

Control of Electromechanical System at Nondeterministic Loading

Vitalii Budashko

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

June 16, 2022

Control of electromechanical system at nondeterministic loading

Vitalii Budashko, femire@onma.edu.ua

Abstract-On the basis of theoretical and practical studies of the multivariate electromechanical system, the scientific and technical problem of improving the control system of the electromechanical system during the influence of multi-vector perturbations on it is solved. The result of the research is the combination of equations in the system of differential equations with coefficients dependent on the fluctuations of the control object. In the theoretical part the mathematical model of the electromechanical system was synthesized, which made it possible to investigate ways of minimizing the angles of deviation and time intervals necessary to stabilize the movement of the electromechanical system, which made it possible indirectly to implement the signal associated with the stochastic nature of the moment of the control object fluctuation on coordinate plane. The method of parametric optimization of the mathematical model of the electromechanical system in the deviation angle function was also improved and investigated. Based on the determination of the structure and algorithms of work, the efficiency of the control system of the electromechanical system is increased in terms of reducing the time of stabilization of the control object.

Keywords—multi-mass electrical vehicle, control system, mathematical modeling, improvement, adaptability, stabilization

I. Introduction

In order to improve the design of control systems for multi-mass electromechanical systems (MMEMS), methods of simulation design are applied [1-4]. The main advantage of simulation modeling is its versatility and the ability to ensure the high adequacy of the model of the real system under study. This is achieved due to the deep detail of the algorithmic description, which is impossible in the study by analytical methods, which are associated with the simplification of processes and tight restrictions on the conditions of use of the model.

For example, the attempt to take into account the influence of random factors in the MMEMS leads model to considerable difficulties in the analytical study of systems, which cannot always be overcome. Simulation modeling in the study of systems under conditions of random influences is not complicated and is currently the most effective, and sometimes the only practically available means of obtaining information about the behavior of the system, especially at the stage of its design [5-8].

The random nature of the receipt of requests from multiple devices of the MMEMS is necessary in determining the required performance of processors of the control complex. Random values measured in the process of controlling values are the reason for the undetermined number of operations performed by the processor in the implementation of control algorithms [9-13]. The MMEMS consists of a large number of different devices and systems and is characterized by numerous external and internal random influences. Occasional perturbations are environmental disturbances, changes in the system characteristics related to the wear of the elements, the occurrence of their failures, which require fault localization to prevent the development of emergencies, and others. In this regard, the need to solve individual information processing problems and the time to solve these problems are also random [14-16].

Although many information processing tasks related to the control and control of a multi-mass electromechanical system (MMEMS) are cyclical, random influences on the control object cause access to devices that perform various functions. control and management, in general, is not regular [17-20]. Random value is also the time spent by the processor on the processing of information in the control process, as algorithms for solving problems have branching, containing cycles. The number of processor operations performed when implementing such algorithms depends on the random values for measured values [21-24].

All this necessitates the use of probabilistic models in design (MMEMS). Such models are needed both in describing the processes of performing individual task algorithms and in describing systems that perform the certain set of control and control tasks [25-28].

II. Purpose of work

Improvement of the strategy of control of a multi-mass electromechanical system by increasing the adequacy of the model of the system functioning intended to solve a certain set of computational problems in the control process by using queuing algorithms at the design stage with their further implementation in decision support systems [29-31].

III. CONTENTS AND RESULTS OF THE RESEARCH

First, for the MMEMS backbone structure and the organization of distributed computing processes, in which the tasks are divided into separate stages performed by different processors, it is necessary to submit the MMEMSs functioning model in the form of interacting queuing systems (IQS) – the stochastic network. In this case, individual systems included in the network can be single-channel or multi-channel IQS [32-35].

The objective of this study is to evaluate the characteristics and select the parameters that provide the required quality of functioning of the projected complex MMEMS. Such studies are carried out on the basis of analytical models or by simulation (software) modeling [36-40]. Analytical models based on the application of queuing theory apparatus [41-46] are used in the initial stages of design. Such models allow to determine the device orientations and the organization of works in MMEMS to provide the necessary performance characteristics [47-50].

More accurate estimates of the system's characteristics will be obtained by simulation using the statistical test Monte Carlo method. Such research is a complex, time-consuming process that requires the development of specific simulation software. Simulation modeling will be carried out in the design of the MMEMS, the structure of which varies within the operational mode, taking into account identification factors [51-54].

The functioning of any queuing system is characterized by a number of indicators: the average time of the application being in the system; the average number of applications on the system; the average number of applications in the queue; average queuing times for applications and more. The values of these indicators depend on the organization of MMEMS, the parameters of its devices and the parameters of the application flows.

After presenting the model of functioning of MMEMSs in the form of interacting IQS, they establish the relations that link the characteristics of the system with its main parameters. Accepting the number of assumptions about the parameters of the input flows and the nature of their maintenance allows us to build the model of IQS that is amenable to analytical research. This applies first of all to Markov systems that occupy the same place in queuing theory as linear systems in the theory of automatic control [55-57].

