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Abstract—FPGA-based Physical Unclonable Functions (PUFs)
have emerged as a viable alternative to permanent key storage
by turning inaccuracies during the manufacturing process of
a chip into a unique, FPGA-intrinsic secret. However, many
fixed PUF designs may suffer from unsatisfactory statistical
properties in terms of uniqueness, uniformity, and robustness.
Moreover, a PUF signature may alter over time due to aging
or changing operating conditions, rendering a PUF insecure in
the worst case. As a remedy, we propose CHOICE, a novel
class of FPGA-based PUF designs with tunable uniqueness and
reliability characteristics. By the use of addressable shift registers
available on an FPGA, we show that a wide configuration space
for adjusting a device-specific PUF response is obtained without
any sacrifice of randomness. In particular, we demonstrate the
concept of address-tunable propagation delays, whereby we are
able to increase or decrease the probability of obtaining ’1’s in
the PUF response. Experimental evaluations on a group of six
28 nm Xilinx Artix-7 FPGAs show that CHOICE PUFs provide
a large range of configurations to allow a fine-tuning to an
average uniqueness between 49% and 51%, while simultaneously
achieving bit error rates below 1.5%, thus outperforming state-of-
the-art PUF designs. Moreover, with only a single FPGA slice per
PUF bit, CHOICE is one of the smallest PUF designs currently
available for FPGAs.

Index Terms—PUF, Security, FPGA, Hardware/Software Co-
Design

I. INTRODUCTION

FPGA-based compute devices are an integral part of many
security-critical applications today. For this reason, FPGA
vendors offer on-chip cryptographic key storage for already
many years [1]. Nevertheless, the risk of key theft and malicious
tampering with such permanent storage is omnipresent in a
potentially unsecure environment, as recent work has demon-
strated [2, 3, 4]. A secure alternative to physical key storage is
to exploit small process variations that occur naturally during
the manufacturing process of Integrated Circuits (ICs) [5] to
create a unique and unpredictable fingerprint. Such a fingerprint
is physically unclonable and therefore qualifies for e. g., device-
specific secret key generation [6, 7], Intellectual Property (IP)
tracing [8], and authentication [9]. One approach to transform
the process variations of an FPGA IC into a suitable digital
representation is by making use of so-called Physical Unclonable
Functions (PUFs) [10, 11, 12].

However, real-world applications where FPGA-based PUFs
are currently deployed on a large scale are still rare. One reason
for this is that such PUF circuits on FPGAs often have to fulfill
several mutual exclusive objectives. For instance, on the one
hand, PUFs must provide sufficient randomness to ensure the
generation of unique identifiers on quite similar devices. On the
other hand, they must also be reliable in the sense of a low Bit

Error Rate (BER), and all this under the constant premise of
consuming as few hardware resources as possible. In addition,
these security-relevant properties may deviate from the originally
validated ones during operation due to aging effects [13] or the
influence of harsh environmental conditions [14].

To address these problems, this work exploits the idea of
using dynamically Addressable Shift Registers (ASRs) within
the FPGA to build a tunable PUF design called CHOICE. By
adapting content and length of these shift registers, it becomes
possible to adjust the internal signal delays of the PUF, which
directly affects the statistical properties of the PUF’s response.
Such a tuning may be beneficially used to achieve a higher
uniqueness or uniformity of a device PUF without sacrificing
randomness. Our presented design provides a total of 6,144
configuration levels in tuning the PUF response, allowing us to
control the resulting device signature within a uniformity range
of 0 to 100%1. We show that a) this has a positive impact on
the average uniqueness of the PUF signature across six FPGA
devices studied, especially in a uniformity range of 30-70%
and b) that within this range, at least one configuration with a
BER below 1.5% can be found for each device. Therefore, a
device-specific PUF signature can be tuned w. r. t. fundamental
security requirements, e. g., regarding uniqueness and BER, to
be met at product shipping time. However, the tunability of the
proposed PUF design CHOICE might also be used to compensate
for aging or other long-term stress effects [13]. Here, after the
detection of PUF signature deviations by more than x (e. g.,
x = 5%) BER, an adaptation phase could be used to re-tune
the PUF by means of a secure update [15]. In this way, a fully
new PUF signature can be established by using the same PUF
circuit only now with a new configuration to obtain a reliable
and secure signature again. Furthermore, we show that both
CHOICE PUF and its configuration can be implemented in just
a single Xilinx slice of type SLICEM, thus consuming only a
minimal amount of resources.

