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Abstract: A set theory model of reality, representation and language based on the relation of completeness 
and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in 
quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each 
other.  The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism 
is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano 
arithmetics having a remarkable symmetry to the axiom of choice. The quantity of information is interpreted 
as the number of elementary choices (bits). Quantum information is seen as the generalization of 
information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. 
The condition for the Turing machines to be independent of each other is reduced to the state of Nash 
equilibrium between them. Two relative models of language as game in the sense of game theory and as 
ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal 
sense) are deduced. 
 
Key words: completeness, halting problem, incompleteness, information, language, quantum computer, 
quantum information, quantum mechanics, reality, representation, Turing machine   
 
INTRODUCTION 

Philosophy of information underlies the contemporary philosophy of science (Dodig-
Crnkovic 2003).  The significance of computation models such as a Turing machine is crucial 
(Dodig-Crnkovic 2011). Cognitive revolution, virtuality and good life are closely linked to each 
other (Dodig-Crnkovic 2013). 

A formal approach to reality by means of completeness is explored in this paper. The 
problem of completeness in mathematics and even in an experimental science such as quantum 
mechanics has been well investigated. Furthermore, reality seems to be definable just by being 
complete and opposed to any representation of it for representation remains incomplete always as 
a principle.  

Thus the pair of completeness and incompleteness in turn seems to be able to underlie the 
formal idea of language.  

Another and practical viewpoint links reality, representation, and language to calculation 
by the concept of Turing (1936) machine being the mathematical model of our computers. Any real 
calculation is finite unlike that reality meant or modeled by it. Indeed after the Gödel 
incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; 
Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness 
to be suggested for two ones. That is consistent with the provability of completeness by means of 
two independent Peano  arithmetics discussed in Section I.  
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Many modifications of Turing machines cum quantum ones are researched in Section II for 
the Halting problem and completeness. The model of two independent Turing machines seems to 
generalize them in that relation.   

Then, that pair of two independent Turing machines can be postulated as the formal 
definition of reality therefore being complete unlike any of them standalone, remaining incomplete 
without its complementary counterpart. Representation is formal defined as a one-to-one mapping 
between the two Turing machines, and the set of all those mappings can be considered as 
“language” therefore including metaphors as mappings different than representation. Section III 
investigated that formal relation of “reality”, “representation”, and “language” modeled by (at least 
two) Turing machines. 

The independence of (two) Turing machines is interpreted by means of game theory and 
especially of the Nash equilibrium in Section IV. 

The idea of Turing machine can be interpreted as a fundamental philosophical idea (Dodig-
Crnkovic 2013). The formal concepts of reality, language and representation need to transcend 
somehow any finiteness and calculation: The simplest way for this doubles each of them to an 
independent pair therefore involving choice and information as the quantity of choices. That 
approach seems to be equivalent to that based on set theory and the concept of actual infinity in 
mathematics, on the one hand, and allowing of practical implementations.    
 
I COMPLETENESS OF MATHENATICS AND COMPLETENESS OF QUANTUM MECHANICS 

Cantor’s set theory involved actual infinity. However many paradoxes directly or indirectly 
linked to the concept of infinite set were found. One of the first was Russell’s (Russell 1902). 
Hilbert suggested his program for the foundation of set theory and all mathematics on arithmetic 
(Hilbert 1931; Kreisel 1958). Thus the “consistent part of actual infinity” in set theory should be 
reduced to that of finite natural numbers as the auxiliary notion of any finite number having some 
property if any that exists, i.e. utilizing the “𝜀𝜀-symbol” (Hilbert, Bernays 1970), or “potential 
infinity” seen as any indefinite finiteness.  

Nevertheless, Gödel (1931) has managed to show that neither any formal system containing 
Peano (1889) arithmetic neither the arithmetic itself can be both complete and consistent. The result 
of Gödel is crucial for the philosophy of mathematics (Bazhanov1993). 

In fact, Peano (1889)’s axioms had inspired (Gunderson 2011: 22; Peano 1889: 5) by 
Dedekind (1888)’s foundation of the natural numbers on set theory and especially on the well-
ordering of infinite set1. Mathematical induction is crucial among Peano’s axioms: It is neither 
provable in type theory (Royse 1969) nor explanatory (Lange 2009).  