Suppose the simplest (Poisson) nature of the flow of applications and laws of service in MMEMS. Then, the flow of events in the BMEMS must have three properties: ordinariness, no aftereffect, and stationarity, and obey Poisson law of distribution [58-60]:

$$\mathbf{P}_{\mathbf{n}}(\tau) = (\lambda \tau)^{\mathbf{n}} \cdot \mathbf{e}^{-\lambda \tau} / \mathbf{n}!, \qquad (1)$$

where: $P_n(\tau)$ – the probability of occurrence of n homogeneous events in the time interval τ ;

 λ – the constant positive number that defines the average number of events per unit of time.

Time intervals between events in MMEMS, taking into account probabilistic operational factors, are distributed according to the exponential exponential law [61-63]:

$$F(t) = P\{T \le t\} = 1 - e^{-\lambda t}$$
 (2)

with the probability density distribution of a certain operational factor

$$f(t) = \lambda e^{-\lambda t} \tag{3}$$

For MMEMS, many typical situational factors will have intersections, that is [64, 65]:

$$\vec{C}_{ik} \cap \vec{C}_{ij} = \notin, k = 1, 2, \dots, L;$$

$$(4)$$

$$j=1,2,...,L; k \neq j.$$

where: $\overline{C_i}$ – the set of situational factors of the operating mode; ____

L – the subset $\overline{C_i}$, k = 1, 2, ..., L, relevant to typical situational factors. All current situations are evaluated for belonging to a particular set $\overline{C_{kj}}$, k = 1, 2, ..., L,

and the task is replaced by the task equivalent to the typical situation \bar{C}_{kj} .

In case the typical situations will not have overturning, that is:

$$\begin{split} & d_{i} = 0; a_{ij} = 0; j = 0; j = 1, 2, ..., L; \\ & \exists k = 1, 2, ..., L; p_{is} \in P_{ik}, s = 1, 2, ..., S \Longrightarrow \\ & \Rightarrow d_{i} = 1; b_{ks} = 1; a_{ik} = 1; \\ & \overline{C}_{ik} \bigcup \overline{C}_{ij}, j = 1, 2, ..., L; \end{split}$$

where: d_i , b_s and a_j – auxiliary indicator variables of the iterative process;

 p_{is} – s-th sign of the situational factor;

 P_{ik} – the set of characteristic features of the k-th typical situation factor for the i-th operating mode identifier;

 \overline{C}_{ik} – set of variables taken into account in the modified task;

 \overline{C}_{ij} – an average set of typical situational factors for which $a_{ij} \neq 0$.

The mathematical expectation of the occurrence of the certain situational factor, which will lead to the withdrawal of MMEMS from the stable state, will be [66, 67]:

$$M(t) = \int_{0}^{\infty} t^{2} f(t) dt = 1/\lambda$$
(6)

and variance in the time zone of the situational factor (7)

$$D(t) = \int_{0}^{\infty} t^{2}f(t)dt = 1/\lambda^{2}.$$
 (7)

In approaching steady-state operation without significantly changing the state of MMEMS in terms of energy consumption during multi-vector perturbations, applications for these or other situational factors tend to cluster in areas of short intervals, since

$$P\{\tau < 1/\lambda\} = 1 - e^{-1} \approx 0.63$$
 (8)

that is, a large proportion of disturbance applications follow each other at intervals less than the average $1/\lambda$.

Consider the case where homogeneous call applications from sensors that record certain perturbations with intensities within the error, whose service time is distributed by exponential law with exponent μ , are received at the system input. We denote by S the steady state of the system when it contains also i applications. In the interval [t, t + dt], the probability of transition of the MMEMSs to the mode of compensation of the disturbing influence of the j-th situational factor is determined by the matrix:

$$P = \begin{bmatrix} S_0 & S_1 & S_2 & S_3 & L & S_k \\ S_0 & 1 - \lambda dt & \lambda dt & 0 & 0 & L & 0 \\ S_1 & \lambda dt & 1 - (\lambda + \mu) dt & \lambda dt & 0 & L & 0 \\ 0 & \mu dt & 1 - (\lambda + \mu) dt & \lambda dt & L & 0 \\ 0 & \mu dt & 1 - (\lambda + \mu) dt & L & 0 \\ \vdots & \vdots & \vdots & \vdots \\ S_k & 0 & 0 & 0 & 0 & L & 1 - \lambda dt \end{bmatrix}$$
(9)