In the following, we present in Section II the architecture of
a CHOICE PUF design together with the exploited principle
of delay adaptation and its impact on the PUF response.
Subsequently, in Section III, we evaluate the PUF’s configuration
space by experimental results obtained on multiple Xilinx Zynq
Programmable System-on-Chip (PSoC)-platforms containing an
28 nm Artix-7-based FPGA and a dual-core ARM Cortex-A9
processor. This is followed by a conclusion and outlook on
future work in Section IV.

10% = no bits set to one in the response, 100% = every PUF bit is a one



II. CHOICE
This section describes CHOICE, an architecture for response-

tunable PUF designs as an adaptable alternative to fixed circuit
layouts with a single PUF response. The approach is based
on the idea of being able to adjust the length of delays within
Addressable Shift Registers (ASRs) in the FPGA’s reconfigurable
logic and thereby tune the response of the PUF circuit.

A. Delay-Tunable PUFs

PUFs on FPGAs are gaining more and more interest and
visibility, due to the increased use of hardware reconfigurable
devices on the one hand, but also due to the fact that more and
more new attacks challenge the security of physical key storage
on these devices [2, 3, 4]. In this context, several promising
approaches have been proposed in the past to turn randomness
properties into unique device signatures or to derive cryptographic
keys from them at runtime. Among them, Ring Oscillator
(RO) [14, 12], Arbiter [11, 16], and Butterfly [8, 17] PUFs are
the most established PUFs for FPGA implementation. All these
concepts have in common that they are based on comparing delay
differences between equally routed timing paths. To achieve equal
nominal delays and to avoid bias, the routes must be symmetric
in signal routing, so that delay differences originate solely from
process variations [18]. Once such a symmetric routing is found
and the PUF is verified for specific environmental conditions,
no adjustment can be made. However, irreversible changes in
transistor switching delays, e. g., due to continuous aging [13,
19], may require such an adjustment to prevent the PUF from
becoming unsecure or even unusable. The concept of CHOICE
is similar to Arbiter, Butterfly, and RO PUFs insofar as it is
also built on the principle of delay differences. However, unlike
the aforementioned PUFs, CHOICE uses the effect of glitch
creation to enable a new class of delay-tunable PUF designs.

As a result of varying delays in logic elements and wires,
race conditions are typically the main cause for glitches/hazards
to occur in asynchronous circuits. Nevertheless, tiny process
variations also result in slightly different delay characteristics that
can be exploited to provoke a glitch. The proposed CHOICE PUF
converts these delay characteristics into a unique device signature
by detecting the presence of a glitch with the asynchronous preset
input of a flip-flop (cf. Fig. 2), which in turn corresponds to a
single PUF bit. This glitch generation is inspired by the method
proposed by Anderson in [10]. His PUF uses exactly two fixed-
sized shift registers and two connected carry chain multiplexers
to generate the glitch. Their interconnection is similar to the
one shown in the lower half of Fig. 2. To generate a glitch, the
select inputs of two multiplexers must mutually toggle within a
clock cycle, e. g., when the upper multiplexer toggles from 0
to 1, the lower toggles from 1 to 0. The alternating sequence
used to toggle the multiplexers is thereby provided by the output
of the connected shift registers. With constant inputs on the
lower multiplexer (0 and 1), a glitch results on the output of
the upper multiplexer if the upper multiplexer switches slightly
faster than the lower one as the switching does not occur at
exactly the same time. Now, it is not guaranteed that such a
glitch will be wide enough to generate the storage of a 1 in
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Fig. 1: Schematic representation of an S-stage Addressable Shift
Register (ASR). The configuration of the CHOICE PUF as
shown in Fig. 2 is based on the initialization of the flip-flops
q0, . . . ,qS−1 and the address vector a in the ASR, resulting in
different signal propagation delays varying from τ0 to τS−1.