Furthermore, at least two different enough types of consistent proofs immediately referring 
to the consistency of Peano arithmetic appeared (Gentzen 1936; 1938; Smorynski 1973; Kanckos 
2010). Both were interpreted by Gödel in his works (Gödel [1938]; Gödel 1958: Tait 2005; 2010). 

Almost at the same time, a physical and thus experimental science, quantum mechanics met 
the problem of completeness for the hypothesis of the so-called hidden variables (Einstein, 

                                                            
1 Dedekind used different terms and definitions and the correspondence to ours can be only incomplete. 



Podolsky, Rosen 1935). In fact, it as well as Schrödinger’s study (also 1935) forecast the 
phenomena of entanglement on the base of Hilbert space. A few theorems (Neumann 1932: 167-
173; Kochen and Specker 1968) were deduced from the mathematical formalism of quantum 
mechanics, namely the infinitely dimensional complex Hilbert space. Bell (1964) demonstrated 
how the hypothesis of hidden variable might be tested experimentally. The corresponding 
experiments (Clauser, Horne 1974; Aspect, Grangier, Roger 1981; 1982) and many, many others 
after that categorically show that no hidden variables in quantum mechanics, and consequently it 
is complete.  

The key for the validity of Gödel (1931)’s result to Hilbert’s program is within the former 
itself and even within its core: that statement [𝑅𝑅(𝑞𝑞);  𝑞𝑞] stating to be false. Its approach can be 
described as skeptical to finitism (Resnik 1974: 145), but it can be referred to itself generating a 
kind of skepticism about the skepticism in turn. Furthermore Hilbert’s program can be relevantly 
modified after re-estimating the meaning of Gödel incompleteness (Murawski 1999: 303-323). 
Gödel has written (1931: 175 [footnote 14]) that any antinomy, e.g. that of Liar (even mentioned 
expressly by Gödel ibidem), can serve to construct the proof of incompleteness. Gödel’s proof 
depends crucially on the disjunctive distinction between level and meta-level in the 
statement [𝑅𝑅(𝑞𝑞);  𝑞𝑞]: This is an observation, which had utilized by Russell in his theory of types 
(Principia [both editions]:  63[I]; 60[II]). 

One can “unfold” the Liar paradox into Yablo (1993)’s paradox: Both share the “fixed point 
structure” (Priest 1997: 242). Then if one suggests the “relativeness of the concept of set” (Skolem 
[1922]) and therefore not only that of different “inifinities”, but not less also that of finiteness and 
infinity2, the transition between finiteness and infinity will need an analogical jump. “The discrete 
in the continuous” features mathematics also according to Browser (Stigt, 1979: 403). 

The difference in the conditions of Gödel’s incompleteness and Gentzen’s completeness is 
crucial (Horská 2014). In other words, the problem is to be localized that specific element, to which 
the opposite result in each of both case is due: As the primitive recursive functions in Gentzen 
(1936 and 1938)’s approach are equivalent to Peano arithmetic being just all possible calculations 
in Peano arithmetic, the single added condition is transfinite induction in comparison to Gödel’s 
opposite result. Furthermore, transfinite induction cannot be proved in Peano arithmetic (Gentzen 
1943) therefore being an independent additional condition3.  

Transfinite induction can be relevantly defined even within Peano arithmetic (Sommer 
1995) as well as ordinals and the corresponding fixed points investigated (Jäger 1993). Thus 
nonstandard models are also definable in it (Ikeda, Tsuboi 2007).   

Gentzen himself linked his approach for proving completeness to Hilbert’s finitism (Sieg 
2012; Gentzen 1954) and intuitionism (Gentzen 1974; 1974a). 

The well-orderings of transfinite induction can be rather naturally linked to intuitionist 
theories (Howard, Kreisel 1966; Scarpellini 1969; 1972; Friedman, S̆čedrov 1985). Bar induction 
                                                            
2 “Sogar die Begriffe “endlich”, “unendlich", "einfach unendliche Reihe” usw. werden nur relativ innerhalb der 
axiomatischen Mengenlehre” (Skolem 1970[1922]: 143). 
3 By the way, transfinite induction is not necessary for the consistency proof of a system of Turing machines (Caporaso 
1978). 



can be seen as a two dimensional induction in virtue of the bar theorem4 (Kleene, Vesley 1965: 43-
51). Bar induction added to constructive ZFC can prove a kind of consistency of set theory (Rathjen 
2006). 