In constructing the matrix of the set of variables \overline{C}_{kj} , (4) the source of the applications can be considered as some system S₀. Applications coming out of the i-th system (i = 1, 2, ..., j)

with the constant probability B_{ij} are fed into the j-th system (j = 1, 2, ..., L) (5) or leave the network (j = 0). In this case, the transfer matrix has the form

$$\mathbf{B}_{ij} = \begin{bmatrix} 0 & \beta_{01} & \beta_{02} & \mathbf{L} & \beta_{0j} \\ \beta_{10} & \beta_{11} & \beta_{12} & \mathbf{L} & \beta_{1j} \\ \beta_{20} & \beta_{21} & \beta_{22} & \mathbf{L} & \beta_{2j} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{i0} & \beta_{i1} & \beta_{i2} & \mathbf{L} & \beta_{ij} \end{bmatrix}.$$
(10)

In order to determine the throughput of the disturbance factor sensor network, it is necessary to determine the intensities of the applications in each of the MMEMS subsystems. Due to the fact that in the stable mode, the average number of applications leaving the system is equal to the average number of applications, the equality is true. Therefore, for λ (1) applications from sensors, given (5), we have:

$$\lambda_i = \sum_{i=0}^{L} \lambda_i \beta_{ij}, \quad j=0,1,2,...,L.$$
 (11)

To determine the architecture and load intensity of the MMEMS sensor network, it is necessary to determine the transmission coefficients and the characteristics of the sensors that form the network with the corresponding transmission ratios.

The parameters of the individual sensors, calculated accordingly calculated in accordance with (11), must meet the following criteria:

- the speed of the device due to the parameters (8);

- the number of channels, which depends on the set of variables that are taken into account in the modified tasks $\bar{C}_{kj};$

- the complexity of the stage;
- average service time (2);
- service intensity (3);
- transmission coefficient (7).

Therefore, for the system of values of the coefficients of the speed of the sensors, which are determined by the values of the transmission coefficients $b_0, b_1, ..., b_t$ with theoretical averages $\beta_0, \beta_1, ..., \beta_t$ (10), we form the matrix of central moments defining all the statistical properties of the coefficients B_{ij} , and hence, and the regression equation. We obtain the variance-covariance matrix M_{ij} , the principal diagonal of which are the estimates of the variances, and the rest of the seats are estimates for the variations of the regression coefficients:

$$\mathbf{M}_{ij} = \begin{bmatrix} s^{2} \{ \mathbf{b}_{0} \} & cov \{ \mathbf{b}_{0} \mathbf{b}_{1} \} & \cdots & cov \{ \mathbf{b}_{0} \mathbf{b}_{j} \} \\ cov \{ \mathbf{b}_{1} \mathbf{b}_{0} \} & s^{2} \{ \mathbf{b}_{1} \} & \cdots & cov \{ \mathbf{b}_{1} \mathbf{b}_{m} \} \\ \vdots & \vdots & \ddots & \vdots \\ cov \{ \mathbf{b}_{i} \mathbf{b}_{0} \} & cov \{ \mathbf{b}_{i} \mathbf{b}_{1} \} & \cdots & s^{2} \{ \mathbf{b}_{j} \} \end{bmatrix}.$$
(12)

From here we obtain the ratio for the variance estimation of the accuracy of the sensors and the covariance of the coefficients of the regression equations $s^2{b_i}=C_{ij}^2{y};$ $cov{b_ib_j}=C_{ij}s^2{y}.$

Variance estimation of sensor accuracy of the reproducibility sensors $s^2\{y\}$, in respect that (4), is determined by the formula,

$$s^{2} \{y\} = \frac{\sum_{k=1}^{L} \sum_{q=1}^{L_{k}} (y_{kq} - \overline{y}_{k})^{2}}{\sum_{k=1}^{L} (L_{k} - 1)}, \quad (13)$$

where \overline{y}_k is the average value of y_k , determined from the M_{ij} data of repeated measurements.

The number of degrees of freedom of the variance estimation of the accuracy of the sensors, which allows to determine the significance of the coefficients, i.e. to specify the structure of the MMEMS model, is determined by the expression:

$$f_{y} = \sum_{k=1}^{L} (L_{k} - 1)$$
 (14)

The variance estimate of the predicted value of the response of the sensor s2 $\{\hat{y}k\}$ is determined by the law of making errors

$$s^{2}\{\hat{y}_{k}\} \approx \sum_{i=0}^{n} \left(\frac{dy}{db_{i}}\right)_{k}^{2} s^{2}\{b_{i}\} + \sum_{i=1}^{t} \sum_{j=0}^{t} \left(\frac{d^{2}y}{db_{i}db_{j}}\right) cov\{b_{i}b_{j}\}, \quad (15)$$

or in matrix form, taking into account (12):

 $s^{2}\{\hat{y}_{k}\} = X_{k}^{L}(X^{L}X)^{-1}s^{2}\{y_{k}\}X_{k} = X_{k}^{L}M_{ij}^{-1}X_{k}, \quad (16)$ where X_k is the coordinate vector of the k-th point of the experiment.

