and relationships
among curricula, modules, examination tasks and courses.
A cohort of students is given by a corresponding program and semester wrt the curriculum.
Each curriculum is defined by referring to modules needed to be accomplished. Modules specify
the number and type of courses and course components, along with their primary and secondary
examination tasks. For simplicity, in the following, we use the term courses to refer to both
courses and course components, explicitly indicating the distinction when necessary. Courses
are linked to, possibly several, secondary and sometimes primary examination tasks within
a set of modules. As modules are associated with possibly several curricula, the linkage of
examination tasks to courses induces involved curricula and cohorts possibly participate to
a course. Whenever a module occurs in several curricula, possibly of different institutes or
faculties, then the objective to find a conflict-free timetable becomes more complicated.
In the traditional case, lectures with a large number of participants are planned first, due to
a limited number of large lecture halls and imports/exports of courses among curricula. The
resulting timetable regarding large lectures needs a lot of communication and agreements among
several planners to ensure a conflict-free timetable for involved cohorts and lecturers. Especially,
in the case of degree programmes that aim to train teachers with allowed combinations of
subjects, UP has developed a so called time frame model to prevent conflicts among courses
of most common combinations of topics1. On top of scheduled large lectures, the remaining
courses are planned by the respective planners of each institute to achieve suitable timetables.
A timetable should avoid conflicts regarding multiple use of rooms, lecturers and cohorts as well
as respecting particular demands of courses, like technical equipment. A timetable is considered
more optimal, if it respects for instance traveling time of consecutive courses, teaching load per
day and gaps among courses of a day aiming on same cohort or lecturer, respectively. Once
a solution is found, each planner must manually copy it, course by course, to the universities
course catalog, link each course to examination tasks of particular modules and book a room
for the assigned time slot.

1https://www.uni-potsdam.de/en/studium/studying/organizing-your-studies/potsdams-time-frame-model
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Our approach aims to minimize time-consuming communication among planners and lecturers,
as well as reduce redundancies when a solution is found but needs to be copied to the course
catalog, linked to modules, and booked into rooms. To this end, we developed a prototypical
web interface that enables planners and lecturers to collaboratively create courses and course
components, providing all necessary information to facilitate finding a feasible solution. In more
detail, for each course, the system requests a name, a list of linked modules, specification of
whether it is offered in the winter or summer term, and the designation of a responsible planner.
The web interface allows to state the type, e.g. lecture or seminar, the expected number
of participants and any specific equipment requirements, e.g. large board, for each course
component. Furthermore, for each course component, particular rooms, days and times, along
with a priority can be selected. Through the cross product of days, times and rooms possible
prioritized availabilities are established for each course component. See figure 1 illustrating
parts of the prototypical web interface. We identified and provided four pairwise relations to
capture significant constraints among course components:
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Figure 1: Web interface inducing 18 availabilities of highest priority 1 and three availabilities
of priority 2 for a seminar with expected number of 30 participants.

191



AI-Based Tool for CB-CTT of UP Dohrmann et al.

• Two course components are not allowed to take place in parallel, e.g. obligatory lectures
for the same cohort.

• Two course components have to take place in parallel (same time slot, but different rooms),
e.g. two groups of exercises for the same course.

• Two course components have to take place simultaneous (same time slot and room), e.g.
hosting two seminars, with different names but sharing major content, in the same room.

• Two course components have to take place consecutive, e.g. having an exercise directly
after the corresponding lecture.

These four relations allow us to pose certain structures among course components, which enable
or disable underlying constraints as elaborated in the next section.
The corresponding planner verifies the consistency and correctness of the input data for the
web interface. The input data, along with a logic representation of necessary constraints, is
given to an AI problem solver, which then searches for an optimal timetable. Intuitively, the
data collected by the web interface can be understood as a particular problem instance and
the logic representation of constraints can be understood as a general and persistent problem
description. The output is a visualization of the resulting timetable and is double-checked by
planners. As an example of a resulting timetable see figure 2.
Note that the new approach aligns with the traditional idea of splitting the process into two
steps: initially finding a timetable for large lectures and subsequently completing it to a
timetable for each institute. The resulting timetable for each institute must be (automatically)
transferred to the university’s course catalog, taking into account linked modules, lecturers,
time slots, and rooms. The final step of automatically integrating the obtained timetable into
the course catalog is not yet implemented in the prototype but will eventually eliminate many
redundancies.

