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Abstract 

In this paper, we study the Convolutional Neural Network (CNN) applications in 

medical image processing during the battle against Coronavirus Disease 2019 (COVID-

19). Specifically, three CNN implementations are examined: CNN-LSTM, COVID-Net, 

and DeTraC. These three methods have been shown to offer promising implications for 

the future of CNN technology in the medical field. This survey explores how these 

technologies have improved upon their predecessors. Qualitative and quantitative 

analyses have strongly suggested that these methods perform significantly better than 

the commensurate technologies. After analyzing these CNN implementations, it is 

reasonable to conclude that this technology has a place in the future of the medical 

field, which can be used by professionals to gain insight into new diseases and to help 

in diagnosing infections using medical imaging.  
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1 Introduction 

Prior to the pandemic of Coronavirus Disease 2019 (COVID-19), there have been two epidemic 

level coronavirus diseases in the world, i.e., Severe Acute Respiratory Syndrome (SARS), and Middle 

East Respiratory Syndrome (MERS) [1]. Since the first case of COVID-19 was identified about one 
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and a half years ago, there have been over 200 million confirmed cases of COVID-19, including more 

than 4 million deaths worldwide, according to the World Health Organization.  

It has been possible to confirm or diagnose the COVID-19 infections through the Reverse 

Transcription-Polymerase Chain Reaction (RT-PCR) process, in which it would take 4 to 6 hours to 

get the results [1]. This may be a concern as it only takes a significantly less amount of time such as 

15 minutes to infect another with COVID-19. It is important to get the test results as fast as possible 

so that the patient may proceed to further treatments or be able to quarantine. Previous studies [1, 2, 3, 

4, 5, 6, 7] have shown that radiological images such as X-rays, computed tomography (CT), and 

magnetic resonance imaging (MRI), could be used to detect abnormalities in patients and diagnose 

COVID-19 infections. We further investigate the deep learning and CNN methods for image 

classification to detect the abnormalities in the chest X-ray images, so that it may be possible to 

diagnose COVID-19 faster than several hours to almost instantaneously after the patient has been X-

rayed.  

This survey explores several CNN technologies with unique implementations that enhance their 

performance when compared to conventional CNN architectures. In this study, we try to find out 

answers to the following questions: (1). What CNN architectures are best suited for diagnosing 

COVID-19 from X-rays? (2). What possible improvements can be made to the existing CNN 

technologies for tackling COVID-19? (3). How effective can we expect CNN to process medical 

imaging such as chest X-rays? (4). Will there be better types of neural networks to process images? 

Therefore, we focus on three of the state-of-the-art CNN methods for medical image processing in 

diagnosing COVID-19 infections in this paper. 

2  Related Work 

Slowing down the spread of the COVID-19 is one major way to combat this pandemic. The 

analysis of medical imaging, more specifically, chest X-ray images and CT scan images, can be 

utilized as an exceedingly important tool in the diagnosis of COVID-19 infections. Machine learning 

approaches have been employed for the medical image processing applications, such as identifying 

cancerous and non-cancerous from digital images [8]. Deep learning approaches such as CNN are not 

only rivaling but also surpassing the typical machine learning approach.  

The CNN architecture has proven itself to be highly applicable in the medical image applications, 

specifically in making diagnoses using digitized medical images, as it is the effective and efficient 

deep learning approach, due to the success shown in previous medical imaging studies [9]. With the 

help of CNN and the related approaches, it is faster to detect the abnormalities in patients based on 

medical images to diagnose COVID-19 infections, which will aid in preventing the spread of the 

COVID-19 at a much more accelerated rate through these tools.   

One method that is of interest to introduce is using CNN and the Long Short-Term Memory 

(LSTM) in combination to achieve better and refined results, which is named deep CNN-LSTM 

network [1]. In this CNN-LSTM architecture, LSTM is a modified and improved version of the 

recurrent neural networks (RNNs). The proposed CNN-LSTM network applies CNN to extract 

features, and then utilizes LSTM network as a classifier to detect COVID-19.  

