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1 Introduction

This is the second part of a series of two abstracts, the first being by Andrea Pedrini. For
background and notation on lattice-ordered Abelian groups (`-groups for short), vector lattices,
and Q-vector lattices, and their spectral spaces, please see her submission.

If G is an `-group (or vector lattice, or Q-vector lattice), write SpecG, MaxG, and MinG for
its prime spectral space with the spectral topology, its subspace of maximal congruences, and
its subspace of minimal congruences, respectively. Note then that SpecG is completely normal,
meaning that the collection of prime congruences containing any given prime congruence is
linearly ordered [1, 2.4.1 and 10.1.11]. Moreover, we always assume that SpecG is compact.
Recall [1, 10.2.2] that this is the case if, and only if, G can be equipped with a (strong order)
unit. Under this assumption, MaxG is a compact Hausdorff space [1, 10.2.2], and all compact
Hausdorff spaces arise in this manner: the vector lattice C (X) of all real-valued continuous
functions on a compact Hausdorff space X is such that Max C (X) is naturally homeomorphic
to X, by a classical result of Yosida. Hence, MaxG is the most general possible compact
Hausdorff space.

There is a surjective function

λ : MinG� MaxG (1)

defined by λ(p) := ↑p ∩MaxG for each p ∈ MinG. It is known that λ is continuous [1, 10.2.5].
We explore the extent to which λ may be regarded as an analogue of the absolute of MaxG. We
provide background on the absolute E (X) of a Hausdorff space X in Section 2 below. We show
that in the case of finitely presented structures (see Pedrini’s abstract) the analogy is strong.
Indeed, λ : MinG→ MaxG fails to be the absolute of MaxG for the single reason that MinG,
though a Boolean space, is not extremally disconnected; see Proposition 4.1. In fact, we prove:

Theorem 1.1. Let G be a finitely presented `-group (or a vector lattice, or Q-vector lattice).
The map λ in (1) is a closed, compact, irreducible continuous surjection. Moreover, there exists
a unique continuous surjection

h : E (MaxG) � MinG
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that makes the following diagram commute.

E (MaxG)
k // //

h
����

MaxG

MinG

λ

88 88

Moreover, the pair (E (MaxG), h) is the absolute of MinG.

2 The absolute of a Hausdorff space

For background on the absolute see [2]. Recall that a topological space is called zero-dimensional
if it has a base for the topology consisting only of clopen sets. We call a space extremally
disconnected if the closure of every open set is open. Given a map between topological spaces
f : X → Y , we say f is closed if the image of a closed set in X is closed in Y , while the map is
compact if the fibers of points are compact. Finally, we say f is irreducible if it is a surjection,
and there is no proper closed subset A ⊂ X whose image is all of Y .

Given a Hausdorff space X, we may construct a space, denoted E (X), which is:

1. Hausdorff,

2. zero-dimensional, and

3. extremally disconnected,

together with a (surjective) function k : E (X)→ X which is:

i. closed,

ii. compact,

iii. irreducible, and

iv. continuous.

The pair (E (X), k) is called the absolute of the space X, and is (essentially) unique with respect
to the properties above. That is, if (E′ (X), k′) is another pair satisfying the given properties,
then there is a homeomorphism h : E (X)→ E′ (X) so that the following diagram commutes:

E (X)
k //

OO

h

��

X

E′ (X)

k′

<<

In order to construct E (X), let R (X) denote the collection of regular open subsets of X, i.e.
U ∈ R (X) if, and only if, U = int clU , where ‘int’ and ‘cl’ denote the interior and closure
operators associated to the topology of X, respectively. It is well known that R (X) is a
complete Boolean algebra under set-theoretic intersections, with joins given by

∨
i∈I

Ui := int cl

(⋃
i∈I

Ui

)
, (2)
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meets given by

∧
i∈I

Ui := int

(⋂
i∈I

Ui

)
, (3)

and negation given by

¬U := intX \ U. (4)

We can then take E (X) to be the set of convergent maximal filters of R (X) equipped with the
Stone topology. Here, a maximal filter U of R (X) is convergent if

⋂
U∈U clU 6= ∅. When U

is convergent the latter intersection can be shown to be a singleton {pU } ⊆ X. We therefore
define the map k : E (X)→ X by setting

k(U ) := pU (5)

for each convergent maximal filter U of R (X).
When the space X is, in addition, compact, then E (X) turns out to be compact, too.

Indeed, in this case every maximal filter U of R (X) is convergent, and E (X) is the Stone
space of the Boolean algebra R (X). Every continuous map between compact Hausdorff spaces
is automatically closed and compact. We can then drop i and ii from the list above. Also note
that a compact Hausdorff extremely disconnected space is automatically zero-dimensional, so
2 above is redundant if one restricts to the compact case.

We next show that MinG may be constructed out of MaxG by a procedure that is entirely
analogous to the construction of E (X) out of X.

3 Construction of MinG

Given any Heyting algebra H, set

R (H) := {x ∈ H | ∃y ∈ H with x = ¬y}. (6)

Then R (H) is a Boolean algebra, known as the algebra of regular elements of H. If X is a
compact Hausdorff space and O (X) is the Heyting algebra of open sets of X, then R (O (X)) =
R (X). We are going to show that MinG arises as the Stone space of the Boolean algebra
of regular elements in the Heyting algebra of principal congruences of the finitely presented
structure G.

