
A Model Guided Instantiation Heuristic for the

Superposition Calculus with Theories

Joshua Bax

NICTA∗ and Australian National University, Canberra, Australia
Joshua.Bax@nicta.com.au

Abstract

Generalised Model Finding (GMF) is a quantifier instantiation heuristic for the su-
perposition calculus in the presence of interpreted theories with finitely quantified free
function symbols ranging into theory sorts. The free function symbols are approximated
by finite partial function graphs along with simplifying assumptions which are iteratively
refined. Here we present an outline of the GMF approach, give an improvement that ad-
dresses some efficiency issues and then present some ideas for extending it with concepts
from instantiation based theorem proving.

1 Overview

The inclusion of interpreted theories in a theorem proving context naturally leads to complete-
ness issues. In the classical first-order logic satisfiability problem we are at least guaranteed
refutational completeness, but reasoning modulo theories and including uninterpreted function
symbols is often not even semi-decidable. Many applications of theorem proving reduce to the
satisfiability problem, from ranking function and loop invariant synthesis in software verifica-
tion to counter-example finding. In addition to reasoning modulo theories, these applications
also require the introduction of uninterpreted function symbols and quantifier reasoning.

We aim to recover some completeness in the specific case where there are only finitely
many ground instances of (uninterpreted) terms ranging into the interpreted theory. This is
guaranteed with the assumption that all variables inside uninterpreted terms of certain sorts
are quantified over finite ranges.

In the following the interpreted theory will be Linear Integer Arithmetic (LIA), which we
view as a particular class of models that satisfy the LIA axioms. Concretely, clauses over the
LIA signature (+2,−1, 0, s1, <2) are evaluated using Cooper’s Quantifier Elimination algorithm
which decides ∃∀ quantified LIA formulas. Sorts, operators, terms and literals from the LIA
theory are called background. New operators which extend the signature of the interpreted
theory are called foreground or free.

Define background-sorted foreground (BSFG) terms as those which have at their head an
uninterpreted function symbol with a background sort.

The running example will use the usual array theory with integer indices and elements, this
has the operators read : Array × Z → Z, write : Array × Z × Z → Array (these are foreground
operators; read is a BSFG operator) and axioms TArray =

(1) read(write(A, I,X), I) ≈ X (2) read(write(A, I,X), J) ≈ read(A, J) ∨ I ≈ J

∗NICTA is funded by the Australian Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence Program.

12 S.S̄chulz, L.D̄e Moura, B.K̄onev (eds.), PAAR-2014 (EPiC Series, vol. 31), pp. 12--24

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

We adapt the Hierarchic Superposition [1, 5] framework for integrating superposition with
background theories. This lays out conditions for refutational completeness of the combined
procedures, namely sufficient completeness of the input clause set and compactness of the
background theory.

Sufficient completeness requires that any ground instance of an uninterpreted term which
has a background sort is provably equal to some background term in all first-order models of
the ground instances of the input clause set (not just models extending the background theory).

Given a sufficiently complete clause set, a superposition procedure should eventually replace
all uninterpreted theory sorted terms with background theory terms, and these can be used by
the theory solver to perhaps refute the clause set. If this were not the case then it could be
that the superposition procedure yields a saturated clause set (and therefore a model) which
the theory solver cannot refute, but which does not extend any proper model of the theory. So
even if the superposition procedure saturates a given clause set, without sufficient completeness
we cannot conclude that it is satisfiable with respect to the chosen background theories.

Consider the read operator, since it has sort Z any clause set containing it and any ground
instance read(a, i) must be able to be proven equal to some integer. We may have a unit
clause X ≤ read(a, i) say, which is satisfiable by some arbitrary model but not by any of the
theory models. This is primarily a syntax issue; the theory solver cannot accept uninterpreted
function symbols. If we also had ∃Y.read(a, i) ≈ Y , this would allow rewriting the first clause
to one involving just LIA symbols and a Skolem constant which can be refuted by the theory
solver. If the BSFG term were not ground in the first clause this would be more difficult and
in general, computing whether an arbitrary clause set has the sufficient completeness property
is undecidable [13].

The background theory is compact if any unsatisfiable set of formulas over the background
signature has a finite unsatisfiable subset. This is a requirement for refutational completeness
because the solver for the interpreted theory can only accept finite sets of formulas. As a
requirement of the method presented here we assume that the LIA signature is extended with
countably many parameters (i.e. Z-sorted constants) and fix the model class as those models of
the LIA axioms which always interpret parameters as integers. If the class of models defining the
background theory is the standard model of LIA augmented with all possible interpretations
of the parameters, then this is a problem because the set {n ≤ α | n ∈ Z}, where α is a
parameter is unsatisfiable in every model but any finite subset is satisfiable in some model.
Instead we assume that the background models are only those models which satisfy the first-
order axioms of LIA, then the background models are compact by the general compactness of
first-order logic. However the class of theory models now includes non-standard models of LIA,
e.g. {n ≤ α | n ∈ Z} could be satisfied by a model (Z2 × Z) with a lexicographic ordering for
≤ and where the symbol n is interpreted as (0, n) and α as (1, 0). In the particular case here,
we are guaranteed to not produce such infinite unsatisfiable sets by the assumption of finite
quantifiers (effectively that there are finitely many background subterms). For more details
on the particular configuration of Hierarchic Superposition used here, see [5]. For an in depth
discussion of the issue of compactness in this context, see [4].