the flip-flop corresponding to the PUF bit. Due to the length
of the routing paths, which act like a low-pass filter, the glitch
might be indeed damped out [10]. In fact, the glitch must have a
certain width δmin in order to set the flip-flop. From this, we can
infer that adjusting a glitch width δ will increase or decrease
the chance of obtaining a 1 in the PUF response. In particular,
our presented CHOICE PUF exploits the available Addressable
Shift Registers (ASRs) within an FPGA to control propagation
delays between a common clock signal (clk) and the ASR’s
output Q.

The general idea and concept of our delay-tunable PUF design
CHOICE is now explained in Fig. 1 illustrating an S-stage ASR
where the input d is used to initialize the internal flip-flops
q0, . . . ,qS−1 with a bit pattern in S clock cycles. After initializing
the ASR, the address vector a can be used to select which flip-
flop output determines the output of the ASR. Typically, an
ASR inside an FPGA is used to implement variable length shift
registers. Being available as a hard macro on the FPGA, our
intention is rather to exploit small differences in wire length
from each of the flip-flops to the multiplexer as a selectable
delay line [18, 20]. More precisely, if the output of flip-flop q0
is selected as the output Q (red path), this causes a certain signal
propagation delay τ0. If one now selects the output of qS−1 (cf.
green path in Fig. 1), a different wire is used and, therefore, most
likely resulting in a different propagation delay τS−1. Although
no detailed description about the internal structure of the shift
register is publicly available, it can be assumed that an ASR of
length S provides S not necessarily monotonously increasing, but
just different delays τ ∈ {τ0,τ1,τ2, . . . ,τS−1} depending on the
address vector a. Using this principle, our tunable PUF design
CHOICE that instantiates and configures four of these ASRs
per PUF bit is now presented. Subsequently, we describe and
evaluate the resulting configuration space that determines the
delay-based glitch generation.

B. PUF Circuit

Figure 2 illustrates the structure of the proposed CHOICE
PUF design for one bit, which provokes a glitch caused by
delay differences that sets the asynchronous flip-flop input PRE



(preset). Indeed, based on inherent process variations, it can
be assumed that the PUF bit corresponds to a random variable
representing the uncertainty whether the glitch sets the flip-flop
(1) or not (0). In the following, we briefly explain the structure
and concept of the lightweight CHOICE circuit together with
its capability to tune the width of the generated glitch.

In contrast to the Anderson PUF [10], CHOICE utilizes
four ASRs, depicted in Fig. 2 as ASR0, . . . ,ASR3. Each ASR
controls exactly one corresponding carry chain multiplexer
MUX0, . . . ,MUX3. The output oMUX0 of multiplexer MUX0
drives the asynchronous set input PRE of the shown flip-flop
storing the PUF bit. It will be demonstrated that by exploiting
the configurable delay within these ASRs, a fine-grained tuning
of the PUF response becomes possible. Each ASR can be
individually adjusted via corresponding address inputs a0, . . . ,a3
influencing their propagation delay τASR0 , . . . ,τASR3 accordingly.
Here, τASRk denotes the propagation delay (cf. red arrows)
between a change of the output of the ASR-internal flip-flop
q0, . . . ,qS−1 that is selected by the address vector ak of ASR k,
0≤ k ≤ 3, and its occurrence at the select input of the multiplexer.