The estimation of the variance of adequacy is determined by the expression

$$s_{ij}^{2} = \frac{1}{N_{jk} - L_{ij}} \sum_{k=1}^{L} (\overline{y}_{jk} - \hat{y}_{ij})^{2}, \qquad (17)$$

where L_{ij} is the number of coefficients included in the regression equation after discarding insignificant coefficients. The value of $f_{ki} = N_{jk} - L_{ij}$ is called the number of degrees of freedom of the variance of adequacy.

For example, to estimate the significance of the coefficients and the adequacy of the obtained MMEMS model, we will make the variance estimation of reproducibility according to 14 measurements of the values of the disturbance sensors. The largest error is 0.0911 from the maximum signal value. In this case, there is the uniform duplication of the measurements $L_1 = L_2 = ... = L = N$ and the variance estimation of reproducibility is in the form

$$s^{2} \{y\} = \frac{\sum_{k=1}^{N} \sum_{q=1}^{L_{k}} (y_{kq} - \overline{y}_{k})^{2}}{N(L_{k} - 1)} = \frac{0.0911}{14(5 - 1)} = 1.6267 \times 10^{-3}.$$

Thus, taking into account (4) and (5), for the set of situational factors $\overline{C_{kj}}$ of the operating mode, we define the corresponding intersections for k = 1, 2, ..., L, s = 1, 2, ..., S. Indicator variables of the iterative processes d_i , b_s , and a_j change arbitrarily within the set of characteristic features of the k-that typical situational factor for the i-th identifier of the operational mode P_{ik} (Fig. 1). The set of variables of the modified problem is an intersecting set of typical situational factors for which $a_{ij} \neq 0$.

Fig. 1. The intersections of the set of situational factors $\overline{C_{kj}}$ of the operational mode for k = 1, 2, ..., L, s = 1, 2, ..., S.

In Fig. 2 shows the spectral characteristic of mathematical expectation of the occurrence of the certain situational factor, which will lead to the exit of the system from the stable state.

Diagram 2 Spectral characteristics

Fig. 2. Mathematical expectation of the situational factor that will cause the system to exit from the stable state.

In Fig. shows the intensity distribution of perturbations following each other at intervals less than the average of $1/\lambda$.

Fig. 3. Depend on the intensity of perturbation applications from the interval $1/\lambda$.

In Fig. 4 shows the diagrams of the change of the controltask control system when using the calculated values of the coefficients of the PID-controller relative to the identification of transfer functions of the third (Fig. 4, curve "a") and second (Fig. 4, curve "b") orders.

Fig. 4. Coefficients of the PID-controller with respect to the identified transfer functions of the third (a) and second (b) orders: c – default tasks.

After the variance evaluation of the accuracy of the sensors, taking into account (13) – (17), according to M_{ij} repeated measurements, it was found that the largest deviation of the response value of the sensor s2 { $\hat{y}k$ } = 1,6267×10⁻³ corresponds to the certain range of change (1 – e^{- λt}) (Fig. 5) [68].

Fig. 5. Variance estimation of sensor response accuracy.

IV. CONCLUSIONS AND RECOMMENDATIONS

The proposed approach to refinement of MMEMS as the component of the design process allows to predict the total number of disturbing factors with the possibility of multiple changes to the MMEMS architecture, even with minimal data on an existing project, and can be used for virtually any type of MMEMS in terms of power supply. This approach also allows upgrading of various types of MMEMCs to adapt them to operational mode (eg dynamic positioning) and enables synthesizing recommendations for MMEMS developers, controllers and power systems. This is achieved by the fact that the proposed approach is based on the cognitive (in synergy with engineering) research decision-making process, which includes the stepwise improvement of the data that comes from the study of a specific operational mode of operation of MEMMS.

The possibility of iterative optimization of MMEMS parameters allows to use the developed methods as a means of intellectual design, the result of which is the improved adjusting, and therefore the operational characteristics of MMEMS. The proposed strategy, compared to existing systems, has a higher speed of detection of the risk of loss of position MMEMS, greater reliability and accuracy of positioning.

The ratios of coefficients di, bks, and aik (5) correlate better with probability coefficients, suggesting that MMEMS reliability is increased in operational modes, one of which is dynamic positioning, and allows the results to be added to the database of various decision support systems to provide developers and researchers with the information they need to create new MMEMS concepts or modify existing ones.

Determination of the values of the probabilistic coefficients of the disturbing factors applied to MMEMS, and the formation of a configuration matrix of the compensating forces with determining the distance from the place of application of the individual disturbing factor to the projection of the force vector on the plane of motion MMEMS possible on the basis of the identifying relevant identification factors.

Obtaining correction factors that affect the components of forces and moments, proportional to the size of the MMEMS model and the real object bound to the original geometry, is possible by formalizing physical models of MMEMS with means of identifying disturbing factors on the lines of the compensating efforts of the calculators.

Increasing the statistics of the frequency of significant identification factors of process characteristics in MMEMS during iterative procedures is proportional to the sample size and does not increase the variables and coefficients of the regression model. The random values of the variables of disturbing influences are not correlated, which is evidence of the prerequisite for the application of the developed principles of composition of regression models according to the results of experimental studies.