Among the motivations for the neural networks is the necessity for a greater degree of auditing 

than is required for neural network applications in other industries. With the ability to audit decisions 

made by CNN, more accurate networks which are influenced less from extraneous data can be 

developed. COVID-Net [2] is a response to this demand for thorough auditing of CNN technologies 

in medicine. As a deep CNN tailored for the detection of COVID-19 cases from chest X-ray images, 

COVID-Net is open source and available to the general public, along with COVIDx, an open access 

benchmark dataset comprising of 13,975 chest X-ray images across 13,870 patient cases. 
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Another research study adapts a deep CNN, called Decompose, Transfer, and Compose (DeTraC) 

model [3], to improve the performance of the pre-trained models on the classification of COVID-19 

chest X-ray images. DeTraC is able to detect irregularities in the image dataset through inspecting its 

class boundaries by a class decomposition method. DeTraC shows effective solutions for the 

classification of COVID-19 cases and its ability to cope with irregular data and limited number of 

training images. 

3 Method 

In this section, we focus on three state-of-the-art methods of medical image processing based on 

CNN in classifying chest X-ray images of COVID-19 infections. 

3.1 CNN-LSTM 

The CNN-LSTM method is proposed to diagnose COVID-19 cases based on X-ray images, where 

LSTM stands for long short-term memory. The reason for using LSTM is because it provides memory 

cells as opposed to the normal RNN which helps resolve any issues pertaining to the vanishing and 

exploding gradient problem. The CNN process works in the following way that kernels receive the 

input and convolve them using stride but no padding, because it is needed to maintain the dimensions 

of the input volume with ordinary features. The convolution layer operation is as follows: 

F(i, j) = (I * K) (i, j) = Σ Σ I (i + m, j + n) K (m, n) (1) 

where I is the input matrix, K is the filter of size m × n, and F is the output of the feature map. The 

convolution layer is (I * K) [1]. Then, max pooling is used for the pooling layers and the ReLU 

activation function is used to increase nonlinearity in the mapping [1]. This is how the CNN process 

follows until it reaches into the LSTM network. 

LSTM, a modified version of RNN, is combined with an update gate, a forget gate, and an output 

gate [1]. Its main difference is that the LSTM model has a memory cell in which it can save long-

term. Thus, An LSTM network can save and link the information obtained previously to the data 

obtained in the present [10]. With the combined structure, CNN-LSTM is used to detect COVID-19. 

It is composed of 12 convolution layers, 5 pooling layers, 1 fully connected layer, one LSTM layer, 

and one output layer with the softmax function. Figure 1 shows the system architecture of the CNN-

LSTM [1]. 

The system goes into different phases in which the combinatorial neural network may detect 

COVID-19 within the X-rays. First, raw X-ray images entered a preprocessing pipeline which 

involves data resizing, shuffling, and normalization. Next, the preprocessed data is then divided into 

the training set and testing set, when the training set is used to train the CNN, for comparison, and 

CNN-LSTM.  

 

 

 

 

 

 

 

 

 

 
Figure 1: System architecture of the CNN-LSTM 
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3.2 COVID-Net and Enhanced Auditing of CNNs 

The nature of medicine and medical imaging demand more extensive auditing than what would be 

suitable for other CNN applications. It is crucial for these CNNs to make decisions based on relevant 

information. The goal of “explainability”-focused auditing is to ascertain that the CNN’s decisions are 

not influenced by extraneous data in the medical images, such as markup editing and image 

distortions. To accomplish this, the developers of COVID-Net [2] used an analysis tool known as 

GSInquire [11], which enables COVID-Net developers to explore different architectures and 

determine the optimal design through a process known as “generative synthesis” [12]. 

GSInquire uses a generator-inquisitor pair of functions that work together to form an interpretation 

of a decision. The generator function creates new neural networks based on a set of possible seeds. 

Then, the inquisitor function takes these new networks and determines which parameters influence 

decisions. This allows for CNNs to be audited to ensures that the decisions are based on relevant 

information. Figure 2 shows the critical factors identified by GSInquire in sample chest X-ray image 

of COVID-19 positive case [2]. According to the interpretation by GSInquire, the COVID-Net mainly 

focuses on the highlighted areas of the lungs in the chest X-ray images, which are considered as the 

main critical factors in determining whether the image is of a patient with COVID-19 infections [2]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Highlighted chest X-ray of COVID-19 case 

The architecture chosen for COVID-Net utilizes a projection-expansion-projection-extension 

(PEPX) design pattern. This architecture features a series of steps which project an input feature into a 

smaller dimension, expand it into a higher dimension, followed by a depth-wise representation step 

for learning spatial characteristics, and an extension step, which extends channel dimensionality, for 

producing final features. The resulting neural network named COVID-Net has significant 

architectural diversity and strong representational capacity. This is partly due to the fine level of 

granularity that generative synthesis permits architectural designs to be explored. 