We describe the Generalised Model Finding algorithm, give some examples of its use and
then present a refinement to the algorithm that eliminates some redundancies and finally present
some directions for future research.

13

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

2 Generalised Model Finding

Generalised Model Finding (GMF)[2] is a generalisation of the ‘define’ calculus rule of [5] which
replaces ground instances of BSFG terms as they are generated in the course of a derivation
in order to recover some ‘local’ sufficient completeness. Here we assume finitely many ground
instances of BSFG terms so that sufficient completeness can be effectively achieved by a similar
replacement. This is generalised by assuming that these finite sets of BSFG terms are given
succinctly by quantifying non-ground BSFG terms over finite sets. For example we might have
∀X ∈ [0, 1000]. read(a, X) ≈ 5. The objective is then to make these clauses sufficiently complete
efficiently. This will be done using the superposition solver to prove or refute the clause set
once it is made sufficiently complete.

Of course we could simply add all ground instances along with fresh parameters, but this
will produce exponentially many instances. Instantiating in this way is similar to the approach
taken by Finite Model Finders such as Paradox, Mace and Gandalf which also replace the terms
with constants; although only implicitly by grounding of the input clause set. It is important
to re-emphasise that here we are only grounding a subset of the uninterpreted subterms, others
remain untouched. However, this restriction does not guarantee termination unlike Finite Model
finding. What is guaranteed (with sufficient completeness) is the absence of false positives.

In order to obtain better scaling behavior, the GMF procedure initially assumes that
the BSFG terms to be replaced in each clause are constant on the given domain: ∀X ∈
[m, . . . , n]. read(a, X) ≈ α where α is a fresh parameter. Likely this will be false, but there
is a better chance that this can be detected by the superposition calculus now that sufficient
completeness has been recovered. After demonstrating unsatisfiability we can refine the initial
assumptions by finding a subset of clause instances which are satisfiable and a particular clause
instance which makes this set unsatisfiable. We use this information to add exceptions to the
assumption, e.g. our assumption could become ∀X ∈ [m, . . . , n−1]. read(a, X) ≈ α∧read(a, n) ≈
αn, where αn is a new parameter not necessarily distinct from α. Eventually we will have added
all possible exceptions and, if the clause set still remains unsatisfiable, then we have a proof of
the unsatisfiability of the whole clause set.

On the other hand, if the clause set is satisfiable for some set of assumptions, then we have
identified a model for the (finitely quantified) clause set.

On notation: variables will be upper-case X,Y, Z; parameters will be Greek letters αi, βi;
concrete integers will be di; foreground operators will be in sans-serif read,write, a; functionally
the only difference between Z-sorted foreground constants and parameters is that the foreground
constants appear in the signature. Where variables appear without quantifiers they are assumed
to be universally quantified.

The finite quantifiers will be encoded as part of the formula: so ∀X ∈ {d0, . . . , dn}. ψ(X)
becomes ∀X.(X ≈ d0 ∨ . . . ∨ X ≈ dn) → ψ(X). When the finite set is a range of integers
[m,n], it could instead be ∀X.(m ≤ X ∧X ≤ n)→ ψ(X). The latter provides an alternative to
explicitly enumerating all instances over a finite quantifier set, as these membership constraints
can be dispatched by the LIA solver. For simplicity we assume here that all of these finite sets
are sets of integers, though in principle they could be arbitrary pairwise distinct constants of
any sort.

Here we will abstract the representation of these finite sets and simply represent them as
∀X. SX → ψ(X), where SX is a formula with free variable X which expresses membership
in the appropriate finite set. For convenience SX will represent both the set and the formula
defining the set depending on context.

14

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

Let FV(C) be the finitely quantified variables of C. In general finitely quantified clauses
are written C ← S, where S is a conjunction of formulas SX for each X ∈ FV(C). Calling it a
clause is a bit misleading since S can be an arbitrary formula and so C ← S may be expanded
to multiple clauses in a derivation.

As outlined above, we proceed by adding assumptions about BSFG terms in order to guar-
antee sufficient completeness. We now describe how to generate these assumptions for each
clause.

