
EasyChair Preprint
№ 14726

Efficient Self-Supervised Neural Architecture
Search

Sri Aditya Deevi, Asish Kumar Mishra, Deepak Mishra,
L Ravi Kumar, G V P Bharat Kumar and
G Murali Krishna Bhagavan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 6, 2024



Efficient Self-Supervised Neural Architecture Search
Sri Aditya Deevi∗

Mission Simulation Group
U.R. Rao Satellite Centre, ISRO

Bengaluru, India
saditya@ursc.gov.in

Asish Kumar Mishra∗
Mission Simulation Group

U.R. Rao Satellite Centre, ISRO
Bengaluru, India

asishkm@ursc.gov.in

Deepak Mishra
Department of Avionics

Indian Institute of Space Science and Technology
Thiruvanathapuram, India
deepak.mishra@iist.ac.in

Ravi Kumar L
Mission Simulation Group

U.R. Rao Satellite Centre, ISRO
Bengaluru, India

rkkumarl@ursc.gov.in

Bharat Kumar G V P
Mission Simulation Group

U.R. Rao Satellite Centre, ISRO
Bengaluru, India

bharat@ursc.gov.in

Murali Krishna Bhagavan G
Mission Simulation Group

U.R. Rao Satellite Centre, ISRO
Bengaluru, India

bhagavan@ursc.gov.in

Abstract—Deep Neural Networks (DNNs) have successfully
demonstrated superior performance on many tasks across mul-
tiple domains. Their success is made possible by expert prac-
titioners’ careful design of neural architectures. This manual
handcrafted design requires a colossal number of computational
resources, time, and memory to arrive at an optimal architecture.
Automated Neural Architecture Search (NAS) is a promising
area to explore to overcome these issues. However, optimizing
a network for a job is a tedious task that requires lengthy
search time, high processor needs, and a thorough examination
of enormous possibilities. The need of the hour is to develop a
strategy that saves time while maintaining an excellent level of
accuracy. In this paper, we design, explore, and experiment with
various differentiable NAS methods which are memory, time,
and compute efficient. We also explore the role and efficacy of
self-supervision to guide the search for optimal architectures.
Self-Supervision offers numerous advantages such as facilitating
the use of unlabelled data and making the “learning” non-task
specific, thereby improving transfer to other tasks. To study
the inclusion of self-supervision into the search process, we
propose a simple loss function consisting of a convex combination
of supervised cross-entropy loss and self-supervision loss. In
addition, we carried out various analyses to characterize the
performance of different approaches considered in this paper.
The inspection of results obtained from various experiments on
CIFAR-10 reveals that the proposed methodology balances time
and accuracy while staying as near as possible to the state-of-
the-art results.

Index Terms—Neural Architecture Search, Self-Supervised
Learning, Deep Learning, Efficiency

I. INTRODUCTION

Human beings have had the zeal to automate various tasks
in their daily lives and build remarkable things since time
immemorial. Machine Learning approaches involve domain
intensive handcrafting of features from data. Deep Learning
automates feature extraction but requires handcrafting of archi-
tectures which require expert practical knowledge and massive
compute resources. Neural Architecture Search takes one more
step forward in this trend of automation by trying to find an
optimal architecture for effective performance.

∗These authors contributed equally to this work.

The idea of automating the discovery of architectures that
achieve state-of-the-art performance has been further encour-
aged by the highly competitive performance of automatically
searched architectures [1][2][3][4] on popular tasks such as
Image Classification, Object Detection etc.

The different types of methods for Neural Architecture
Search can be broadly classified into the following types: rein-
forcement learning (RL) based, genetic evolutionary algorithm
based and gradient-based (differentiable search space). Most of
the RL based and genetic algorithm-based methods are highly
time-consuming and resource-intensive, requiring several GPU
days (or weeks!) [5][2][1][6], making them infeasible even for
moderately sized datasets.

In order to make the NAS techniques more efficient, [7]
introduced a bilevel optimization-based differentiable frame-
work (DARTS) that brought in a tremendous reduction in
search times. Since then, several improvements [8][9][10] have
been proposed for improving the performance and efficiency
of DARTS.

The other vital part of our work, i.e. Self-Supervision,
is necessary if we wish to train the networks with data
abundantly. A lot of the data in the outside world is unlabelled
and fully supervised algorithms cannot penetrate this space.
Self-supervised learning has shown its importance in the field
of Deep Learning in many of the recent papers [11] [12] [13].
Searching the network with self-supervision may aid in better
transfer training and testing with different datasets.