Among other possibilities, COVID-Net has the potential to assist medical professionals in 

identifying key factors of COVID-19 infection. This could lead to novel discoveries and more 

efficient triaging. Furthermore, the considerable auditing of this CNN could serve to increase our 

medical community’s trust in using COVID-Net and other CNNs as a tool. This auditing 

methodology not only served to increase the integrity of COVID-Net, but also resulted in an efficient 

and powerful architecture.  

3.3 DeTraC 

A major contributor to the success of CNN in the field of medical image processing is due to its 

capability of transfer learning in this architecture. Considering a network that was pre-trained, with a 

large dataset that was annotated with given metadata for a specific task, transfer learning means 
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transferring the knowledge learned from the pre-trained network into a new task, without the need to 

train the new task with a massive amount of annotated data values used as part of the training, which 

is especially useful and efficient for medical image processing. There are three different scenarios of 

transfer learning, i.e., shallow tuning, deep tuning, and fine tuning, where the third one provided 

excellent results for classifying X-ray images.  

DeTraC [3] utilizes the fine-tuning scenario that seeks to teach more layers, in a step-by-step 

manner, adjusting the learning parameters in order to increase the efficiency and effectiveness. Class 

decomposition is a major component of the DeTraC method. Its ability to deal with inconsistencies in 

data is an invaluable and critical asset when dealing with medical images.  

The DeTraC architecture is composed of three integral phases [3]. In phase 1, it is important to 

identify the deep local features from each image, which is achieved by further training an ImageNet 

pre-trained CNN model. Following that step is the class decomposition component that is employed 

for its ability to break down and simplify the local structure. After that, phase 2 of the DeTraC 

architecture uses an advanced gradient descent optimization algorithm in order to complete the 

training of the network. Finally in phase 3, the class composition layer is used to refine the 

classification of the medical images and generate the final prediction. In short, the DeTraC method 

functions by first taking a functional CNN architecture that has already been trained, then applying 

class decomposition, followed by the transfer learning via a gradient descent optimization method, 

finally a class composition layer to form the fine-tuned qualifiers. The class decomposition and class 

composition components can be thought of in a recursive manner. That is to say, the decomposition 

will break the problem into smaller independent subclasses, and the composition component will 

construct all those subclasses back to the final stage. 

4 Performance Evaluation 

In this section, we compare the system performance of the aforementioned three CNN-based 

methods in classifying medical images to diagnose COVID-19 infections. 

4.1 Results for CNN-LSTM 

The system performance of CNN-LSTM is measured with these metrics: confusion matrix, 

accuracy, AUC using ROC, specificity, sensitivity, and F1-score [1]. In the experiment setup, the data 

was divided into 80% for training and 20% for testing, using the 5-fold cross-validation technique for 

the results to be attained. The learning rate is 0.0001 and the maximum epoch number is 125. Python 

and the Keras package were used with Tensorflow to implement the CNN and CNN-LSTM networks 

on an Intel(R) Core (TM) i7-2.2 GHz processor and a (GPU) NVIDIA GTX 1050 Ti with 4 GB and 

16 GB RAM [1]. 

The images of X-rays were tested first with CNN and then CNN-LSTM after, so that a comparison 

can be made on the difference of which network would perform better. According to the study in the 

previous work [1], with the CNN architecture, among the 915 images used to classify COVID-19, 14 

images were not properly classified with three of them for COVID-19. On the other hand, using the 

CNN-LSTM architecture, only 8 were misclassified including two images that were given with 

COVID-19. This shows that the CNN-LSTM does in fact, performs better than the standalone CNN. 

The comparisons of the performance of the CNN and CNN-LSTM architectures are shown in Table 1 

and Table 2 [1]. 

According to the experimental results, CNN-LSTM architecture is able to distinguish the COVID-

19 images from pneumonia and normal images. When compared with other systems through 4575 

images, including 1525 images of COVID-19 infected patients, the experiments showed that CNN-

CNN on Medical Imaging S. Clark et al.

95



LSTM achieves outstanding performance with 99.4% accuracy as in Table 3 [1], with 99.9% AUC, 

99.2% specificity, 99.3% sensitivity, and 98.9% F1-score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Results for COVID-Net 

The performance of COVID-Net was evaluated and analyzed both quantitatively and qualitatively. 