The second-dimensional Peano arithmetic copes with the argument of diagonalization 
(Montagna 1980) restoring it from one-dimensional Gödel’s use to the initial two-dimensional 
Cantor’s use. 

Indeed Heyting arithmetic is also complete in an exact sense (Visser 1982; Kanckos 2010) 
just as Gentzen’s approach to Peano arithmetic can be discussed as a proof of completeness. The 
so-called Dialectica interpretation of Heyting arithmetic by Gödel (1958) is analogical in a sense.    

As to the origin of the incompleteness problem in quantum mechanics, one may mean the 
following: Gödel and Einstein are both Jews, refugees from Nazism, and even close friends in 
Princeton (Yourgrau 2006). However, Gödel came to Princeton in 1940. The famous triple article 
of Einstein, Podolsky, and Rosen “Can Quantum-Mechanical Description of Physical Reality Be 
Considered Complete?” was published in 1935. The complex Hilbert space implies the absence of 
hidden variables (Neumann 1932: 167-173; Kochen, Specker 1968) and thus the completeness of 
quantum mechanics. 

One can demonstrate that Hilbert’s par excellence finitist idea about 𝜀𝜀-symbol (Hilbert, 
Bernays 1970: 9-18) as well interpretable as partly equivalent to Gentzen’s transfinite induction 
(Kreisel, 1958a; Zach 2003; Towsner 2005) corresponds to the complementation of Peano 
arithmetic with choice: The ε-symbol contents that choice if a given number exists or not: 
 
II TURING MACHNINES 

One can summarize that the incompleteness of any finiteness and thus finiteness at all is 
divided from the completeness of infinity only by a single step, but forever by a step. That 
impossible step is represented and named differently in the mentioned above approaches to 
completeness. Nevertheless, its essence remains always to be anything else beyond finiteness, or 
finiteness complemented by a gap. That gap in turn can be always represented as a second 
dimension of finiteness and thus as a second finiteness. Furthermore, finiteness at all can be well 
modeled as Peano arithmetic, and that gap by a second dimension of it or as a second and absolutely 
independent Peano arithmetic necessary for the first one to be complemented to completeness. 

In the present section, the same result will be interpreted in terms of technically 
implementable models, those of Turing machines, i.e. computers. 

Turing (1936) suggests the idea that any calculation having a result and thus any action of 
a device such as a contemporary computer can be represented as a finite series of natural numbers, 
and any that series in turn as a finite series of binary choices, just the work of what is named today 
“Turing machine”. 

Consequently any that calculation is a finite subset of natural numbers therefore obeying 
Peano axioms and all possible calculations eventually including those, which cannot finish for any 

                                                            
4 The two-dimensionality can be contrasted on the background of the one-dimensionality of the corresponding theorem 
(König 1927) in mathematics based on set theory. 



finite time, coincides with the set of all subsets of the Peano natural numbers. This hints that the 
Gödel (1931) result can be interpreted immediately as to Turing machines and even the statement 
[𝑅𝑅(𝑞𝑞);  𝑞𝑞] stating (for itself) not to be true. In fact, that interpretation is “halting problem” (Turing 
1936): a Turing machine cannot resolve the problem whether it can resolve or not any problem in 
a finite time.   

Thus the halting problem is an example of what divides any Turing machine from 
completeness. 

Many modifications of “Turing machines” have been suggested and explored whether they 
might resolve the halting problem. One can prove that some of them might, some of them might 
not. However no modified Turing machine, which can resolve the halting problem therefore being 
in a sense complete, cannot be technically realized for it contains some pure mathematical concept 
such as infinity. 

Some of the explored modifications of Turing machine are those: working “discrete 
transfinite time” (Welsh 2009); knowing “their own Gödel-sentences” (Tennant 2001); making 
“binary social choice” in “an infinite society” (Tanaka 2008); with “self-replication” (Sayama 
2008); “connected to the undecidability of the halting problem” (Pavlotskaya 2002); “non-erasing”, 
which are on the “frontier between a decidable halting problem and universality” (Margenstern 
1994); having “two types” (Maass et al 1993); having two states (Herman 1969); working “infinite 
time” (Hamkins, Seabold 2001; Lenzi, Monteleone 2004); being “generalized one-state Turing 
machines” (Herman 1969b); “with n-dimensional tape” (Herman 1968); and many, many others.  