For each of the clause variables we keep a set of exception points, which are initially empty.
Our intent is to

1. Generate the set of definitions formed by replacing BSFG terms with a fresh constant at
each of the relevant exception points;

2. Map any remaining points of the finite domain to a default constant, and

3. Simultaneously produce the result of replacing BSFG terms in instances of the clause using
these definitions.

This is accomplished with the following procedure:

FD(C,Pi):=
Let ClsC:= {} and DefC:= {}
for(every subset V = {Z1, . . . , Zl} of {X1, . . . , Xn}):

for(every substitution γ = [Z1 7→ d1, . . . Zl 7→ dl] where dm ∈ ΠZm):

Let E := Dγ
while (E has the form E[t] where t is a minimal BSFG term):

Let α be a fresh parameter

Let SR:=
∧
X /∈ V (SX \ ΠX)

add t ≈ α ← SR to DefC
E := E[α]

add E ← SR to ClsC
return (ClsC,DefC)

FD generalises to clause sets under the assumption that clauses do not share variables.
We call members of DefC definition clauses; these have the general form t[X] ≈ α ← SX

where t is a BSFG term, α is a parameter and SX is a (formula specifying a) possibly empty
finite set. Call the term t on the left of the positive equation a definition term.

The FD transform must be applied again to the original clause set after every modification
to the set of exception points to ensure that assumptions are properly updated. This is done in
the following loop, using the procedure find to generate new exception points. Given a clause
set CS:

GMF(CS):=
except:={}
while(true):

CSF :=FD(CS,except)
if (CSF is SAT): return ‘model found’

else if (CSF \ finitelyQuantified(CSF) is UNSAT):

return UNSAT //no refinements possible

else:

(X, d) := find(CSF)
except += (X, d)

The function finitelyQuantified returns the subset of clauses with non-empty finite quanti-
fiers. Satisfiability tests are carried out by passing the current set of clauses to the superposition

15

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

solver. The function find is a heuristic that identifies the next exception point to add using the
superposition solver to test for unsatisfiability. Since adding an exception point only increases
the possible models that the definitions allow we could even just return an arbitrary pair (X, d).
In the paper the search procedure is roughly:

1. For each clause C and finitely quantified variable X of C, cumulatively remove definitions
and instances of C which depend on X until the clause set becomes satisfiable.

2. Find a subset S of SX such that substituting S for SX in remaining instances and def-
initions of C makes the clauses satisfiable but doing the same with S ∪ {d} produces
unsatisfiability. This is done by a binary search on SX (as a set) and is the source of most
of the computational overhead of this procedure; it requires O(log(|SX |)) prover calls.

3. Return (X, d) (or an arbitrary one if the search is unsuccessful).

Example 2.1. Consider a simple example: establishing the existence of an array a whose values
are sorted in increasing order and for which at least two consecutive values are strictly greater.
Define the clause set N as:

(1) read(write(A, I,X), I) ≈ X (4) 1 ≤ m ∧m < 1000
(2) read(write(A, I,X), J) ≈ read(A, J) ∨ I ≈ J (5) read(a,m) < read(a,m+ 1)
(3) read(a, I) ≤ read(a, J) ∨ ¬(I < J)← I ∈ [1..1000] ∧ J ∈ [1..1000]

In the following I ∈ [1..1000] will be abbreviated to SI and similarly for J . Notice that m
is a foreground Z-sorted constant, but will be treated no differently than a parameter.

Apart from simple renaming definitions for (5): α1 < α2, read(a,m) ≈ α1, read(a,m+ 1) ≈
α2 (which will be (5a)-(5c)), the finite domain transform is only necessary for (3) and produces:

(3a) α3 ≤ α4 ∨ ¬(I < J)← SI ∧ SJ
(3b) read(a, I) ≈ α3 ← SI (3c) read(a, J) ≈ α4 ← SJ

Here Cls3 is (3a) and Def3 = {(3b), (3c)}. The new clause set N1 = {(1), (2), (3a) −
(3c), (4), (5a) − (5c)} now needs to be checked for satisfiability. Because N1 is sufficiently
complete and hierarchic superposition decides the underlying fragment, we get a definite result
and deduce that N1 is in fact unsatisfiable.

Now, notice that removing clauses (3a)-(3c) gives a satisfiable set, but adding either (3b)
or (3c) also yields a satisfiable clause set. This corresponds to the find procedure identifying
(3) and I as a possible target for refinement. Next subsets of SI will be tested by directly
substituting for SI and retrying the satisfiability test. The point identified by our procedure
will be the number 1000 for the variable I. That is, replacing SI by I ∈ [0..999] in N1 gives an
unsatisfiable set again. Then FD((3), (I 7→ {1000})) is

(3a1) α31 ≤ α4 ∨ ¬(I < J)← SI \ {1000} ∧ SJ
(3a2) α32 ≤ α4 ∨ ¬(1000 < J)← SJ
(3b1) read(a, I) ≈ α31 ← SI \ {1000} (3c) read(a, J) ≈ α4 ← SJ
(3b2) read(a, 1000) ≈ α32

Clauses (3b1) and (3b2) provide the modified definitions and clauses (3a1) and (3a2) are the
correspondingly rewritten versions of (3). Let N3 = {(1), (2), (3a1) − (3c), (4), (5a) − (5c)} be
the result of the current transformation step.