REFERENCES

- Будашко, В. В. Інтегральний критерій оцінки ефективності передачі потужності комбінованого пропульсивного комплексу [Text] / В. В. Будашко, С. А. Ханмамедов // Збірник наукових праць Севастопольського військово-морського ордена Червоної Зірки інституту ім. П. С. Нахімова. – Севастополь: СВМІ ім. П. С. Нахімова. – 2007. – № 2(12). – С. 151-154.
- [2] Будашко, В. В. Моніторинг енергетичних процесів в комп'ютерній лабораторії для суднового дизель-електричного пропульсивного комплексу [Text] / В. В. Будашко // Праці Луганського відділення Міжнародної Академії Інформатизації: Науковий журнал. – 2007. – № 1(14). С. 100-107.
- [3] Будашко, В. В. Комп'ютерне моделювання багаторівневого перетворення електроенергії допоміжної гребної енергетичної установки [Text] / В. В. Будашко // Матеріали всеукраїнської науково-технічної конференції з міжнародною участю "Проблеми автоматики та електрообладнання транспортних засобів (ПАЕТЗ-2007)". – Миколаїв: НУК. – 2007, С. 27-32.
- [4] Будашко, В. В. Оцінка ефективності передачі потужності в суднових дизель-електричних комплексах [Text] / В. В. Будашко // Судовые энергетические установки: Научно-технический сборник. – 2007. – №18. – Одесса: ОНМА. С. 21-24.
- [5] Budashko, V. V. DMI-Models in Modeling of Power Condition in PWM-Propulsion [Text] / V. V. Budashko // // 2nd International Conference on Inductive modeling (ICIM 2008): Proceedings. – Kyiv, Ukraine: Укр. IHTEI. – 2008, С. 279-280.
- [6] Будашко В. В. Оптимизация управления энергетической установкой типа ССР АZIPOD[®] [Текст] / В. В. Будашко // Автоматизация судовых технических средств. – 2008. - Вып. 14. – С. 8-12.

- [7] Будашко, В. В. Оптимизация управления энергетической установкой типа CRP AZIPOD[®] [Text] / В. В. Будашко // // XV Международная конференция по автоматическому управлению (Автоматика-2008): Доклады. – Одесса: ОНМА, 2008, С. 84-86.
- [8] Будашко, В. В. Моделювання режимів роботи суднових дизельелектричних пропульсивних комплексів [Text] / В. В. Будашко, П. Г. Солойденко, В. С. Свинобій // Сучасні проблеми суднової енергетики – 2008 // Матеріали наукової конференції професорськовикладацького складу та курсантів. Одеса: ОНМА, 2008, С. 148-150.
- [9] Будашко, В. В. Лабораторна установка для дослідження режимів роботи електроприводів суднових пропульсивних комплексів [Text] / В. В. Будашко, Юшков Є. О. // Сучасні проблеми суднової енергетики – 2008 // Матеріали наукової конференції професорськовикладацького складу та курсантів. Одеса: ОНМА, 2008, С. 124-126.
- [10] Будашко, В. В. Применение натурных испытаний при расчёте параметров моделирования пропульсивных комплексов *CRP AZIPOD[®]* [Text] / В. В. Будашко // Інтелектуальні системи прийняття рішень і проблеми обчислювального інтелекту – *ISDMCI* 2008 // Матеріали міжнародної науокової конференції / т.2 (частина 1): Аналіз і моделювання складних систем і процесів. Євпаторія: XHTY, 2008, С. 37-41.
- [11] Budashko, V. V. Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex [Text] / V. V. Budashko / Electrical engineering & electromechanics. – 2017. – №2. – P. 62-72. Doi:10.20998/2074-272X.2017.2.10.
- [12] Budashko, V. Formalization of design for physical model of the azimuth thruster with two degrees of freedom by computational fluid dynamics methods [Text] / V. Budashko // Eastern-European Journal of Enterprise Technologies. – 2017. – V. 3. – № 7(87). – P. 40-49. Doi:10.15587/1729-4061.2017.101298.
- [13] Budashko, V. Theoretical-applied aspects of the composition of regression models for combined propulsion complexes based on data of experimental research [Text] / V. Budashko, V. Golikov // Eastern-European Journal of Enterprise Technologies. – 2017. – V. 4. – № 3(88). – P. 11-20. Doi:10.15587/1729-4061.2017.107244.
- [14] Budashko, V. V. Conceptualization of research of power hybrid electric power complexes [Text] / O. V. Glazeva, V. V. Budashko, S. F. Samonov // Technology audit and production reserves. – 2016. – V. 5. – 1(31). – 63-73. Doi:<u>10.15587/2312-8372.2016.81407</u>.
- [15] Budashko, V. V. Increasing control's efficiency for the ship's two-mass electric drive [Text] / V. V. Budashko / Electrical engineering & electromechanics. – 2016. – №4. – P. 34-42. Doi:10.20998/2074-272X.2016.4.05.
- [16] Nikolskyi, V. The monitoring system of the Coanda effect for the tension-leg platform's [Text] / V. Nikolskyi, V. Budashko, S. Khniunin // Proceeding Book of International conference on engine room simulators (ICERS12). – Istanbul, Istanbul Technical University, Maritime Faculty, 2015. – P. 45-49. ISBN: 978-605-01-0782-1.
- [17] Бойко, А. А. Синтез и исследование системы автоматического симметрирования токов асинхронного двигателя с преобразователем напряжения [Текст] / А.А. Бойко, В. В. Будашко, Е. А. Юшков, Н. А. Бойко // Восточно-европейский журнал передовых технологий. – 2016. Т. 1. № 2 (79). С. 22-34. Doi:10.15587/1729-4061.2016.60544.
- [18] Будашко, В. В. Имплементарный подход при моделировании энергетических процессов динамически позиционирующего судна [Текст] / В. В. Будашко // Електротехніка і Електромеханіка. 2015. №6. – С. 20-25. ISSN 2074-272X. Doi:10.20998/2074-272X.2015.6.02/50764.
- [19] Будашко, В. В. Исследование процессов передачи мощности в комбинированном пропульсивном комплексе при разновекторных нагрузках [Текст] / В. В. Будашко, И. М. Тарасов // Актуальні питання суднової електротехніки і радіотехніки // Матеріали науково-методичної конференції, 11.12.2013 – 12.12.2013. – Одеса: ОНМА, 2014, С. 49-52.
- [20] Будашко, В. В. Математическое моделирование всережимных регуляторов оборотов подруливающих устройств судовых энергетических установок комбинированных пропульсивных