In this work, we explore and experiment with methods to
search for the optimal architectures in a memory, compute and
time-efficient manner. We also illustrate the efficacy of self-
supervision for guiding effective architecture exploration and
operation selection. In addition, we try to provide an analytical
understanding of the performance of different approaches
from various vantage points. This paper is organized into
the following sections : Section II is a basic overview of
relevant theory. Various details related to the block level model
design, experimental setup and other implementation details
are provided as a part of Section III. Section IV provides



details about various design considerations.The qualitative and
quantitative results obtained from various experiments are
summarized in Section V. In Section VI, we provide analysis
from various perspectives about the performance of different
approaches that we experimented on. Section VII concludes
the paper by reviewing some avenues of further research.

FIG. 1: High Level Block Diagram. In the test stage, the model utilizes
genotype, which describes the optimized architecture from search and the
weights, which are optimized during train stage.

II. THEORY AND METHODOLOGY

The different stages of our approach are illustrated in FIG. 1.
The pre-processed images taken from a given dataset (can
be proxy or final) are utilized for performing search of an
optimal architecture denoted by a genotype. The discovered
architecture is then trained from scratch to optimize the
parameters during the train stage. The genotype and optimized
parameters can be utilized to make class predictions in the test
stage.

A. Differentiable Neural Architecture Search (DARTS)

In order to make the search process efficient, it is formulated
as a bi-level optimization [7] over architectural weights (α)
and network weights (w) as follows :

minα Lval (w
∗(α), α)

s.t. w∗(α) = argminw Ltrain (w,α)

where Ltrain and Lval are the training and validation losses
respectively. The efficiency is ensured as the search space is
made continuous rather than expensive exploration from a set
of discrete architectures.

The search can be termed as ”micro-search” for finding
effective computational cells that can be stacked to form the
full architecture (See FIG. 2). A cell can be seen as a directed
acyclic graph consisting of an ordered sequence of ’P’ nodes.
Nodes are a set of latent feature maps. Each intermediate node
xj is represented as :

xj =
∑
i<j

fi,j (xi)

At each node, we compute a weighted summation of dif-
ferent operations o(·) ∈ O (such as conv 3×3, maxpool
etc) :

FIG. 2: Structure of the final architecture. Normal cells preserve the input
spatial dimensions where each Reduction cell (present at roughly (1/3) and
(2/3) of the total network depth) halve feature map’s spatial dimensions. Note
that, N can be different during search and train stages.

fi,j (xi) =
∑

o∈Oi,j

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)
o′

)o (xi)

The intention is to choose the best operation for connecting
any given pair of nodes after a search. Each cell has two
input nodes c_{k-1} and c_{k-2} (feature maps from
previous cells) and the output of a cell (c_{k}) is given by
concatenating the outputs of non-input cell nodes.

B. Partial Channel Connections

The idea of partial channel connections [8] is to utilize
randomly sampled (1/K) of the total features channels for
mixed operation computation in a node (See FIG. 3) :

fPC
i,j (xi;Si,j) =

∑
o∈O

exp
{
αo
i,i

}∑
o′∈O exp

{
αo
i,j

} · o (Si,j ∗ xi)

+ (1− Si,j) ∗ xi

where Si,j is the sampling mask.

FIG. 3: Illustration of Partial Channel Connections [8]. We can see that the
(1-1/K) of the total channels are bypassed without participating in the mixed
sum.



FIG. 4: Illustration of Progressive Search. Note that the difference in the
number of cells used during the search stage is much more severe in DARTS
as compared to the Progressive case.

Using a small fraction of channels reduces the memory
requirement, by enabling usage of a larger batch size. How-
ever, the use of partial connections can cause the connectivity
between nodes to fluctuate due to random channel sampling,
so in order to avoid that edge normalization is performed. The
incoming edges into any intermediate node are weighted by
the softmax version of the shared edge parameters β :

xPC
j =

∑
i<j

exp {βi,j}∑
i′<j exp {βi′,j}

· fi,j (xi)

Note that beta’s can be optimized during the search stage
along with the alpha’s. It is also observed [8] that the use of
partial channel connections provides an indirect regularization
for the algorithm to avoid choosing many parameter-free
operations.