The clause set N3 is still unsatisfiable. In the next iteration the exception point J 7→ 1000 is
identified in (3). Let N4 = {(1), (2), (4), (5a)−(5c)}∪FD((3), (I 7→ {1000}, J 7→ {1000})). This

16

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

time, N4 is satisfiable, and hence so is N with the same models. If I is any such model we have
I(m) = 999, I(read(a, I)) = k, for some integer k and all I = 1..999, and I(read(a, 1000)) = l
for some integer l > k.

The whole example is solved after two iterations of transformation steps. With m = 2 (the
number of finitely quantified variables) and n = 1000 this accounts for 2 · (m · log(n)) ≤ 40
theorem prover calls, each of which is rather trivial. By contrast, the full ground instantiation
of the clauses (3)-(5) has a size of nm = 106 which, in general, grows too quickly for current
theorem provers or SMT solvers.

Example 2.2. Consider the example of an ordering given by the predicate P where all variables
range over [0, 1, 2] embedded as part of a larger clause set (4) . . .

(1) P (X,X)
(2) ¬P (X,Y) ∨ ¬P (Y,X) ∨X ≈ Y
(3) ¬P (X,Y) ∨ ¬P (Y,Z) ∨ P (X,Z)
(4) . . .

Note that we assume (1)-(3) are embedded as part of a larger clause set, since superposition
already saturates these axioms. For any variable X Let SX := X ∈ [0, 1, 2]. The purpose of
this example is simply to illustrate certain shortcomings of the default method. To use GMF
we treat P as a function to the domain {true, false}. Then the initial FD transform simply
replaces the predicates with Boolean variables:

(1a) α1 ≈ true (1b) α1 ≈ P (X,X)← SX
(2a) α2 6≈ true ∨ α3 6≈ true ∨X ≈ Y ← SX ∧ SY (2b) α2 ≈ P (X,Y)← SX ∧ SY

(2c) α3 ≈ P (Y,X)← SX ∧ SY
(3a) α4 6≈ true ∨ α5 6≈ true ∨ α6 ≈ true (3b) α4 ≈ P (X,Y)← SX ∧ SY
(3c) α5 ≈ P (Y, Z)← SY ∧ SZ (3d) α6 ≈ P (X,Z)← SX ∧ SZ

The left hand term of all definitions are variants, terms which unify with a substitution σ
which is a bijection from variables to variables. So this first approximation essentially assumes
P is constant everywhere and, as there are both positive and negative instances of P in the
clause set, this is unsatisfiable.

Next is the repair phase. Binary search is not able to identify any satisfiable subsets so all
we can do is add the exception X = 0 for (2) arbitrarily.

Then FD((2), (X 7→ {0}) contains the new definition α7 ≈ P (0, Y) ← SY and instance
α7 6≈ true∨c3 6≈ true∨0 ≈ Y ← SY as well as the original definitions updated with SX = [1, 2].
However the overall clause set remains unsatisfiable as definitions (3b)-(3d) still contain P (X,Y)
with SX , SY = [0, 1, 2] and so force the interpretation of P to be everywhere constant again.

This does not change until the exception point X 7→ {0} is added in (3) as well. But then
the same sequence of redundant updates happens again for the variants of P (0, Y), P (1, Y) and
so on.

So there is considerable duplication of work as a result of keeping multiple variants of literals.
The procedure would benefit from having some centralised means for storing and applying
definitions, and for updating them in a way that takes into account the logical structure of the
current definitions. We address the issue of redundant variants in the next section.

17

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

3 Variant aware GMF

As observed above, keeping definitions for multiple variants of a BSFG term leads to inefficien-
cies in GMF. To address this we will develop a modification of the GMF procedure in which
definitions are stored in common for all clauses in order to eliminate redundancies. Exception
points should only need to be added once for any particular term. Also this will hopefully allow
the algorithm to align more closely with the idea of repairing interpretations of BSFG terms
rather than a syntax dependent replacement operation.

Instead of explicitly generating definition clauses as in the original approach, now assump-
tions will be stored in a separate datastructure.

Definition 3.1 (Assumption). An assumption is a tuple (α, t, S) where α is a parameter, t is
a BSFG term and S is a finite set of substitutions σ such that tσ is ground.

As before, the substitution set S is also a formula over the variables of the definition term t.
If the formula defining S is ψS [X1, . . . , Xn] then the equivalence is S = {σ : for all Xi, Xiσ ∈
Z and ψSσ ≡ >}. Assumptions can also be viewed simply as the set of ground equations
{tσ ≈ α : σ ∈ S}. It follows from the definition that S is empty if and only if t is already
ground.

In this section we make use of the idea of simple substitutions. This is any substitution
σ such that for all background sorted variables X, Xσ is either a variable, a member of the
background theory domain (i.e. Z), or a parameter. Since we assume that all finite quantifier
sets are over subsets of the integers, each substitution in the substitution set of an assumption
is simple.