Post (1936) describes the logical model of recursive process, which can be considered as a 
variant of Turing machine (De Mol 2006). A series of publications refer to that “Post machine” and 
the halting problem (Aanderaa, Fischer 1967). 

 One can say that the above enumeration resembles Foucault (1966:7)’s famous re-citation 
via Borges from the Chinese encyclopedia about the kinds of animals right from “Les mots et les 
choses” translated in English as “The Order of Things”: just Borges’s quotation is that, of which 
“the book first arose out” (Foucault 1970: xiv). In fact, one of the main theses of Foucault about 
the “epistemic transformation” of knowledge by similarity to that by both identity and difference, 
right illustrated by the re-citation from Borges, corresponds directly to the transformation in the 
present paper from infinity to the units of identity and difference, i.e. the information binary units: 
the bits.  

The quoted publications belong to the huge set investigating the relation between the 
“halting problem” and “Turing machine” as by a kind of “eidetic reduction” of the latter as by that 
of the former (Hooper 1966; Fischer 1969; Bloom 1971; Herman 1969a; 1971; Selman 1974; Hay 
1975; Pobedin, 1975; Shalyt-Margolin, Straznev, Tregubovich 2007; Gaβner 2008; Manin 2012). 

At least a few areas of research “beyond Turing machines”, which are already embodied 
technically in our contemporary computers, can be outlined: 

Hyper-computation comprises as pure theoretical models including fundamentally 
unimplementable concepts, e.g. infinity, as technically realizable ones e.g. beyond the Church – 
Turing thesis and therefore exploring calculation beyond recursive functions (Siegelmann 1996; 
Copeland 2002; Stannett 1990; 2006). 



Human brain is an obvious example that there exists something real, which exceeds a 
contemporary computer unconditionally. Its nervous structure and functions might be interpreted 
by scientific models and even partly modeled in technical devices (Basti, Perrone 1889; 1995; Basti 
2001). 

The concept of quantum information allows of reformulating quantum mechanics entirely 
in terms of information theory. Thus nature and the universe can be represented as a single huge 
calculating device, a quantum computer. The quantum computer (Benioff 1980; 1998; Feynman 
1996; Deutsch 1885; 1989; Deutsch, Ekert, Lupacchini 2000; Mahler, Gemmer, Stollsteimer 2002; 
Nishimura, Ozawa 2009) is an area of investigation promising a fundamentally new generation of 
computers to be manufactured in the foreseeable future.    

The task of the present paper is not to suggest some new solving of the completeness 
problem particularly as to Turing machines, but rather to demonstrate that the problem coincides 
with its solution in a sense as both have one the same formal structure: that of an elementary choice, 
a bit of information.  

This can be illustrated by the representation of the complex Hilbert space underlying 
quantum mechanics and therefore quantum computers in terms of Peano arithmetic: 

First, the complex Hilbert space involves infinity at least in two independent and even 
symmetric ways:   

1. It is infinitely dimensional: It can be discussed as a generalization of Peano arithmetic 
and even as two of those together with its dual space coinciding with it identically. Indeed it (or 
“both”) can be represented as an infinite series of qubits, in each of which can be “recorded” two 
complex numbers (𝛼𝛼 and 𝛽𝛽) such that |𝛼𝛼|2 + |𝛽𝛽|2 = 1. If any qubit being a unit ball is shrunk to a 
point, and conventionally granting 𝛼𝛼 = 0 and 𝛽𝛽 = 1, a Peano arithmetic will be obtained. So, its 
“rough structure” is representable as two complementary and therefore independent, but identical 
Peano arithmetics.    

2. Each of its “axes” is infinite, two: It can be discussed as a generalization of the usual 
three-dimensional Euclidean geometry5 where furthermore any axis is complex and representable 
as a qubit. Thus it unlike the real Hilbert space does not suggest any well-ordering within any axis 
by itself, but only in virtue of the axiom of choice. So involving also its “fine structure”, the 
complex Hilbert space is thinkable as a doubled countable set of uncountable continua. 