3 Technical Solution: ASP Paradigm

ASP [3, 6] is an approach to declarative problem solving and belongs to the area of knowledge
representation and reasoning. The roots of ASP go back to logic programming, nonmonotonic
reasoning and constraint satisfaction [15]. The idea of ASP is to describe the problem using a
formal representation, rather than instructing a computer how to solve the problem. Figure 3
illustrates this approach [13].
An easy and human-readable modeling language [7] is used to create a logic program modeling
the original problem. By utilizing a problem solver such as clingo [12], a solution, i.e. a stable
model [14], of the problem is found and has to be interpreted by the user. Due to its simple but
rich high-level modeling language, its elaboration-tolerance, and its high-performance solving
capacities, ASP becomes a well suited approach to model real-world problems.
The range of applications for modeling and solving combinatorial search problems with ASP
spans across various domains, including planning, scheduling, configuration, probabilistic rea-
soning, diagnosis and repair, classification, query answering, explanation generation, multi-
agent systems, natural language processing, computational biology, music composition, model
checking and robotics [8]. In Terms of industrial applications, ASP has been successfully em-
ployed for solving (automated product) configuration [18, 16], planning [17, 19], scheduling
[1], timetabling [2] and other problems [10]. Especially for industrial applications, tackled by
a declarative approach like ASP, significant improvements wrt implementation, maintenance
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Figure 2: Part of the resulting timetable containing about 200 course components at the Faculty
of Science for summer term 2024. Green indicates lectures, red exercises, blue seminars and
yellow projects.
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Figure 3: Schematic representation of declarative problem solving process.
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costs and human-machine interaction were shown. For instance, Siemens reported saving more
than 80% of maintenance costs by using a knowledge representation and reasoning approach,
as mentioned in [9].

3.1 Modeling with ASP

ASP provides a powerful high-level modeling language that supports recursive definitions, de-
fault negation for dealing with the absence of information, disjunctions, aggregates, weight
constraints, optimization statements and external atoms. In the following, we provide a brief
introduction to the basics of the modeling language of ASP [7] and the stable models semantics
of logic programs [14].
Terms are either constants, variables, arithmetic terms or functional terms. Constants are de-
noted by strings starting with lowercase letter, quoted strings or integers. Variables are denoted
by strings starting with uppercase letter. A predicate atom, is of form p(t1, . . . , tn), where p is
a predicate name, t1, . . . , tn are terms and n ≥ 0 is the arity of the predicate atom. Predicate
atoms of arity 0 are represented by its name without parentheses. In the following, predicate
atoms are called atoms for short and are denoted by a. An atom is called ground and can be
understood as propositional, if all its variables are substituted by constants. A literal is an
atom a or its default negation not a. Default negation, also known as negation as failure, refers
to the absence of information, whereas ”classical” negation induces the presence of negated
information.
A rule r is of form

a0 ← a1, . . . , an,not an+1, . . . ,not am

where 0 ≤ n ≤ m and each ai is an atom for 1 ≤ i ≤ m. Let head(r) = a0 and body(r) =
{a1, . . . , an,not an+1, . . . ,not am} the head and the body of a rule r, respectively. For a set
of literals X, let X+ = {a | a ∈ X} and X− = {a | not a ∈ X}. Intuitively, the head(r) of a
rule r must hold, if the body(r) holds. The body body(r) of rule r holds, if atoms of body(r)

+

are provably true and atoms of body(r)
−

are possibly false. A rule r is called fact, whenever
body(r) = ∅.2 A rule r is called (integrity) constraint, whenever head(r)∩body(r)− ̸= ∅. Integrity
constraints are used to eliminate unintended solution candidates, whenever its body is satisfied.
As an example, consider rule

conflict(consecutive ,((42 ,("AI",v)) ,(43,("AI",u)))) :-

book (42 ,("AI",v)), book (43 ,("AI",u)),

consecutive (("AI",v),("AI",u)),

availability_day (42,fr),

not availability_day (43,fr).