Given a clause set C we produce an assumption set A. The definition terms of an assumption
set are all those terms that occur in A. In keeping with our goal we require that no variant
definition terms exist in A. Then assumptions within A can be indexed either by parameter or
by definition term, as both of these are unique.

Now that assumptions are decoupled from clauses we need a way to produce the set of
instances of C with respect to the current assumptions. Before, this was done simultaneously in
the FD transform and a reference to the original clause was kept along with the new instances.

Here we will make use of matchers to identify the assumptions to apply to a particular
occurrence of a BSFG term in a clause. A term s matches term t with matcher µ if µ is a
simple substitution such that sµ = t.

In order to simplify the retrieval of relevant assumptions, the initial assumptions are pro-
duced by taking maximal BSFG subterms (i.e. those that are not contained in any BSFG term)
from clauses in C. So we are guaranteed that at least (variants of) the maximal BSFG terms
are amongst the definition terms.

The initial step which produces the set of assumptions we will call Gen. It consists of taking
maximal BSFG terms, adding these as new assumptions and merging the substitution sets of
any assumptions with variant definition terms.

Gen(C):=
Let A:= {}
for (C ← S in C):
if ((α, s, Ss) ∈ A such that s ∼ t with matcher µ):

update (α, s, Ss) in A to (α, sµ, (Ss ∪ S)µ)
else: A := A ∪ {(α, t, St)}

return A

The application of a substitution µ to a substitution set S has the same effect as applying µ to
the equivalent formula and building a new substitution set; formally, (S)µ = {σ ∈ S : σ = µ·η}.

18

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

We can characterise updates as substitutions applied to the set of substitutions in assumptions:
for example, given the assumption (α, f(g(Y), X), X ∈ [0, 2] ∧ Y ∈ [0, 3]) an update might
identify the term g(Y) and exception point Y 7→ 1. Then the updated assumptions will be

(α, f(g(Y), X), X ∈ [0, 2] ∧ Y ∈ [0, 3] ∧ Y 6≈ 1)
(α1, f(g(1), X), X ∈ [0, 2])

In general, given an assumption (α, t, St) and a non-empty substitution set S, Update((α, t, St),S)
is {(α, t, St \ S)} ∪ {(ασ, tσ, Stσ) : σ ∈ S} where each ασ is fresh.

To relate this back to the original clause(s) that contains subterm f(g(Y), X), we can build
a (simple) matcher. All modified assumptions can then be found by finding all definition terms
which are variants or have matchers with the original clause term. So the instance of the clause
C[s] ← S produced by an assumption (α, t, St), given that sµ = t for simple matcher µ, is
(C[α]← (S ∧ St))µ.

This is formalised in the Apply procedure which produces clause instances relative to a given
assumption set. We will define this in a moment as it depends on the notion of labels, to be
introduced.

So we can produce clause instances after an update- we still need to find this update!
The binary search heuristic of the original GMF algorithm was based on a complex indexing
of clauses and the variables they contained as well as the instances and definitions derived
from them. Here we don’t have this complex index structure and need some way to track the
assumptions used in producing a clause instance or a definition clause.

Recall that clause instances are produced by matching clause terms with definition terms.

Definition 3.2 (Labelled Clause). A labelled clause C | L is a clause C and a set of assump-
tions L = {A1, . . . , An}.

The idea is that the label of C contains all assumptions that are necessary to produce it,
both in the initial Apply step and in a derivation. The substitution sets in the label assumptions
will accumulate any substitutions applied to C in the course of a derivation. Definition clauses
derived in the sufficient completeness transform are also labelled by the assumption they origi-
nate from. (This idea has much in common with Labelled superposition [14] and Constrained
Resolution [7]).

The inference rules of the superposition calculus can be simply modified to propagate labels
using the following scheme:

C1 | L1 . . . Cn | Ln
D | (

⋃
1≤i≤n Li)σ

where the labelled clauses Ci | Li are premises of some inference rule, σ is the unifier used in
the inference and D is the conclusion of the inference.

When a labelled empty clause is derived the labels will encode the assumptions necessary
for the derivation of that particular result. To repair a derivation given a label {A1, . . . , An},
it is enough to add exceptions for substitutions in just one assumption label. So if we choose
Ai = (αi, ti, Si), then we modify the original assumption (αi, ti, S) by replacing it with the set
of assumptions Update((αi, ti, S),Si), removing variants if necessary. If an empty clause with
an empty label is derived then the clause set is unsatisfiable as a whole, as the derivation of
the contradiction is independent of any assumptions. Similarly if all assumptions have empty
substitution sets, as the set of assumptions cannot be modified to avoid the contradiction.

19

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

Here is the method Apply which produces instances of a clause under an assumption set by
forming all possible matchings between the maximal BSFG terms in the clause and multisets of
assumptions. Let C[t1, . . . , tn] ← S be a clause with finite quantifiers encoded by S, maximal
BSFG terms ti and A be an assumption set.