комплексов [Текст] / В. В. Будашко, Е. А. Юшков // Электронное моделирование (Electronic Modeling). – 2015. – V. 37. – №2 (2015). Р. 101-114.

- [21] Будашко, В. В. Моделирование систем управления мощностью и крутящим моментом подруливающих устройств при позиционировании судов [Текст] / В. В. Будашко, Д. А. Гончаренко // Интеллектуальные системы принятия решений и проблемы вычислительного интеллекта (ISDMCI'2014): Материалы международной научной конференции. – Херсон: ХНТУ, 2014. С. 59-61. ISBN 978-966-8912-90-0.
- [22] Будашко, В. В. Моделирование элементов судовой энергетической установки для исследования режимов работы пропульсивного комплекса [Текст] / В. В. Будашко, І. М. Тарасов // Сучасні проблеми морського транспорту та безпека мореплавства // Матеріали III Всеукраїнської студентської наукової конференції, м. Херсон, 21 листопада 2013 року). – Херсон: Видавництво ХДМА, 2013, С. 277-279.
- [23] Будашко, В. В. Моделювання електродинамічних процесів в комбінованому пропульсивному комплексі при утриманні позиції [Текст] / В. В. Будашко, Є. О. Юшков // Сучасні інформаційні та інноваційні технології на транспорті (МІNTT-2012) // Збірка матеріалів четвертої Міжнародної науково-практичної конференції у двох томах, т.2. Херсон: ХДМА, 2012, С.10-12.
- [24] Будашко, В. В. Моделювання енергетичних процесів у пропульсивному комплексі з асинхронним двигуном на лінії валу [Текст] / В. В. Будашко, Є. О. Юшков // Інновації в суднобудуванні та океанотехніці. Матеріали першої науково-технічної конференції, присвяченої 90-річчю НУК ім. адмірала Макарова. Миколаїв: НУК, 2010, С. 48-51.
- [25] Будашко, В. В. Моделювання перехідних процесів у дизельелектричному комплексі з малообертовим дизелем і асинхронним двигуном на лінії валу рушія [Текст] / В. В. Будашко, Є. О. Юшков // Сучасні інформаційні та інноваційні технології на транспорті (MINTT-2010). Збірка матеріалів другої Міжнародної науковопрактичної конференції у двох томах, т.2. Херсон: ХДМА, 2010, С.77-80.
- [26] Будашко, В. В. Параметризація потужних електричних машин при моделюванні суднових пропульсивних комплексів [Текст] / В. В. Будашко // Наука в інформаційному просторі // Матеріали IX Міжнародної науково-практичної конференції у восьми томах ISBN 978-617-645-140-2. – Дніпропетровськ: Біла К.О. – с. 80-83.
- [27] Будашко, В. В. Приближення експериментальних даних при моделюванні енергетичних установок суднових пропульсивних комплексів [Текст] / В. В. Будашко, І. М. Тарасов // Суднова енергетика: стан та проблеми // Міжнародна науково-технічна конференція. – Миколаїв, НУК: 13.11.2013 – 14.11.2013.
- [28] Будашко, В. В. Применение результатов натурных испытаний при моделировании энергетических установок комбинированных пропульсивных комплексов [Текст] / В. В. Будашко, Е. А. Юшков // European Conference on Innovations in Technical and Natural Sciences. The 8th International scientific conference proceedings (July 22, 2015). – Vienna: «East West» Association for Advanced Studies and Higher Education GmbH. – 2015. – P. 89-96.
- [29] Будашко, В. В. Система мониторинга состояния винторулевой колонки для предупреждения эффекта Коанда [Текст] / В. В. Будашко, В. В. Никольский, С. Г. Хнюнин, Ю. А. Накул // Автоматизация судовых технических средств: Науч.-техн. сб. – 2015. – Вып. 21. – Одесса: ОНМА. – С. 22-28.
- [30] Будашко, В. В. Суднова система моніторингу для попередження ефекту Коанда [Текст] / В. В. Будашко, В. В. Нікольский, С. Г. Хнюнін // Патент UA на корисну модель № 100819, 2015.
- [31] Будашко, В.В. Оценка эффективности компенсации деградационных эффектов в комбинированном пропульсивном комплексе [Текст] / В. В. Будашко // Судовые энергетические установки: научно-технический сборник. Вып. 36. – Одесса: ОНМА, 2015. – С. 15-22. ISSN 1815-6770.
- [32] Будашко, В.В. Система імпульсно-фазового управління електроприводом суднової гвинто-кермової установки [Текст] / В. В. Будашко, Є. О. Юшков // Патент UA на корисну модель № 108074, 2016.