Using ASRs of length S = 32, the values of a0, . . . ,a3 can
range from 0 to 31. Now, even that a total of four ASRs are
available in a single slice of, e. g., a Xilinx FPGA, we select
only two of them to generate a glitch. In Fig. 2, a choice of
these two so-called active ASRs is shown in bold. These will
be denoted in the following as ASRi,ASR j with i, j ∈ {0, . . . ,3}.
The two remaining so-called inactive ASRs are initialized such
that their outputs do not toggle their multiplexers on each clock
cycle and therefore, do not influence the PUF bit generation.
Furthermore, let ASRi be the active ASR closest to the flip-
flop (uppermost ASR in Fig. 2), hence i < j. This results in a
configuration space of

(4
2

)
= 6 pairs of ASRs that are possible

to be selected as active, namely: (ASR0,ASR1), (ASR0,ASR2),
(ASR0,ASR3), (ASR1,ASR2), (ASR1,ASR3), and (ASR2,ASR3).
Together with the 32 delay configurations of each active ASR, the
proposed 1-bit CHOICE PUF supports for a total of

(4
2

)
·322 =

6,144 configurations, each having different timing properties
and, consequently, different probabilities of the signature bit to
be set to 1. Each configuration can thus be defined by a tuple
C = (i, j,ai,a j) describing the two active ASRs i and j and the
value of their address inputs ai and a j.

For causing a glitch, each ASR has to be initialized by a
specific bit pattern. Equation (1) defines the S-bit initialization
pattern P(k) for each ASRk with k ∈ {0, . . . ,3} depending on the
index of the active ASRs (i and j) and their selected addresses ai
and a j. Here, inactive ASRs (k /∈ {i, j}) are entirely initialized
with a 1 sequence, while ASRi gets initialized with the pattern
1...1010 in case of a configuration using an even address ai
and pattern 0...0101 otherwise. Contrary to ASRi, ASR j gets
initialized with 1...1010 if a j is odd and 0...0101 when
even.

P(k) =


1...1111 if k /∈ {i, j}
1...1010 elsif k = i ∧ ak mod 2 = 0
1...1010 elsif k = j ∧ ak mod 2 ̸= 0
0...0101 else

(1)
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Fig. 2: CHOICE PUF, consisting of four Addressable Shift
Registers (ASRs) connected via carry chain multiplexers (MUX)
to a single flip-flop for the generation of one PUF bit. Also
shown is the initialization of the ASRs, with two selected as
active in this configuration and highlighted in bold.

A Z-bit signature CHOICE PUF design is finally obtained
by instantiating Z such single-bit designs, all having the same
configuration in terms of choice of the two active ASRs and
address vector values for each ASR.

C. PUF Delay Model

To provide a better understanding of how exactly the tuning
affects the PUF response, we now derive timing conditions for
signal delays that are used to modulate the glitch width. Therefore,
a delay model is presented that defines the configuration space
for adjusting a device-specific PUF response as a function of a
configuration C = (i, j,ai,a j). The following signals and delays
are considered: First, the two signals sASRi and sASR j , whose
address-tunable propagation delays are determined by the internal
delay of the active ASRs, denoted as τASRi and τASR j (cf. red
arrows in Fig. 2). As mentioned in Section II-B, this is referred
to as the delay to propagate a signal from the ASR-internal
flip-flop output to the select input of the multiplexer once it is
triggered by a clock clk and chip-enable signal ce. The internal
propagation delay of the corresponding multiplexers is modeled
by times τMUXi and τMUX j (green labels in Fig. 2). Furthermore,
let τi = τASRi + τMUXi and τ j = τASR j + τMUX j . The third delay
describes the time required to forward a signal from the output
oMUXk of a multiplexer k, 3 ≥ k ≥ 1, to the 1-data input of
MUXk−1 on the carry chain. This delay will be denoted as
τCARRYk (cf. blue arrows in Fig. 2) in the following. Depending
on the configuration of active ASRs, the sum of delays needs
to be considered on the carry chain. We denote the propagation



delay between the output of multiplexer MUX j and the output of
MUXi as τi, j. Since the 1-data input of MUX3 is constantly set
to 1 (cf. Fig. 2), τi, j is the time that the signal oMUX j – carrying
a 1 – is present at the 1-data input of MUXi before its level
changes to 0. In fact, this time depends on the choice of MUXi
and MUX j as well as the resulting number of multiplexers in
between, since routing length and gate delays will sum up with
the distance of multiplexers and thus considerably determine the
propagation time. Hence, τi, j can be estimated as follows:

τi, j =
j−1

∑
k=i

τCARRYk+1 + τMUXk (2)