C. Progressive Search

It is observed that there exists a certain ”depth gap” in the
performance of the model during search and evaluation [9].
This might be because of the reason that certain operations
are preferred more in deeper networks as compared to shallow
networks. Empirical results suggest that shallow search (search
using less number of cells) leads to shallow connections in the
cells, leading to degraded transfer performance of discovered
architectures on difficult datasets (e.g., ImageNet) compared
to a proxy.

So, the idea is to search in a progressive manner by dividing
it into different phases, increasing the depth in each phase
gradually as illustrated in FIG. 4.

However, increasing the depth during search increases the
computational overhead, so search space approximation is
done, where as the different phases of the search proceed the
cardinality of the operation set O is reduced. This is done by
dropping out the operations with a lower architectural weight
(α) in the previous phase.

It should be noted that at the start of each search, the
weights are trained from scratch as the deeper networks may
have altered preferences. Also, it is observed that a certain
kind of over-fitting can happen during the search stage, where
more skip-connections are preferred as initially, they propagate
more consistent information and lead to rapid gradient descent.
So to mitigate this, operation level dropout is employed for
skip_connects, which acts as a search space regularizer.

The dropout rate is initially higher to partially block the pref-
erence of skip connections, which is decayed with iterations
to remove any bias against them.

D. Barlow Twins

The Barlow Twins [14] method was used for implementing
self-supervision in terms of the architectural search. In this
methodology, we try to learn the embedding or latent vectors
invariant to distortion in the images. We do this by feeding two
identical networks with two different distortions of an input
image. We then compute the cross-correlation between the two
outputs of the network as a mode of comparison. The elements
of the cross-correlation matrix C is shown in equation below.

Cij =∆
∑

b z
A
b,iz

B
b,j√∑

b

(
zAb,i

)2
√(∑

b z
B
b,j

)2

where b is the index for batch samples, i, j are the index
of the vector dimension of the networks’ outputs and zAb,i, z

B
b,j

superscripts denotes the two different outputs (latent vectors)
of the network. If the dimension of each output (latent vector)
is n, C is a square matrix of size n × n, and with values
comprised between -1 (perfect anti-correlation) and 1 (perfect
correlation)

We now make the network learn that both the images are
similar by computing loss through the difference between the
cross-correlation matrix and an identity matrix of size n× n.
The Barlow Twins loss function LBT is shown in equation
below.

LBT =∆
∑
i

(1− Cii)2︸ ︷︷ ︸
Invariance term

+λ
∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

Redundancy Reduction term

where C is the cross-correlation matrix, i, j represent the index
of the elements in the cross correlation matrix and λ is a
positive constant trading off the importance of the two different
terms of the loss. As shown in equation above, the first term
represents the loss due to variance of the outputs and the
second term represents the loss due to redundancy between
the latent vectors.

By taking LBT as loss function the network learns to
extract better latent feature vectors, ignore the distortions in
the images and reduce the redundancy terms between the
latent vectors (or embeddings). FIG. 5 shows the complete
mechanism of the operation of Barlow Twins. This type
of mechanism and loss function is implemented in Self-
Supervised networks as explained in Section IV.

III. EXPERIMENTAL SETUP

A. Datasets

We have used CIFAR-10 [15] and CIFAR-100 [15] datasets
for architectural search and training purposes and another pop-
ular dataset such as Fashion MNIST [16] for transfer training
purposes (architecture search was conducted on CIFAR-10,



FIG. 5: The Barlow Twins Self-Supervision Mechanism[14]. It improves
the quality of features extracted by reducing redundancy while being task-
independent.

but training and testing were done with Fashion MNIST) in
some stages.

B. Implementation details

Pytorch framework was used for architectural search, train-
ing, and testing purpose. We used Tesla V100 PCl-E 32GB
GPU for Search, Train and Test Stages, NVIDIA RTX
GeForce 2060 GPU, and Google Colab’s Tesla GPU for
analysis.

PyTorch’s Loader and Data Transformer was used to pre-
process images such as Random Cropping, resizing, converting
to tensors and normalizing for search and train stages in the
model. An additional Random Horizontal Flipping was used
exclusively for search and train stages. Cutout Regularization
in random image regions was also used during training stages
for better performance. For the Barlow Twins case, random
transformations like Random Crop, Random Horizontal Flip,
Random Color jitter, Random Grayscale, Random distortion,
and Random Erasing were applied with different probabilities
for generating the two distorted images that should be fed into
the two identical networks.