In the pre-processing step, the chest X-ray images were cropped before training to cut the embedded 

textual information in the X-ray images. Data augmentation was employed including translation, 

rotation, horizontal flip, zoom, and intensity shift. Two more deep neural network architectures were 

chosen to compare against COVID-Net. VGG-19 [13] was one of them, with low architectural 

diversity but without residual design principles and lightweight design patterns. ResNet-50 [14] is 

another architecture, with moderate architectural diversity, residual design principles and lightweight 

design patterns, but without lightweight PEPX design patterns and selective long-range connectivity.  

 

 

 

 

 

 

 

 

COVID-Net has promising performance compared to other architectures. When tested with the 

same dataset of COVIDx, COVID-Net achieved 93.3% accuracy, whereas ResNet-50 obtained 90.6% 

accuracy, and VGG-19 obtained 83.0% accuracy, as shown in Table 4 [2]. COVID-Net not only 

outperforms these other two networks, but also has less complexity compared to ResNet-50 and 

VGG-19. Thus, it requires significantly less computations than the other two architectures.  

Class Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

F1-Score 

(%) 

COVID-19 98.5 98.2 99.0 97.7 

Pneumonia 98.6 99.7 96.4 97.8 

Normal 99.9 99.8 100.0 99.8 

 

Class Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

F1-Score 

(%) 

COVID-19 99.2 99.2 99.3 98.9 

Pneumonia 99.2 99.8 98.0 98.8 

Normal 99.8 99.7 100.0 99.7 

 

Architecture Accuracy 

(%) 

Accuracy (COVID-19) 

(%) 

COVIDiagnosis-Net [16] 98.3 100.0 

Sgdm-SqueezeNet [17] 98.3 96.7 

ResNet-50 [18] 96.2 100.0 

CNN-LSTM [1] 99.4 99.2 

 

Architecture Accuracy 

(%) 

Sensitivity (COVID-19) 

(%) 

Positive predictive value 

(COVID-19) (%) 

VGG-19 83.0 58.7 98.4 

ResNet-50 90.6 83.0 98.8 

COVID-Net 93.3 91.0 98.9 

 

Table 1: Performance of the CNN network 

Table 2: Performance of the CNN-LSTM network 

Table 3: Comparison of CNN-LSTM with other systems 

Table 4: Performance of COVID-Net compared with other systems 
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4.3 Results for DeTraC 

For the DeTraC method, the results were based on the assessment of three main criteria: accuracy, 

specificity, and sensitivity. Accuracy is defined as the total sum of true positive cases of COVID-19 

and true negative cases of non-COVID-19 (normal or other diseases), all divided by the number of 

cases. Specificity is defined as the true negative cases of non-COVID-19 divided by the total sum of 

true negative cases of non-COVID-19 and the incorrect predictions for COVID-19 or other cases. 

Sensitivity is defined as the true positive cases of COVID-19 divided by the total sum of true positive 

cases of COVID-19 and the incorrect predictions for COVID-19 or other cases.  

The dataset includes 80 normal, non-disease chest X-rays, 105 COVID-19 positive X-rays, and 11 

SARS X-rays. Data augmentation of the provided image samples allowed for a total of 1764 images. 

ResNet [15] was used as a pre-trained network in the transfer learning component, which achieved an 

effective performance with 92.5%, accuracy, 65.01% sensitivity, and 94.3% specificity, compared to 

the DeTraC architecture accomplishing 95.12% accuracy, 97.91% sensitivity, and 91.87% specificity 

[3], in the classification of X-ray images. 

5 Conclusion and Discussion 

Utilizing CNNs for the classification of medical images has made major progress. The CNN-

LSTM architecture achieved promising performance and accuracy in the classification of medical 

images to diagnose COVID-19 infections. This is significant in hopes of reducing the false negatives 

that leads to false diagnostics of the COVID-19 cases in patients, which is very serious if a positive 

COVID-19 case is not identified and ignored. 

COVID-Net exemplifies the benefits of human-machine collaborative design and demonstrates a 

significant innovation of neural networks in medical applications. The principles of transparency and 

integrity behind COVID-Net give it a promising outlook in the future of medicine, and the impactful 

innovations of COVID-Net will ripple throughout the future of CNN technology for medical imaging 

applications.  

The DeTraC method shows promising potential for diagnosing COVID-19 from chest X-rays in an 

efficient manner with a decreased error rate. Transfer learning was utilized with the DeTraC 

architecture, as a method to combat issues where there is a limited number of training images. The 

DeTraC architecture has illustrated its success in the diagnosis of COVID-19 from chest X-rays by 

efficiently increasing the accuracy and sensitivity by significant margins, also with limited datasets 

available for training and the inconsistent nature of medical imaging. 
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