Apply(C ← S,A):
Let CA:= {}
for (all combinations of assumptions A1, . . . , An):
assume Ai = (αi, si, Si)
if(exists µ such that tiµ = si where si is a fresh variant for all i):
add C[α1, . . . , αn]µ ← (S ∧

∧
i Si)µ | {A1µ . . . Anµ} to CA

return CA

Note that in building the matcher an assumption might occur multiple times, but each
occurrence must be a fresh variant. This method needs to be called on every change to the
assumption set in order to produce any new clause instances that may arise.

In order to use the Hierarchic superposition calculus at all we must produce a sufficiently
complete clause set. The instantiated clause set is sufficiently complete since it contains no
BSFG terms at all. The assumptions need to be transformed into sufficiently complete clauses,
this is more involved because the definition terms can contain nested BSFG terms. The proce-
dure to do this is similar to FD in the original GMF procedure:

Flatten(A):=
assume A = (α, t, St)
Let E:=t and Deft:= {}
while(E has the form E[s] where s is a minimal BSFG term):

Let β be a fresh parameter

Deft:= Deft ∪ {s ≈ β ← St | A}
E:= E[β]

return Deft ∪ {E ≈ α ← St | A}

If A is an assumption set then Flatten(A) is the result of applying Flatten to all assump-
tions in A.

Overall the new algorithm will take a finitely quantified clause set C and proceed as follows:

GMF-var(C):=
A:= Gen(C)
while(true):

if(� | L is in Saturate(Apply(C,A) ∪ Flatten(A)):
if(L = {} or all A ∈ L are ground): return Unsat

else:

take non-ground (α, t, S) ∈ L
Let A:= Update(Aα,S)

else: return Sat

The method Saturate applies the modified labelling superposition calculus until a labelled
empty clause is derived or no calculus rules are applicable, and then returns the derived clauses.

Example 3.1. Consider example 2.1 again. Clauses (1), (2) and (4) are as above

(3) read(a, I) ≤ read(a, J) ∨ ¬(I < J)← I ∈ [1..1000], J ∈ [1..1000]
(5) read(a,m) < read(a,m+ 1)

First produce the initial assumption set, removing variants: Gen(N) =

(A1) (α1, read(a,m), {}) (A2) (α2, read(a,m+ 1), {})
(A3) (α3, read(a,K), {[K 7→ d] : d ∈ [1..1000]})

20

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

Notice that only one assumption A3, results from the two maximal BSFG terms read(a, I),
and read(a, J) in (3). The substitution set of A3 is just the representation of SI , SJ as a set of
substitutions and will be abbreviated as SK .

Next we produce the sufficiently complete, rewritten and labelled version of clauses and
definitions:

(3a) α3 ≤ α3 ∨ ¬(K < K)← SK | A3

(3b) read(a,K) = α3 ← SK | A3

(5a) α1 < α2 | A1, A2

(5b) read(a,m) = α1 | A1 (5c) read(a,m+ 1) = α2 | A2

Clause (3a) is trivially true. The proof simply rewrites the LHS of (5b) and (5c) with (3b)
to get

α3 ≈ α1 ← 1 ≤ m ≤ 1000 | A1, A3[K 7→ m]
α3 ≈ α2 ← 1 ≤ m+ 1 ≤ 1000 | A2, A3[K 7→ m+ 1]

These both rewrite (5a) to give α3 < α3 ← 1 ≤ m ≤ 1000∧1 ≤ m+1 ≤ 1000 | A1, A2, A3[K 7→
m], A3[K 7→ m + 1]; then this clause set is closed using the background solver. The label for
the empty clause is A1, A2, A3[K 7→ m], A3[K 7→ m+ 1]

Already we see a critical difficulty- what should be done with the parameter m in the final
assumption set? In ideal conditions, we would arrive at a set of concrete exceptions for an
assumption, if m = 1000 initially then that would be the case. We can’t add new instances of
the definition terms read(a,m), read(a,m+ 1) as these already exist in the current assumption
set. The assumptions A1 and A2 can’t be modified as their substitution sets are empty.

Perhaps some concrete value of K could be guessed as an exception, say K 7→ 1000, and in
this case that would produce a satisfiable set. But this is not optimal; here only two exception
points 0 and 1000 will give a satisfiable set.

Another option is to try a binary search on the domain identified by the assumption set and
offending substitution. Here it is SK in A3, so we could restart the proof with SK = K ∈ [1..500]
or SK = K ∈ [501..1000] and continually split the set SK until we find a set S ⊂ SK and concrete
value d ∈ SK such that replacing the formula SK with the formula for S ∪ {d} in the rewritten
clause set produces unsatisfiability, but substituting S for SK is satisfiable.

Example 3.2. Consider the previous example 2.2 and the first iteration of GMF given there.

Gen(N) produces

(A1) (α1, P (X,X), SX) (A2) (α2, P (X,Y), SX ∧ SY)

This still enforces that P is constant everywhere, however it contains far fewer definitions and
parameters.