The Train-Validation Split considered 50K and 10K respec-
tively for the searching as well as training purpose. For the
purpose of searching, we use the Cross-Entropy Loss or a
convex combination of Barlow Twins Loss and Cross-entropy
loss based on the experiment’s stage(See Section IV) and
SGD optimizer (l.r.=0.025) with weight decay and Cosine
LR Scheduler is considered as Optimizer. For search stages,
we have considered a batch size of 256 images. For training
stages, we have used Cross-entropy loss and Adam Optimizer
(l.r.=6e-4, β1=0.5, β2=0.999) with weight decay as Optimizer.
Note that check-pointing of models is done whenever there is
a decrease in the validation loss after every epoch. Auxiliary
Loss Towers are also considered in the training stages for
boosting gradient flow during backpropagation.

IV. APPROACH DESIGN

A. Design Considerations for Architecture Search

In this section, we can look at some of the aspects
associated with the design of the search stage.

1) Operation Space: We have taken a list of operations for
the Neural Architecture Search. All the stages implemented
in this work use this operation space to search the
architecture. The operation space was kept small and
simple for easy and faster searching of architecture, also
keeping accuracy in view. The various operations used are
max_pool_3×3, avg_pool_3×3, skip_connect,
sep_conv_3×3, sep_conv_5×5, dil_conv_3×3,
and dil_conv_5×5. The sep_conv here represents
a separable convolution operation whereas dil_conv
represents a diluted convolution operation. For reduction
cells, the operations are strided, since we want to reduce the
spatial dimensions.

2) Learning Algorithm: We update the parameters by uti-
lizing the First Order Approximation as mentioned in [7]. For
the progressive case, the network parameters are optimized
for all epochs in the search stage, whereas the architecture
parameters are frozen for the first 15 epochs. Also, in this
case, as shown in FIG. 4, we consider eight cells during the
search and 20 cells during the evaluation stage.

For the non-progressive cases, we consider the following
setup as given in [9] :

Phases # Normal Cells # Operations
I 5 8
II 11 5
III 17 3

TABLE I: Features of different search phases. The number of cells increase
(due to Progressive nature) and number of operations decrease (due to search
space approx.) as the phase number increases.

The network parameters are optimized for all epochs in this
search phase, whereas the architecture parameters are frozen
for the first ten epochs.

3) End of Search: For choosing operations, on each edge
(i, j), operation with the largest αo

i,j value is preserved. For
choosing the inter-node connections, we consider :

• For non-partial connection case, node xj needs
to be pick two links (highest weighted) from{
maxo α

o
0,j , . . . ,maxo α

o
j−1,j

}
.

• For partial connection case, node xj needs to be pick
two links (highest weighted) from normalised values of
the set

{(
maxo α

o
0,j

)
β0,j , . . . ,

(
maxo α

o
j−1,j

)
βj−1,j

}
.

FIG. 6: Illustrative Overview of Vanilla PCP-DARTS. It combines the ideas
of progressive search and partial channel connections.



B. Loss Function

1) Architecture Weights: We consider both self-supervised
and fully supervised stages in our work (See Section II),
for optimizing the architectural weights. For fully supervised
stages, we consider the cross-entropy loss over the different
classes of interest. For self-supervised stages, we consider the
following mixture loss function :

L = ss factor × LBT + (1− ss factor)× LCE

where ss factor decides the weight of self-supervision
(ss factor=1 implies fully self-supervised search).

2) Network Weights: We consider a supervised setup with
cross-entropy loss to optimize the network weights for all the
stages.

C. Design of Stages

1) Vanilla PCP-DARTS: The features of this stage are that
it is a progressive, partial channel connection based search, and
supervised loss is considered for both architecture search and
network weight optimization.

2) SS PCP-DARTS: The features of this stage are that
it is a progressive, partial channel connection based search.
Supervised loss is considered for network weight optimization,
and mixture loss, discussed in Section. IV.B, is used.

FIG. 7: Illustrative Overview of SS PCP-DARTS. It combines the idea of
progressive search and partial channel connections in a self-supervised setting.

V. RESULTS

In this section, we present the results of our approach.