- [33] Глазева, О. В. Аспекти математичного моделювання елементів єдиних електроенергетичних установок комбінованих пропульсивних комплексів [Текст] / О. В. Глазева, В. В. Будашко // Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Серія: Проблеми удосконалення електричних машин і апаратів. Теорія і практика. – Х.: НТУ «ХПІ». – 2015. – № 42 (1151). – С. 71-75.
- [34] Гончаренко, Д. А. Моделирование систем управления мощностью и крутящим моментом подруливающих устройств при позиционировании судов [Текст] / Д. А. Гончаренко, В. В. Будашко // Интеллектуальные системы принятия решений и проблемы вычислительного интеллекта (ISDMCI'2014). Материалы междунар. науч. конф. – Херсон: ХНТУ. – 2014. – С.59-61.
- [35] Дерменжи, В. В. Дослідження дестабілізаційних процесів у дводвигуновому електроприводі вантажно-розвантажувальної системи рефрижераторного судна [Текст] / В. В. Дерменжи, В. В. Будашко // Матеріали науково-методичної конференції «Актуальні питання суднової електротехніки і радіоелектроніки», 15.12.2015-16.12.2015, – Одеса: НУ ОМА, 2016, С. 62-66.
- [36] Никольский, В. В. Система мониторинга позиционирования полупогружных плавучих буровых установок [Текст] / В. В. Никольский, В. В. Будашко, С. Г. Хнюнин, Н. Е. Раенко // Судовые энергетические установки: научно-технический сборник. Вып. 35. – Одесса: OHMA, 2015. – С. 137-142. ISSN 1815-6770.
- [37] Слободянюк, І. С. Ідентифікація маркерів деградаційних ефектів на лініях потоків гребних гвинтів комбінованого пропульсивного комплексу [Текст] / І.С. Слободянюк, В. В. Будашко // Електромеханічні та енергетичні системи. Методи моделювання та оптимізації. Збірник наукових праць XV Міжнародної науковотехнічної конференції молодих учених і спеціалістів у місті Кременчук I1-12 квітня 2017 р. – Кременчук, КрНУ, 2017. – С. 84-85. ISSN 2079-5106.
- [38] Хнюнін, С. Г. Суднова система моніторингу для попередження ефекту Коанда [Текст] / С. Г. Хнюнін, В. В. Нікольский, В. В. Будашко // Патент UA на корисну модель № 107006, 2016.
- [39] Будашко, В. В. Концептуалізація науково-прикладних досліджень суднових енергетичних установок комбінованих пропульсивних комплексів [Текст] / В. В. Будашко // Актуальні проблеми суднової електроенергетики, електромеханіки та радіоелектроніки // Матеріали науково-методичної конференції, 11.12.2017-12.12.2017. – Одеса: НУ ОМА, 2018, С. 14-16.
- [40] Бондаренко, Д. В. Підвищення ефективності управління електроприводами рушіїв комбінованого пропульсивного комплексу [Текст] / Д. В. Бондаренко, І. С. Слободянюк, В. В. Будашко // Актуальні проблеми суднової електроенергетики, електромеханіки та радіоелектроніки // Матеріали науковометодичної конференції, 11.12.2017 – 12.12.2017. – Одеса: НУ ОМА, 2018, С. 74-78.
- [41] Nikolskyi, V. Development of a Computer System of Technical Condition for the Electric Podded Azimuth Thrusters [Text] / V. Nikolskyi, V. Budashko, S. Khniunin, M. Nikolskyi // Information technologies and computer modelling: proceedings of the International Scientific Conference May 14-19, 2018 Ivano-Frankivsk, Ukraine: Suprun V. P. – P. 157-160. ISBN 978-617-7468-26-3.
- [42] Nikolskyi, V. Parametrization and identification of energy flows in the ship propulsion complex [Text] / V. Nikolskyi, V. Budashko, S. Khniunin, M. Nikolskyi // 2018 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Slavske, 20-24 Feb. 2018, Ukraine: IEEE. – P. 288-294. Doi: 10.1109/TCSET.2018.8336205.
- [43] Будашко, В. В. Підвищення ефективності функціонування суднових енергетичних установок комбінованих пропульсивних комплексів. Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.22.20 – Експлуатація та ремонт засобів транспорту (0701 – транспорт і транспортна інфраструктура). – Національний університет «Одеська морська академія), Одеса, 2017, 422 с.
- [44] Budashko, V. Synthesis of the Management Strategy of the Ship Power Plant for the Combined Propulsion Complex [Text] / V. Budashko, V.