Based on this model, the question of whether the PUF response
is 0 or 1 can be answered by identifying three different delay
scenarios. These three scenarios are shown in Fig. 3, where
Fig. 3a illustrates the first case where the switching of the
output signal sASRi of shift register ASRi occurs faster than the
switching of the output signal sASR j of ASR j. In this case, after
the propagation delay τMUXi , MUXi propagates the 1 signal from
oMUX j to its output oMUXi until MUX j switches to 0, ending
the shown glitch of width δ . Now, if this glitch is wide enough,
the asynchronous input of the flip-flop (cf. PRE Fig. 2) is set
to 1. Since the signal propagation time induced by both the
ASR and the multiplexer is crucial for glitch generation, the
first scenario can be simplified to the case when τi < τ j. Here,
the delay τi, j induced by the propagation delay between MUX j
and MUXi determines the width δ of the glitch.

For the case when τi is larger than τ j, the time τi, j is decisive
for whether a glitch occurs at all. This is shown in the second
scenario, where Fig. 3b illustrates the case of a small value
of τi, j. In this scenario, the switching of the output oMUX j is
always triggered earlier than that of MUXi, so that no glitch
occurs and thus the output oMUXi remains always 0.

In the third scenario, τi is still assumed larger than τ j, but in
this case smaller than the sum of τi, j and τ j. As the 1 signal
of oMUX j is present for the time τi, j before it is truncated to
0, an overlap with the switching of MUXi occurs, which again
allows a glitch to appear, only this time most probably not
as wide as in scenario (a). In this context, we have observed
that such a long propagation of τi, j occurs when the active
ASR combination (ASR0,ASR3) is chosen, since the signal
propagation time between the active multiplexers reaches its
maximum in this configuration.

According to Fig. 3, the created glitch width δ depends on
the absolute differences between τ j + τi, j and the delay τi. It
follows that the PUF output can be determined according to
Eq. (3) by comparing (τ j + τi, j)− τi with a minimum glitch
width δmin:

PUF =

{
1 (τ j + τi, j)− τi ≥ δmin

0 (τ j + τi, j)− τi < δmin
(3)

Such a minimal glitch width is required to set the PUF bit to
1, since the resistive and capacitive load (RC) on the routing
path from oMUX0 to the flip-flop act as a low-pass filter [10],
thereby filtering out high-frequency pulses, which would keep
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Fig. 3: Timing representation of the PUF circuit to illustrate
three possible and simultaneously tunable delay scenarios and
their impact on glitch generation.

the PUF bit at 0. Vice versa, if the created glitch δ is wider than
δmin, the probability of reaching the flip-flop’s preset input and
setting the PUF bit to 1 increases. From this, we can infer that
adjusting the glitch width by the address-tunable propagation
delays will increase or decrease the chance of obtaining a 1 in
the PUF response. In this way, the configuration of both ASRs
and their pairing with the carry chain dictates the outcome of
the PUF circuit.

Previous work [21] has shown that asymmetries in manual
routings when implementing PUFs on FPGAs can lead to a
distortion in the delay differences and thus potentially predictable
responses and reduced response entropy. For this reason, special
attention was paid to ensure that the delay differences are only
affected by the hard-wired routings of the ASRs and carry chain
multiplexer primitives. Furthermore, the described design can
be implemented on Xilinx FPGAs in a single SLICEM slice
as part of a Configurable Logic Block (CLB) [22], making it
one of the smallest FPGA-based PUF designs available [16, 23].
Another key advantage of CHOICE is that the entire circuit is
fully described in HDL and can be processed automatically by
synthesis, place, and route tools without any manual intervention,
while a fast exploration of the whole configuration space is
possible via software. The next section provides an experimental
evaluation of the proposed CHOICE PUF architecture and how
its configuration space can be explored to tune the statistical
properties of uniqueness and robustness.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed tunable PUF
architecture on a Xilinx Zynq xc7z010clg400-1 Programmable
System-on-Chip (PSoC) on N = 6 different Digilent Zybo
evaluation boards (labeled as B0-B5) in terms of tunability
of their PUF signatures w. r. t. uniformity, uniqueness, and BER.
For this purpose, a co-design on the mentioned PSoC has been
designed, where PUF configuration and readout routines are
performed in software on a CPU of the PSoC, while CHOICE
PUF and configuration interfaces are implemented within the
programmable logic of the FPGA. Note that even if the selected
configuration of a PUF should be known, the circuit is still
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Fig. 4: CHOICE PUF response evaluated for uniformity on
six different FPGA boards (B0-B5) across all 6,144 different
configuration levels. As can be seen, configurations can be found
for all boards to produce PUF responses in a uniformity range
between 0% to 100%. Highlighted in green is also the interval
of configurations leading to the highest uniqueness (see also
Fig. 5).