deriving a conflict among two course components of “AI” lecture and exercise that shall take
place consecutive, whenever they are scheduled on a different day than friday.3

A logic program is a finite set of rules. A set of ground atoms X is a model of a logic program
P , if for every r ∈ P holds head(r) ∈ X whenever body(r)

+ ⊆ X and body(r)
− ∩X = ∅. The

stable model of a program P is defined relative to a set of atoms X, by the so called reduct
PX , defined by

PX = {head(r)← body(r)
+ | r ∈ P, body(r)

− ∩X = ∅}.

2Usually, we drop ← in this case.
3In the syntax of an ASP encoding ‘←’ is represented by ‘: −’ and each rule terminates by a period ‘.’.
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X is a stable model of a program P , if X is the ⊆-minimal model of PX .
As an example consider the following program P1

1 room ("2.70.0.10").

2 room ("2.70.0.11").

3 room_capacity ("2.70.0.10" ,48).

4 room_capacity ("2.70.0.11" ,60).

5 course (("AI",v)).

6 course (("AI",u)).

7 course_size (("AI",v) ,50).

8 course_size (("AI",u) ,50).

9 consecutive (("AI",v),("AI",u)).

10 availability_course (42 ,("AI",v)).

11 availability_room (42 ,"2.70.0.11").

12 availability_day (42,fr).

13 availability_time (42 ,10).

14 availability_course (43 ,("AI",u)).

15 availability_room (43 ,"2.70.0.10").

16 availability_day (43,mo).

17 availability_time (43 ,12).

18 availability_course (44 ,("AI",u)).

19 availability_room (44 ,"2.70.0.11").

20 availability_day (44,fr).

21 availability_time (44 ,12).

22 book (42 ,("AI",v)) :- availability_course (42 ,("AI",v)).

23 book (43 ,("AI",u)) :- availability_course (43 ,("AI",u)),

24 not book (44,("AI",u)).

25 book (44 ,("AI",u)) :- availability_course (44 ,("AI",u)),

26 not book (43,("AI",u)).

27 conflict(consecutive ,((42 ,("AI",v)) ,(43,("AI",u)))) :-

28 book (42 ,("AI",v)), book (43 ,("AI",u)),

29 consecutive (("AI",v),("AI",u)),

30 availability_day (42,fr),

31 not availability_day (43,fr).

32 conflict :- conflict(consecutive ,((42 ,("AI",v)) ,(43,("AI",u)))),

33 not conflict.

where lines 1-21 are facts setting rooms, room capacities, course components with expected
number of participants, stating “AI” lecture and exercise as consecutive as well as declaring
possible time slots and rooms for each course component. Line 22 sets “AI” lecture to time slot
with identifier 42, since there is no other option. Lines 23-26 state that either time slot with
identifier 43 or 44 has to be taken for the “AI” exercise. Lines 27-31 derive a conflict predicate,
whenever “AI” lecture and exercise are not at same day and thus not consecutive. Lines 32-33
form an integrity constraint ruling out models containing conflict predicate derived by lines
27-31. Since atoms of lines 1-21 are facts, they belong to any model of P1. Let X be the set
containing atoms of lines 1-21. Note that X is not a model of P1, since the body of rule in line
22 is satisfied, but not its head. Sets

X∪{book(42, ("AI", v)), book(43, ("AI", u)),

conflict(consecutive, ((42, ("AI", v)), (43, ("AI", u)))), conflict}

and

X ∪ {book(42, ("AI", v)), book(44, ("AI", u))}
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are models of P1, but the latter one is the only stable model of P1, since first model is not
⊆-minimal under reduct wrt P1, due to

X∪{book(42, ("AI", v)), book(43, ("AI", u)),

conflict(consecutive, ((42, ("AI", v)), (43, ("AI", u))))}.