Throughout the sequel, we write ∼= to denote the existence of either a homeomorphism of
spaces or an isomorphism of algebraic structures. Let G be a finitely presented `-group (or a
vector lattice, or Q-vector lattice). By the results announced in Pedrini’s abstract, we know
that the lattice K (G) of principal congruences on G is a Heyting subalgebra of the Heyting
algebra ConG of all congruences on G. We prove:

Theorem 3.1. Let G be a finitely presented `-group (or a vector lattice, or Q-vector lattice).
Let E be the Stone space of the Boolean algebra R (K (G)), then MinG ∼= E.

The proof goes through the geometric representation of G. In more detail, when G is either an
`-group or a Q-vector lattice, we have the following.

• There is a rational polyhedron P ⊆ Rn such that MaxG ∼= P .
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• The opposite (SubQ P )op of the lattice SubQ P of rational polyhedra contained in P is in
fact a Heyting algebra, isomorphic to the Heyting algebra K (G) of principal congruences
on G.

The crux of the proof is then the observation that R (K (G)) is canonically identified with the
Boolean algebra of open polyhedra1 contained in P which are also regular open sets. When G
is a vector lattice, then the same construction works using the lattice SubP of all polyhedra
contained in the representing polyhedron P , rather than the lattice of rational polyhedra.

In summary, we see that MinG is the Stone space of the Boolean algebra of those regular
opens in MaxG which are determined by principal congruences.2

4 Characterization of the space of minimal primes of
finitely presented Q-structures

In the case of finitely presented `-groups or Q-vector lattices, it is possible to describe MinG
explicitly:

Proposition 4.1. If G is either a finitely presented Q-vector lattice, or a finitely presented
`-group, then MinG is homeomorphic to the Cantor space, together with finitely many isolated
points.

The proof uses Tarski’s classical result that there is a single countable atomless Boolean algebra
up to isomorphism, namely, the algebra of clopen sets of the Cantor space (equivalently, the
Tarski-Lindenbaum algebra of classical propositional logic over countably many variables, or
Brouwer’s result that every zero-dimensional compact metric space without isolated points is
homeomorphic to the Cantor space). It thus suffices to show that the algebra of clopens of
MinG has these properties, and we do this through a geometric argument.

Remark 4.2. If G is a finitely presented vector lattice, then MinG is not necessarily home-
omorphic to the Cantor space. The problem is that the algebra of clopens of MinG can be
uncountable in this case.

The preceding notwithstanding, we have:

Theorem 4.3. If G is a finitely presented `-group (or vector lattice, or Q-vector lattice),

E (MaxG) ∼= E (MinG). (7)

To prove this we use standard results from [2]. In case G is either a finitely presented `-group
or Q-vector lattice, MinG and MaxG are both compact metric spaces, and the result follows.
When G is a vector lattice, MinG need not be metrizable (compare Remark 4.2). However,
MinG has a countable π-basis, that is, a countable collection B of open sets such that for any
open set U of MinG there is some B ∈ B with B ⊆ U . This entails that E (MinG) is the
absolute of the Cantor space whenever MinG has no isolated points. From this the theorem
follows easily.

1We call a polyhedron Q ⊆ P open if its complement P \Q in P is a polyhedron.
2The fact that MinG is a Boolean space is also stated as Corollary 5.1 in Pedrini’s abstract; Theorem 3.1

proves more.
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5 Proof of Theorem 1.1

Lemma 5.1. Let G be a finitely presented `-group (or a vector lattice, or Q-vector lattice).
Consider the map λ : MinG→ MaxG as in (1), then λ is closed, compact, irreducible, contin-
uous and onto.

The last two properties are known, as mentioned in the Introduction. Compactness amounts to
an application of Corollary 5.2 in Pedrini’s abstract. The remaining two properties are proved
using the geometric representation of G recalled in Section 3 of Pedrini’s abstract.

End of Proof of Theorem 1.1. In light of Lemma 5.1 we only need prove the ‘Moreover’ state-
ment. By Theorem 4.3 we have E (MinG) ∼= E (MaxG), so that the pair (E (MaxG), kmin) is
the absolute space of MinG with covering map kmin : E (MaxG) � MinG. We first show that
kmin commutes the diagram above, i.e. k = λ ◦ kmin. Set k′ := λ ◦ kmin for short. It is obvious
that k′ is onto, continuous, and closed. It is also compact. Indeed, if p ∈ MaxG then λ−1(p)
is compact because λ is compact, hence closed because MinG is compact Hausdorff. Hence
(k′)−1(p) is closed and therefore compact, because E (MaxG) is compact Hausdorff. Moreover,
k′ is irreducible. To see this, note that If C ⊂ E (MaxG) is closed then kmin(C) is a proper
closed subset of Min (G), because kmin is irreducible and closed. Hence k′(C) 6= MaxG, because
λ is irreducible. This shows that (E (MaxG), k′) is the absolute of MaxG, and therefore k′ = k
by its uniqueness property. Hence kmin commutes the diagram above.

It remains to show that any h : E (MaxG) � MinG as in the statement agrees with kmin.
For this, note that h is closed: if C ⊆ E (MaxG) is closed, then k(C) is closed because k is
closed, and λ−1(k(C)) is closed by continuity. Moreover, h is compact: if p ∈ MinG then
k−1(λ(p)) is compact because k is compact. Finally, h is irreducible: if C ⊂ E (MaxG) satisfies
h(C) = MinG by way of contradiction, then λ(h(C)) = k(C) = MaxG, against the fact that k
is irreducible. The theorem is proved.
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