A. Architectural Search Results

The search for architecture was done in a fully-supervised
and self-supervised fashion as covered in Section IV and
Section II in detail. Each stage has two types of cells -
Normal and Reduction Cells. Both in normal as well as in
reduction cells, we have two inputs, c {k-2} and c {k-1} and
an output c {k} and four nodes. These nodes are connected by
edge functions, which are taken from the Neural Architectural
Search Operation Space Section. IV. FIG. 8 and FIG. 9
shows the architecture of the final cells of some of the stages
achieved from the architectural search. The architecture of all
the Normal and Reduction Cells are covered in Supplementary
Material.

FIG. 8: Normal Cell Architecture for PC-DARTS. It is less deeper (3-layers) as
compared to other algorithms. The unlabelled arrows denote an concatenation
operation carried out at the c {k} node.

FIG. 9: Normal Cell Architecture for Vanilla PCP-DARTS. It is 4-layers deep,
which is comparatively more than PC-DARTS.

B. Train Results

After optimizing the network architecture as part of Neural
Architecture Search, we trained and tested the network using
the CIFAR-10 test dataset. TABLE II shows a comparison of
accuracy, search time and the number of parameters between
various stages. Note that the network search time is over
different GPUs with different batch sizes.

We also conducted some of the experiments using Vanilla
PCP-DARTS, P-DARTS and SS PCP-DARTS with a ss factor
of 1 on the CIFAR-100 Dataset. TABLE III shows a compar-
ison of accuracy and search time between these three models.

To show the usefulness of self-supervision, we also did a
transfer train on the Fashion MNIST dataset. The architecture
was searched using the CIFAR-10 dataset, but the training
and testing were done on Fashion MNIST. The Vanilla PCP-
DARTS gave a test accuracy of 95.97%, whereas the SS PCP-
DARTS with ss factor=1 gave a slightly higher test accuracy
of 96.06%. In comparison to these, the PC-DARTS gave a
lower test accuracy of 95.65%.

VI. ANALYSIS

In this section, we have analyzed our results from various
angles and explained the reason for some of the occurrences.
A particular Adversarial Attack Analysis was carried out to
understand Self-Supervision better, as presented in this section.

A. General Analysis

Based on the results presented in Section V, we have
analyzed the performance and general trends followed by the
network during the search, train and test stages. Some of the
common observations and their possible reason is listed below

• PCP-DARTS is comparable to PC-DARTS and P-DARTS
when we take an overall performance like search time



Various Architectures Test Err. (in %) Params (in M) Search Cost (in GPU-days) Search Method
DenseNet-BC [17] 3.46 25.6 − Manual
NASNet-A [18] 2.65 3.3 1800 Reinforcement Learning
AmoebaNet-B [19] 2.55 2.8 3150 Evolutionary
Hireachical Evolution [20] 3.75 15.7 300 Evolutionary
NAONet-WS [21] 3.53 3.1 0.4 Neural Arch. Optimization
DARTS [7] 3.00 3.3 0.4 Gradient-based
SNAS [22] 2.85 2.8 1.5 Gradient-based
P-DARTS† [9] 2.71 3.4 0.2391 Gradient-based
PC-DARTS† [8] 2.57 3.5 0.1624 Gradient-based
Vanilla PCP-DARTS 3.12 4.5 0.1631 Gradient-based
SS PCP-DARTS (ssf=0.25) 3.91 3.9 0.2201 Gradient-based
SS PCP-DARTS (ssf=0.5) 3.57 3.7 0.1535 Gradient-based
SS PCP-DARTS (ssf=0.75) 2.99 3.7 0.1989 Gradient-based
SS PCP-DARTS (ssf=1) 3.28 4.2 0.1948 Gradient-based

TABLE II: Comparison of different architectures on CIFAR-10. † - We ran the code released by authors for fair comparison

PC-
DARTS

Vanilla
PCP-

DARTS
P-DARTS SS PCP-

DARTS

ss factor - - - 1
Test
Accuracy 81.92 82.48 74.65

Network
Search
Days

0.1 0.2647 0.3 0.2464

TABLE III: Comparison of various algorithms on CIFAR-100 Dataset

and accuracy into account which can be observed from
TABLE II and TABLE III. PCP-DARTS takes almost
comparable time to PC-DARTS but gives an accuracy
similar to nearby P-DARTS. This performance combines
both the concepts of the partial channel and progressive
search in the network.

• PC-DARTS prefers parameter-less operations. It is a ob-
servation that parameter-less operations like max_pool,
avg_pool and skip_connect are more in final ar-
chitectures of PC-DARTS than in PCP-DARTS. This is
evident from FIG. 10 and FIG. 11. We suspect that this
occurrence maybe because of the fundamental property
of PC-DARTS to exploit inter-node interactions.