uncloneable when selecting it to achieve a certain level of
uniqueness and uniformity, as will be detailed next.

We implemented and tested a 128-bit (Z = 128) PUF, as
this is a reasonable length for secure device authentication, but
also corresponds to the typical key length of, for instance, an
AES encryption module. For each board b ∈ [0 : N − 1] and
configuration option c ∈ [0 : 6,144], M = 1,000 independent
measurements were performed with each measurement m ∈ [0 :
M−1] delivering a response rm

b,c ∈ {0,1}Z . In this context, let
the nominal response r∗b,c denote the most frequently occurring
response in these measurements.

We tested different statistical properties: First, we evaluated
the proportion of zeros and ones in the PUF response for each
configuration. As a metric of interest, we computed the so-
called uniformity of the nominal PUF response according to the
following formula:

Uniformityb,c =
1
Z

Z−1

∑
i=0

r∗b,c(i) · 100% (4)

where r∗b,c(i) corresponds to the i-th bit of the respective nominal
response. Here, a value of around 50% meaning an equal number
of ones and zeros in the nominal response is a good indicator
for high randomness of the PUF.

First, we evaluated the uniformity for each configuration on
each board to see in what range the response can be tuned in a
CHOICE PUF. Fig. 4 shows the uniformity of the 6,144 different
configurations, where configurations have been sorted according
to their uniformity value. As can be seen from the curves, it is
possible to adjust a PUF response within the entire uniformity
range of 0 to 100% across all six boards.

We then calculated the average inter-die uniqueness per
configuration level across all boards. This is done by comparing
the nominal responses across all boards for a given configuration
level c on the basis of the Hamming distance HD by the following
formula:
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Fig. 5: CHOICE PUF response evaluated for uniqueness across
all 6,144 different configuration levels. As can be seen, there is
a rather wide range of configurations in which the PUF response
can be tuned to reach an optimal uniqueness of around 50%.

Uniquenessc =
2

N(N −1)

N−2

∑
i=0

N−1

∑
j=i+1

HD(r∗i,c,r∗j,c)
Z

· 100% (5)

Here, a Hamming distance close to Z/2 for each pair of boards
is desirable, as this leads to an optimal PUF uniqueness of 50%,
which means that when comparing responses between multiple
boards, these would distinguish themselves then in half of the
number of bits on average, which is where the unpredictability
properties of the PUF come from. As can be seen in combination
of Fig. 4 and Fig. 5, a large band of tunable configurations
exists for tuning the response in terms of uniformity between
30% to 70% (cf. green interval in Fig. 4) and at the same time
providing a strong uniqueness of around 50%, as presented in
Fig. 5. In fact, within this configuration interval, we found 147
different configurations providing a uniqueness between 49%
and 51% (cf. green sector in Fig. 5).