3. If the axiom of choice is applied, any qubit in turn is identifiable as the basic “rough 
stricture” of two independent Peano arithmetics; and vice versa: the “rough structure” without well-
ordering corresponds to any qubit (or its “fine structure”): The complex Hilbert space is perfectly 
symmetric in a sense including the axiom of choice. 

Second, what that perfect structure should describe adequately according to quantum 
mechanics is the system of the measured quantum system(s) and measuring device(s). Thus 
quantum mechanics, unlike classical one, needs a dual structure similar to that of any statistical 
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(Tazzioli 2003). 



thermodynamic theory consisting both of too many but very, very tiny microscopic elements and 
their large macroscopic system.  

Two incommensurable finiteneses turn out to be involved in thus: the one for the set of tiny 
elements with the quantity of action commeasurable with the Plank constant and the other for their 
common system with the macroscopic measuring device(s).   

       
III COMPLETENESS, LANGUAGE, REALITY, AND REPRESENTATION BY TURING MACHINES 

The mechanism of correspondence and its formal conditions are investigated as a formal 
and ontological model of language. Correspondence allows of a notion of truth to be incorporated 
in the utilized model of information (Dodig-Crnkovic 2008). The concepts of human representation 
mean always certain oppositions (Giovagnoli 2013: 162). One can refer also to the “doubling of 
the degrees of freedom” (Basti 2013: 151-153). 

The relevant metaphor is that reality and its image in language “speak to each other” in a 
dialog in order to “agree with each other”. Reality is just the state of “agreement”, which is modeled 
by the state of equilibrium of the two computers.  

Language is modeled by reducing to any infinite countable set (𝐴𝐴) of its units of meaning, 
either words or propositions, or whatever others. That language is furthermore modeled in the 
computers in a few steps: 

– The units of meaning are reduced to the minimal possible ones, bits 
– The infinite countable set is modeled by the independence of the same pair of each other:  
– So: infinity is represented by its “gap” to finiteness just a second dimension. 
That infinite countable model of language includes all possible meanings, which can be 

ever expressed rather than the existing till now, which would always a finite set. This corresponds 
to the independence, the “gap” between the computers, which can be overcome by each of them 
only in an infinite set of working steps determining the value either “0” or “1” for each cell of an 
infinite “tape”. However, the tandem of both, i.e. in dialog can overcome that gap in finite set of 
steps and thus, in finite time. 

The set-theory model can be also involved: The external twin of reality is introduced by 
another set (𝐵𝐵) such that its intersection with the above set of language to be empty. The union of 
them (𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵) exists always so that a one-to-one mapping (𝑓𝑓: 𝐶𝐶 ↔ 𝐴𝐴) should exist under the 
condition of the axiom of choice 

The mapping (𝑓𝑓) produces an image (𝐵𝐵(𝑓𝑓)) of the latter set (𝐵𝐵) within the former set (𝐴𝐴). 
That image (𝐵𝐵 (𝑓𝑓)) serves as the other twin of reality to model the reality within the language as 
the exact representation of that reality out of language (modeled as the set 𝐵𝐵). One designates the 
image of 𝐵𝐵 into 𝐴𝐴 through f by “𝐵𝐵(𝑓𝑓)” so that 𝐵𝐵(𝑓𝑓) is a true subset of 𝐴𝐴.  

The necessity and sufficient condition of that representation between reality both within 
and out of the language is just the axiom of choice. Indeed one needs only two well-ordered infinite 
series equivalent to the axiom of choice by the meditation of the so-called well-ordering theorem 
(or “principle”). The pair of the two Turing machines though each of them being finite can represent 
effectively the two infinite series by the relation of independence to each other. 



The axiom of choice should be situated between representation and metaphor. The relation 
between the sets 𝐵𝐵(𝑓𝑓) and 𝐵𝐵 cannot be defined unambiguously if the axiom of choice does not 
hold. Then the vehicle between the two “twins” can be only metaphor. This corresponds to the case 
where the Turing machines depend partly on each other or share some infinite segment of their 
“tapes”: Any operation of any of both machines within that segment is necessarily valid for the 
other one, and this is not true out of that segment. 