FIG. 10: Reduction Cell Architecture for PC-DARTS. It is 3-layers deep cell
containing more pool, skip_connect and sep_conv operations.

• PCP-DARTS has more representational power than PC-
DARTS. It is an observation that PCP-DARTS contains
more number of sep_conv operations whereas PC-
DARTS contains more number of dil_conv with pool-

FIG. 11: Reduction Cell Architecture for SS PCP-DARTS with ss factor=0.75.
This is the deepest cell network that can be formed using 4-nodes and Self-
Supervision triggers it.

ing layers succeeding those often. This is also evident
from FIG. 10 and FIG. 11.This may be considered an
attempt by both the networks to extend their receptive
fields except for the difference that PC-DARTS uses two
operations whereas PCP-DARTS only uses one approxi-
mately equivalent operation. This reduction in operation
gives the PCP-DARTS more representation power. Such
behaviour may be attributed to the inherent nature of
PCP-DARTS to increase the depth and reduce the number
of operations as the network search progresses.

• Vanilla PCP-DARTS has better depth and lesser number
of skip-connections than PC-DARTS as can be observed
from FIG. 8 and FIG. 9. This kind of affiliation may
be attributed to the nature of the network architecture.
While PC-DARTS was designed to prefer more skip-
connections to capture inter-node interactions, the PCP-
DARTS was designed to better the depth of the networks
as the architecture search progresses.

• Self-Supervised Learning may help in increasing the
depth of networks. PCP-DARTS show that whenever we
use Self-Supervision for architectural search, the architec-
ture shows more depth. We can observe this from FIG. 9
and FIG. 11. This observation may be possible because
of the improvement of diversity, richness and quality of
features with depth, which Barlow Twins Loss ensures.

• Based on the results shown for CIFAR-10 in Section V,
we can observe that using both supervised and self-
supervised learning for architecture search gives lesser
accuracy than using only one of them. We suspect that
the reason for this may be because of the possible upward
shift in minima as a result of the convex combination of
two-loss functions that have different minima locations



in the network search space.

FIG. 12: Illustration of FGSM method for efficiently generating adversarial
examples. Note that, we are essentially try to perturb the image along the
direction of most likely misclassification with a magnitude ϵ.

B. Adversarial Attack Analysis

We also perform adversarial attack analysis on our ap-
proaches to understand the robustness of the different stages.
We generate adversarial images Xadv , which are maliciously
designed to be perceptually indistinguishable from original
input X but is misclassified by the model. To perform this,
we use the Fast Gradient Method (FGSM) as described in [23]
(See FIG. 12).

Xadv = X + ϵ sign (∇XJ (X,Ytrue ))

where ϵ is the magnitude of adversarial perturbation and
∇XJ (X,Ytrue ) is the gradient of loss function w.r.t to clean
input X .

FIG. 13: Probability of True Class vs Magnitude of Adversarial perturbation
(ϵ). Note that, all the architectures found in each stage predict the same class,
but the variation of probability with ϵ is interestingly distinct.

We also plot the curves for probability against ϵ for all the
stages on some input samples. One of the examples is shown
in FIG. 13.

From these plots, we can try to justify our observations by
making the following statements:

• For most of the epsilon values considered, we have
a higher probability for the correct class when self-
supervision is incorporated into the loss function of the
architecture search. This may mean that some amount of
Barlow Twin Self Supervision makes the found architec-
tures slightly robust to adversarial attacks like FGSM.

• We can observe a dip in the plot, of prob vs epsilon,
for a small range of epsilon values. For the case of self-
supervision, we can consider that because of the non-
task specific loss function, the mixture loss function may
contain multiple minima for the same class compared to
the vanilla (Fully-supervised) loss function.

• Higher probability predictions for the chosen predicted
class as seen in FIG. 13 can be interpreted as self-
supervision might be forcing the algorithm to choose
operations that extract higher quality, differentiating fea-
tures among classes. There might be some decorrelation
of decision regions to some extent.

VII. CONCLUSION AND FUTURE WORK

This work presents architecture search approaches utilizing
a differentiable formulation and various concepts of self-
supervision focused on improving efficiency while maintaining
their efficacy. The results provided for various experiments and
the analyses of these results reveal interesting characteristics
about our approaches and open new avenues for future work.
Exploring and analyzing the incorporation of self-supervision
for classification, transfer performance of different tasks, and
more complex datasets can produce exciting results and in-
sights. Another promising direction for future work can be
to make the capsule layers [24] [25] [6] less computational
expensive so that they can be incorporated in the operation
space.