The basic approach of modeling a problem by an ASP encoding follows a generate-and-test
methodology, also known as guess-and-check, inspired by intuitions on NP problems. NP prob-
lems are problems, where no algorithm is known to solve them in polynomial time. Intuitively,
NP problems are hard to solve, since the needed time may grow exponentially. In the case of
CB-CTT for a generate-and-test methodology, one could think of generating any timetable as
a model and eliminating certain models by imposing specific (hard) constraints.

3.2 Modeling Curriculum-Based Course Timetabling

Since a course may consists of several course components of possibly different types, e.g. a
lecture and an exercise, we identify a course component by a unique tuple of a name and its
type, e.g. lecture (“AI”, v) and exercise (“AI”, u) of the course named Artificial Intelligence.
We modeled the following hard (H0-8) and soft (S0-13) constraints.

H0. Components: No component of a course should take place in parallel to its correspond-
ing lecture, except if explicitly stated.

H1. Courses: One availability for each course component must be assigned to a time slot
and room.

H2. Cohort: Obligatory lectures of the same cohort must be all scheduled in different time
slots, except explicitly stated to take place in parallel.

H3. RoomOccupancy: Two course components cannot take place in the same room and
time slot, except explicitly stated.

H4. Lecturer: Course components sharing a lecturer cannot be scheduled in parallel, except
explicitly stated.

H5. NotParallel: Avoiding two course components to take place in parallel, whenever
explicitly stated.

H6. Parallel: Two course components have to take place in parallel, whenever explicitly
stated.

H7. Simultaneous: Two course components have to take place simultaneously, whenever
explicitly stated.

H8. Consecutive: Two course components have to be scheduled consecutively, whenever
explicitly stated.

S0. Availability: For each course component, try to serve prioritized availability on time
slot and room. The penalty points reflect corresponding priorities.

S1. RoomCapacity: For each course component, penalty points for the number of students
that are expected to attend the course minus the number of seats in the corresponding room
are imposed on each violation.

S2. Cohort: Course components addressed to the same cohort should be scheduled in
different time slots, except explicitly stated to be in parallel. Each violation counts as a penalty
point.

S3. Gaps: For a cohort as well as a lecturer, corresponding course components should be
scheduled in time slots as close as possible. The penalty regarding two courses sharing a cohort
or lecturer and a day is given by subtracting the earlier time from the later time.
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S4. RoomStability: Two course components stated to be consecutive should be booked in
the same room. The penalty points reflect each violation.

S5. MaxLoad: For a cohort as well as lecturer the number of corresponding course com-
ponents per day should be lower or equal to a given maximum. The penalty points reflect the
number of courses beyond the maximum.

S6. TravelTime: For a cohort as well as a lecturer, traveling time between rooms with two
adjacent course components should be as small as possible. The penalty is reflected by the
traveling time itself.

S7-13. RoomSuitability: Some course components prefer particular equipment like a large
board, projector, computer, microphone, camera, media table or whiteboard. Each violation
counts as a penalty point.

Note that some constraints are similar to those presented in [2], others are modified or new.
Due to lack of space, we omit the corresponding logic program here.4 Optimization aims to
minimize penalty points associated with the aforementioned soft constraints.
The system of [2] reads instances in a standard input format [5], translates them into ASP facts
and assigns potentially any course to any time slot. In contrast, we employed a direct modeling
approach tailored to the constraints and requirements of the UP, which partially is not covered
by the standard input format of the CB-CTT community. As a design decision, we reduced the
search space to collected availabilities only, rather than of checking for all possible time slots
and rooms for each course component.