(1) α1 | A1

(2a1) ¬α1 ∨ ¬α1 ∨X ≈ X ← SX | A1

(2a2) ¬α2 ∨ ¬α2 ∨X ≈ Y ← SX ∧ SY | A2

(3a) ¬α1 ∨ α2 | A1, A2

(3b) ¬α2 ∨ α1 | A1, A2

(4) . . .

21

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

The clause (2a1) is trivial, there are no matchers of clause (2) and A1, A2 together. Also
any result of matching just A2 or A1 with (3) is trivial as it contains α2 ∧ α2. (3a) is
formed by matching P (X,Y), P (Y, Z), P (X,Z) with the (fresh variants of) definition terms
P (X2, Y2), P (X3, Y3), P (X1, X1). Similarly for (3b). The matchers for both of these do not re-
fer to any specific values, so the substitution sets in the labels for (3a) and (3b) are unchanged.

Since (3a) and (3b) are complementary, we derive a labelled empty clause with label
{A1, A2}. Then the substitution sets require adding all instances of either A1 or A2 as ex-
ceptions.

We might select A1 as this will produce the least number of new instances (recall SX =
[0, 1, 2])

(A3) (α3, P (0, 0),) (A4) (α4, P (1, 1),)
(A5) (α4, P (2, 2),)

Assumption A1 no longer appears.
The next iteration still yields an unsatisfiable clause set due to A2 forcing α3, α4 and α5

to be identical, however the empty clause will now have a label in which A2 is specialised. For
example if A3 has been used in a similar way to A1 was used in the previous step this would
produce a label like A2[X 7→ 0]. This in turn allows adding the exception A6 = (α6, P (0, Y), Sy).

This was the stage we left the original example at. Recall that this required first a binary
search on (the transformed) (2), each step of which required a call to the superposition solver,
followed by another binary search to produce the same exception from (3). This still scales
with domain size (even if it is only logarithmically). With this new method we have achieved
all that in only two steps, and this is independent of the domain size entirely.

4 Related Work

Related work for the overall GMF approach can be found in [2]. Here we give work related to
the specific modification in the last section.

Satisfiability Modulo Theories (SMT) solvers deal with the same problems in regard to
quantifier reasoning over background theories. Since SMT solvers are strongest when reasoning
over ground formulas, the general approach is to produce instances of the formula in question
and use this to build a candidate model. This model can be checked against the quantified
part of the original formula. This is essentially the Model Based Quantifier Instantiation idea
described in [10], which also gives syntactic restrictions that guarantee complete instantiation.
Also Reynolds et al. [15] give instantiation techniques for dealing with finite models. The key
difference is that with GMF we are allowed free usage of quantification over non-BSFG terms
and strictly background formulas, with the cost of non-termination in certain satisfiable cases.

Bonacina et al. [6] add hypothetical inferences to a combination SMT/Superposition proof
procedure and use the backtracking mechanism of SMT solvers to repair any falsified assump-
tions. They give a general framework for including unsound conclusions in a derivation and
mark these in a similar way to the label scheme here. It would be interesting to see whether
the problem of efficiently replacing BSFG terms could also fit into that context.

As mentioned before, the class of Instance based methods also maintain a set of assertions
about the clause set which are iteratively updated and can produce models for first-order clause
sets in certain cases. The Inst-Gen calculus [9] uses unification to produce a set of possibly
conflicting instances to pass to a Sat solver (or SMT solver). In a relevant variation, the Inst-
Gen-Eq calculus [14] uses an SMT solver to select literals of the clause set which may combine
to form a model, then a version of unit superposition with labels is used to extract contradictory
instances that follow from this candidate model.

22

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

The Model-Evolution calculus [3] maintains a set of literals to represent the current candi-
date model of the clause set and also uses unification to produce possibly conflicting clauses in
order to refine this model. More on this in the next section.

In contrast the GMF technique only operates over BSFG terms, essentially it attempts
to produce an interpretation for these. Although GMF does not attempt to solve the same
problems as Instance based methods it can use similar ideas for storing and updating an inter-
pretation upon derivation of conflicts as in Model-Evolution or InstGen.

5 Future Work

Compare this with the Model Evolution (ME) calculus [3] which, like propositional DPLL,
maintains a set of asserted literals (the context) and conducts a proof search by unifying input
clauses against the current context in order to find potentially falsifying instances which are then
added to the context by a backtracking split rule. Analogies can be made between the definition
context and the ME context; also between the refinement procedure and the instantiation by
unification. The difference is that the context carries more ‘semantic weight’ than the set of
function definitions since it encodes a smaller number of models (essentially only those satisfying
the literals it contains) versus all models which identify particular subterms as in the case of
GMF. The definition refinement process is limited in that it only considers single variables at a
time and each update involves the entire clause set. The context-unification approach considers
a single clause at a time which is either made true by the current context or an instance of it
is split on, after which it is no longer considered.