Two alternative, but equivalent approaches are further possible if one named the one Turing 
machine “reality”, the other “representation: the image of reality in language”, and their pair 
“language”: 

1. “Game of reality and its image”: The computer “Reality” calculates “things”, and 
“Representation” “words”. The “things” and “words” are absolutely different from each other for 
both Turing machines, “Reality” and “Representation”, are also absolutely independent of each 
other. Their game can be called “Naming”. “Reality” calculates something, and “Representation” 
has to name it. “Reality” loses if it does not manage to create a following new thing, which is not 
in the list of already created. “Representation” loses if cannot give a new name of the lastly created 
new thing yet without any name. The game will generate a one-to-one mapping between “things” 
and “words” unlimitedly  

2. “Language as ontology”: One can suggest an initial state, “Paradise”, where all things 
and words coincide and thus the two Turing machines, too. It implies the correct name of anything 
in definition: Then any of the two yet unnamed machines cannot lose in principle. However that 
state is not stable. Any fluctuation in any of them will initiate the beginning of individuation, 
separation tending to the stable absolute independence of each other. A part of anything will be an 
identical part in the corresponding word in the process of individuation: The things and words will 
be partly entangled. The mapping of the things into the names will not be one-to-one yet. Those 
mixed states can be defined as “metaphors”, and the class of all metaphors as “language as 
ontology”. 

The problem of “meta-naming”, i.e. the naming of “Reality” and “Representation” would 
arise. It can be resolved so:  

“Inelegantly”: “Reality”, i.e. that computer, where the first fluctuation does happen, doubles 
itself therefore creating a new “Paradise” and implying a “hierarchy of types” for the “bad infinite 
series” of doublings. “Representation” calls that somehow, and we call it “an elementary choice” 
or “a bit of information”.  

 “Elegantly”: “Reality” creates a bit of information and “Representation” calls it somehow.  
The difference between the completeness of reality and the incompleteness of 

representation is only a bit of information. Nevertheless there are too many ways for that bit to be 
deduced, seen, understood or interpreted. Language is definable also as the class of those ways, i.e. 
as the inelegant, but gradually extending description of the fundamental choice embodied in that 
bit.    

   
 
 



IV TURING MACHINES IN NASH EQUILIBRIUM 
A few early papers of Nash (1950; 1950a; 1951) prove a generalization (Park 2011) of 

Neumann’s approach (Neumann, Morgenstern 1953: 238-290; Israel, Gasca 2009: 128-133; Nash 
et all 1996). The quotability of “Nash equilibrium” grows exponentially (Mccain, Mccain 2010). 
Nash obtained the Nobel Prize in economics (Milnor 1995). 

The Nash equilibrium can help to resolve the problem about how two or more Turing 
machines being independent of each other constitute a whole anyway. They should “play a game”, 
which evolves into that equilibrium gradually. For example, two Turing machines should be 
initially in a “coherent state” coinciding therefore into a single one, which would decohere 
decreasing the degree of entanglement smoothly to two ones absolutely independent of each other.  

This would correspond to the mapping of a qubit into a bit, which is inadmissible according 
to the Kochen – Specker theorem (Kochen, Specker 1968: 70) and nevertheless necessary once the 
axiom of choice is postulated. 

The argument demonstrates how the Nash equilibrium and choice even in quantum 
mechanics rather than only in game theory are inherently linked to each other for the finiteness of 
a single Turing machine to be completed so that to represent a quantum Turing machine:  
The “second” Turing machine necessary for that can be interpreted as calculating the relative state 
of the first one according to the reference frame of a certain system comprising it. The 
independence of them embodied in the concept both of Nash equilibrium and choice corresponds 
to their complementarity in the sense of quantum mechanics.       
 
CONCLUSIONS AND FUTURE WORK 

Finiteness can be complemented to completeness in different ways explored in mathematics 
and quantum mechanics. One can utilize them for the formal definition of reality postulating it as 
what is complete unlike any representation of it. Then the fundamental relation of the completeness 
of reality and the incompleteness of any of its representations can serve for the formal and 
ontological definition of language. 

Turing machines in the Nash equilibrium can model practically that approach. Furthermore 
a quantum computer defined as a quantum Turing machine can be decomposed to those Turing 
machines in the process of reaching the Nash equilibrium. 

Implementations in computer philosophy, science, and technics seem to be possible.      
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