4 Results and Impact

In [2], it was demonstrated that addressing CB-CTT problems through an ASP-based approach
outperforms other state-of-the-art approaches and thus makes it well-suited to tackle CB-CTT
problems. Our real world approach is still at a prototypical stage and it is lacking (automated)
access to some data needed to apply all presented and modeled constraints.
For the winter semester of 2023/24, an optimal and conflict-free plan was found for approxi-
mately 160 courses aimed at large lecture halls of the Faculty of Science, additional 90 courses of
the Institute of Mathematics and 100 courses of the Institute of Computer Science, incorporat-
ing constraints H1, H3, H5, S0, S1 and S7 from the above ASP-based modeling. Analogously,
for the summer semester of 2024, an optimal and conflict-free plan was found involving about
200 courses and constraints H0, H1, H3, H5, H6, H7, H8, S0, S1, S4 and S7. The clingo solver
was integrated into the web interface and required approximately 170 seconds for the winter
and less than one second for the summer semester, respectively, to schedule the curricula for
the faculty. Finding plans for each institute took less than a second. The time required to solve
these problems relative to the number of involved courses highlights the exponential complexity
inherent in CB-CTT problems. In practice, solving a problem with a larger number of courses
may require days until finding an optimal solution and thus become possibly inconvenient in
usage. For this reason, it is crucial to maintain a workflow that breaks down the planning task
into several smaller tasks, similar to the traditional approach.
A major benefit of the presented AI-based approach is its fairness, transparency and elabora-
tion tolerance. Thanks to its elaboration tolerance, the existing encoding can be reused for
finding a plan for each upcoming semester as it only depends on given courses. It is possible to
add new constraints or relax existing ones whenever needed to address the particular demands
of institutes or faculties. Planners and lecturers can set a prioritized selection of availabilities

4The particular ASP encoding representing above constraints can be found at GitHub:
https://github.com/schellhorn/CBCTT-UP.
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and preferences for upcoming teaching periods, resulting in an optimal and provably conflict-
free timetable. Obtaining a conflict-free timetable for a faculty in a matter of seconds, while
respecting dependencies among the several institutes at the same time, resolves a significant
amount of communication overhead and conflicts inherent in the traditional approach. Thus,
our approach provides planners with the opportunity to allocate their additional available time
to other tasks.
Once the integration of the resulting timetable into the university’s course catalog is done auto-
matically, even more redundancies are resolved, and a considerable amount of additional human
capacities become available. Due to our current prototypical state, we have not yet conducted
a performance comparison with other approaches[11].

5 Future Work

In future, we plan to implement an interface that allows us to access data such as previous
course catalogues, curricula, and their modules. Furthermore, we plan to develop an interface
that allows us to automatically push final timetables to the university’s course catalog.
Due to the reduced search space by concerning availabilities only, we may run into conflicts and
cannot find any plan. To address the non-trivial task to resolve conflicts, we plan to provide
opportunities to the user to analyze and resolve conflicts whenever needed. Another feature
one could think about to take advantage of older plans, is to allow an option to copy previous
availabilities adapted to the result of a previous solution. In a next step, we plan to expand
the number of users and involve them in a feedback loop to enhance the usage of the system
and identify additional needs. In the long run, one could think about adding functionalities
such as drag and drop to manually incorporate smaller changes to a calculated timetable, while
preserving consistency regarding hard and soft constraints.
When establishing the mentioned workflow to obtain conflict-free timetables, one could measure
the average amount of time needed per planner using the traditional and new approach, respec-
tively. Moreover, one could compare the quality of resulting timetables regarding the desired
hard and soft constraints. Comparing the quality and time efficiency of both approaches may
highlight the usage and impact of our new approach using AI of knowledge representation and
reasoning.
The data about availabilities of different types of course components in various time slots pro-
vides insights into the needs of room infrastructure. One could consider possibly leveraging
entered availabilities and the number of participants to derive the location, size, and quantity
of needed lecture halls and seminar rooms when planning to build new ones.
Finally, our approach has significant potential to eliminate redundant workflows, promotes
trustworthy collaborations among institutes, save money, and elevate administrative planning
tasks to the next level.
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[6] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communications
of the ACM, 54(12):92–103, 2011.

[7] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, M. Maratea,
F. Ricca, and T. Schaub. ASP-Core-2 input language format. Theory and Practice of Logic
Programming, 20(2):294–309, 2020.

[8] E. Erdem, M. Gelfond, and N. Leone. Applications of answer set programming. AI Magazine,
37(3):53–68, 2016.
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