Finally, we evaluated the reliability of each configuration
by calculating the Bit Error Rate (BER) of a configuration
c on board b as the average Hamming distance over all M
measurements from the nominal value r∗b,c:

BERb,c =
1
M

M−1

∑
m=0

HD(r∗b,c, rm
b,c)

Z
· 100% (6)

Here, an optimal reliability corresponds to a BER of 0%, as
cryptographic applications such as secure key generation require
a singular static secret that must not change. However, from an
information theoretical point of view, it should be noted that
more robust responses also have lower entropy and thus less
randomness in the bits. In other words, a BER of 0% is achieved
only if every PUF bit tends to zero or one with 100% certainty.
CHOICE provides a solution to this reliability/randomness
trade-off by providing multiple PUF implementations that
already satisfy the randomness resp. uniqueness requirements,
which can then be used to select only those configurations
that additionally achieve a low BER. The advantage of this
procedure is demonstrated in Fig. 6. The diagram shows all
147 configurations from the previous evaluations (Fig. 4 and
Fig. 5) that provide an average uniqueness between 49 and 51%
(blue line), while the average BER (red line) across all these
configurations varies between low 2.2% and 3.8%. A closer look
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Fig. 6: CHOICE offering 147 different PUF configurations that provide an average uniqueness between 49% and 51%, while the
average Bit Error Rate (BER) is constantly below 4% across six FPGA boards (B0-B5) investigated. By choosing a board-specific
configuration, BERs even below 1.5% can be achieved, as marked by the colored triangles.

reveals that 13 configurations even provide an average BER of
less or equal to 2.5%.

In direct comparison to related work, the advantages of
CHOICE becomes even more apparent: By choosing the
configurations that produce the lowest BER on a board as
shown by the colored triangles in Fig. 6, we can even provide a
device-specific PUF setup. Consequently, such a device-specific
PUF setup could take into account the individual conditions
of the board and thereby even account for chip degradations
due to aging and stress, providing better BER characteristics
compared to a single unchangeable PUF implementation. This is
demonstrated in Table I by comparing the security-related PUF
properties and resource requirements of CHOICE against the
original design by Anderson [10] and two of its advancements
namely by Zhang et al. in [24] and Usmani et al. in [6]. Here,
it can be seen that the chosen configurations can compete with
the PUF in [24] in terms of uniqueness, while being close to the
achieved average BER of [6] and at the same time outperform
all approaches in terms of slices required per PUF bit and
BER when comparing with the board-specific BERb,c with a
remarkable minimum of only 0.97% found on board Nr. 3.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented CHOICE, a tunable class of FPGA-
based PUF designs that offers 6,144 different configuration
levels to provide device-specific PUF responses. As has been
shown, CHOICE outperforms existing work in terms of resource
utilization and Bit Error Rate (BER), but more importantly due to
its tunability, it adds a tremendous value over previous work on
static PUF designs by simultaneously providing a high uniqueness

and reliability over a wide range of configurations. Here, we
demonstrated that PUF and its configuration can be implemented
in only a single FPGA slice, while achieving very low BERs
below 1.5% on six investigated FPGA boards. In future work, we
want to approve our concept of response-tunable PUF designs
also for other FPGA ICs. Moreover, it is planned to investigate
more deeply the applicability of a self-configuring calibration
approach that takes independently aging and temperature effects
into account in order to provide a long-term calibration strategy
to maintain uniqueness and reliability characteristics of the PUF
circuit. To support fellow researchers in this research direction,
our PUF design and exploration framework will be made available
at: [25].

TABLE I: CHOICE resource requirements (Slices) as well as
uniqueness and BER over six investigated PSoC boards with
corresponding configuration settings in comparison to related
work [6, 24, 10].

PUF Properties Configuration c

PUF Slices
Bit Uniquenessc avg. BER BERb,c i, j ai a j

CHOICE on Boards
b ∈ {B0, . . . ,B5}

1 49.17 % 2.71 % 1.27 % 1,3 25 27
1 50.57 % 2.39 % 1.39 % 0,2 25 19
1 49.06 % 2.96 % 1.06 % 1,2 11 31
1 50.88 % 2.75 % 0.97 % 1,2 0 7
1 50.47 % 2.81 % 1.15 % 1,2 18 14
1 50.21 % 2.37 % 1.44 % 1,2 28 12

Usmani et al. [6] 2 46.25 % 2.39 % / / / /
Zhang et al. [24] 4 49.68 % 3.17 % / / / /
Anderson [10] 2 48.28 % N/A / / / /
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