SUPPLEMENTARY INFORMATION

Code and supplementary material is available upon request.

BIBLIOGRAPHY

[1] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regu-
larized evolution for image classifier architecture search,”
in Proceedings of the aaai conference on artificial intel-
ligence, vol. 33, no. 01, 2019, pp. 4780–4789.

[2] B. Zoph and Q. V. Le, “Neural architecture
search with reinforcement learning,” arXiv preprint
arXiv:1611.01578, 2016.

[3] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean,
“Efficient neural architecture search via parameters shar-
ing,” in International Conference on Machine Learning.
PMLR, 2018, pp. 4095–4104.

[4] Y. Zhao, L. Wang, Y. Tian, R. Fonseca, and T. Guo,
“Few-shot neural architecture search,” in International
Conference on Machine Learning. PMLR, 2021, pp.
12 707–12 718.

[5] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le,
“Learning transferable architectures for scalable image
recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8697–
8710.

[6] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino,
M. Martina, and M. Shafique, “Nascaps: A framework for
neural architecture search to optimize the accuracy and
hardware efficiency of convolutional capsule networks,”



in 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[7] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differen-
tiable architecture search,” in International Conference
on Learning Representations, 2018.

[8] Y. Xu, L. Xie, W. Dai, X. Zhang, X. Chen, G.-J. Qi,
H. Xiong, and Q. Tian, “Partially-connected neural ar-
chitecture search for reduced computational redundancy,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 9, pp. 2953–2970, 2021.

[9] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive
differentiable architecture search: Bridging the depth
gap between search and evaluation,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1294–1303.

[10] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair darts: Elim-
inating unfair advantages in differentiable architecture
search,” in European conference on computer vision.
Springer, 2020, pp. 465–480.

[11] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton,
“A simple framework for contrastive learning of visual
representations,” in International conference on machine
learning. PMLR, 2020, pp. 1597–1607.

[12] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo,
M. Gheshlaghi Azar et al., “Bootstrap your own latent-
a new approach to self-supervised learning,” Advances
in Neural Information Processing Systems, vol. 33, pp.
21 271–21 284, 2020.

[13] I. Misra and L. v. d. Maaten, “Self-supervised learning of
pretext-invariant representations,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 6707–6717.

[14] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny,
“Barlow twins: Self-supervised learning via redundancy
reduction,” in International Conference on Machine
Learning. PMLR, 2021, pp. 12 310–12 320.

[15] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10
and cifar-100 datasets,” URL: https://www. cs. toronto.
edu/kriz/cifar. html, vol. 6, no. 1, p. 1, 2009.

[16] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” 2017.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
berger, “Densely connected convolutional networks,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le,
“Learning transferable architectures for scalable image
recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8697–
8710.

[19] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regu-
larized evolution for image classifier architecture search,”
in Proceedings of the aaai conference on artificial intel-
ligence, vol. 33, no. 01, 2019, pp. 4780–4789.

[20] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu, “Hierarchical representations for effi-
cient architecture search,” in International Conference on
Learning Representations, 2018.

[21] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural
architecture optimization,” Advances in neural informa-
tion processing systems, vol. 31, 2018.

[22] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic
neural architecture search,” in International Conference
on Learning Representations, 2018.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” stat, vol. 1050,
p. 20, 2015.

[24] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic rout-
ing between capsules,” Advances in neural information
processing systems, vol. 30, 2017.

[25] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules
with em routing,” in International conference on learning
representations, 2018.


	Introduction
	Theory and Methodology
	Differentiable Neural Architecture Search (DARTS)
	Partial Channel Connections
	Progressive Search
	Barlow Twins

	Experimental Setup
	Datasets
	Implementation details

	Approach Design
	Design Considerations for Architecture Search
	Operation Space
	Learning Algorithm
	End of Search

	Loss Function
	Architecture Weights
	Network Weights

	Design of Stages
	Vanilla PCP-DARTS
	SS PCP-DARTS


	Results
	Architectural Search Results
	Train Results

	Analysis
	General Analysis
	Adversarial Attack Analysis

	Conclusion and Future Work
	Bibliography