In addition certain theories perform poorly in equational reasoning contexts, the foremost
example is finite domain theories [11] (e.g. which include axioms ∀X. X = c1 ∨ . . . ∨X = cn).
Unfortunately clauses like these appear frequently in software verification contexts, usually as
the encoding of particular finite types, e.g. boolean or a user defined enumerated type. Merging
the GMF and ME procedures would lead to the possibility of encoding these theories in a form
which they are ‘hidden’ from the equational proof procedure entirely.

Implementation We have an implementation for the original GMF version available in the
latest release of beagle1. This implementation was used to generate the results in [2]. We plan
on extending this with the ideas discussed here and testing in a similar way on a larger set of
benchmarks.

Using existing definitions Sufficient completeness is undecidable in general, but certain
clauses can express sufficient completeness quite simply, for example f(X) ≈ X + 1. Then,
supposing we can identify a subset of clauses which give sufficient completeness how can we
exploit them in a principled way? Already if we just consider clauses of the above form, i.e.
unit equations which are flat on the left hand side and only contain background operators on
the right side then it seems possible to simply include them in the definition context as is and
pre-emptively rewrite using them whenever another instance of f is encountered. Could this be
generalised say to Horn clauses where the positive literal has the unit equation form above and
where all the negative literals are from the background theory? This would encode a definition
plus a domain. For example f(X) ≈ X ∨ ¬(X > 0); the fact that the domain is not finite is no
problem since we can use the positive equation to give sufficient completeness where possible.

1http://users.cecs.anu.edu.au/ baumgart/systems/beagle

23

A Model Guided Instantiation Heuristic for the Superposition Calculus with Theories Bax

Template functions A related approach would be to allow the user to specify a set of
templates which can be used to confer sufficient completeness. For example you could specify
X+b, where b is a parameter, as a template for single variable operators. This idea is mentioned
in the context of model finding with SMT solvers in [8] and for finding loop invariants also using
a quantifier elimination procedure in [12]. Again integrating this approach would require a
principled combination with any method for adding sufficient completeness for function symbols
not covered by the templates.

References

[1] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem proving for hierachic
first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.

[2] Peter Baumgartner, Joshua Bax, and Uwe Waldmann. Finite quantification in hierarchic theorem
proving. In S. Demri, D. Kapur, and C. Weidenbach, editors, IJCAR 2014, volume 8562 of LNAI,
pages 152–167, Vienna, 2014. Springer Switzerland. To appear.

[3] Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model evolution with equality – revised and
implemented. Journal of Symbolic Computation, 47(9):1011–1045, September 2012.

[4] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition: Completeness without com-
pactness. In Marek Kosta and Thomas Sturm, editors, MACIS 2013 –Fifth International Confer-
ence on Mathematical Aspects of Computer and Information Sciences, pages 8–12, 2013.

[5] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition with weak abstraction. In
Maria Paola Bonacina, editor, CADE-24 – The 24th International Conference on Automated De-
duction, volume 7898 of Lecture Notes in Artificial Intelligence, pages 39–57. Springer, 2013.

[6] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça de Moura. On deciding
satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning, 47(2):161–189,
2011.

[7] Hans-Jürgen Bürckert. A resolution principle for constrained logics. aij, 66(2):235–271, 1994.

[8] Leonardo De Moura and Nikolaj Bjørner. Bugs, moles and skeletons: Symbolic reasoning for
software development. In Automated Reasoning, pages 400–411. Springer, 2010.

[9] H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based theorem
proving. In Computer Science Logic (CSL’04), volume 3210 of Lecture Notes in Computer Science,
pages 71–84. Springer, 2004.

[10] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643
of Lecture Notes in Computer Science, pages 306–320. Springer, 2009.

[11] Thomas Hillenbrand and Christoph Weidenbach. Superposition for finite domains. Research
Report MPI-I-2007-RG1-002, Max-Planck Institute for Informatics, Saarbruecken, Germany, April
2007.

[12] Deepak Kapur. A quantifier-elimination based heuristic for automatically generating inductive
assertions for programs. Journal of Systems Science and Complexity, 19(3):307–330, 2006.

[13] Deepak Kapur, Paliath Narendran, Daniel J Rosenkrantz, and Hantao Zhang. Sufficient-
completeness, ground-reducibility and their complexity. Acta Informatica, 28(4):311–350, 1991.

[14] Konstantin Korovin and Christoph Sticksel. Labelled unit superposition calculi for instantiation-
based reasoning. In Logic for Programming, Artificial Intelligence, and Reasoning, pages 459–473.
Springer, 2010.

[15] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.
Quantifier instantiation techniques for finite model finding in SMT. In M. P. Bonacina, edi-
tor, Proceedings of the 24th International Conference on Automated Deduction (Lake Placid, NY,
USA), volume 7898 of Lecture Notes in Computer Science, pages 377–391. Springer, 2013.

24

	Overview
	Generalised Model Finding
	Variant aware GMF
	Related Work
	Future Work