Shevchenko // 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kyiv, 16-18 Oct. 2018, Ukraine: IEEE. P. 106-108. Doi: 10.1109/MSNMC.2018.8576266.

- [45] Будашко, В.В. Ідентифікаційне маркування деградаційних ефектів на лінії гребних гвинтів [Текст] / В. В. Будашко, В. А. Шевченко, Д. А. Агапцев // Сучасні енергетичні установки на транспорті і технології та обладнання для їх обслуговування // Матеріали 9-ї міжнародної науково-практичної конференції, 13-14 вересня 2018 р. – Херсон: ХДМА, 2018. – С. 112-118.
- [46] Будашко, В.В. Підвищення ефективності гібридних суднових комбінованих пропульсивних комплексів за різними критеріями стратегій енергоменеджменту [Текст] / В.В. Будашко // Суднова електроінженерія, електроніка і автоматика // Матеріали науковометодичної конференції, 05.12.2018 – 06.12.2018. – Одеса: НУ ОМА, 2019. – С. 10-27.
- [47] Budashko, V.V. Integration of expert systems for the design of marine power plants of combined propulsion complexes [Text] / V.V. Budashko // SEA-CONF 2019 The 5th International Scientific Conference, May 17th - 18th, 2019. – Constanta: "MIRCEA CEL BATRAN" NAVAL ACADEMY. – P. 20-21.
- [48] Budashko, V. Multicriteria strategy of power managing system for ships power plants for combined propulsion complexes [Text] / Budashko V.
 // IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE).
 2019. - V. 14, I. 5. - P. 14-28. e-ISSN: 2278-1676, p-ISSN: 2320-3331. Doi: 10.9790/1676-1405011428.
- [49] Budashko, V. Вдосконалення стратегії управління багатомасовою електромеханічною системою [Текст] / V. Budashko, V. Shevchenko // Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal). – 2019. – V. 9 (49). – Р. 38-43.
- [50] Budashko, V. V. Increasing the efficiency of hybrid propulsion complexes for multipurpose vessels by different criteria of the energy management strategies [Text] / V. V. Budashko // Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal). – 2019. – V. 10 (50). – P. 53-62.
- [51] Будашко, В. В. Методологія розробки навчальних курсів в умовах скорочення аудиторних годин / В. В. Будашко // Матеріали міжнародної науково-технічної конференції «Суднова електроінженерія, електроніка і автоматика», 05.11.2019-06.11.2019. – Одеса: НУ «ОМА», 2020. – С.10-21. ISSN 2706-7874 (print). DOI: dx.doi.org/10.31653/2706-7874.
- [52] Hvozdeva, I. Problems of Improving the Diagnostic Systems of Marine Diesel Generator Sets [Text] / I. Hvozdeva, V. Myrhorod, V. Budashko, V. Shevchenko // 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Slavske, 25-29 Feb. 2020, Ukraine: IEEE. P. 350-354. Doi: 10.1109/TCSET49122.2020.235453.
- [53] Budashko, V. Thrusters physical model formalization with regard to situational and identification factors of motion modes [Text] / V. Budashko // International journal of energy and environment. – 2020. – V. 14. – P. 5-8, ISSN: 2308-1007. <u>Doi: 10.46300/91012.2020.14.2.</u>
- [54] Budashko, V. Thrusters physical model formalization with regard to situational and identification factors of motion modes [Text] / V. Budashko // 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, 12-13 June 2020, Turkey: IEEE. Pp. 1-6. Doi: 10.1109/ICECCE49384.2020.9179301.
- [55] Myrhorod, V. Multi-parameter Diagnostic Model of the Technical Conditions Changes of Ship Diesel Generator Sets [Text] / V. Myrhorod, I. Hvozdeva, V. Budashko // 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), Kremenchuk, 21-25 Sept. 2020, Ukraine: IEEE. Pp. 1-5. Doi: 10.1109/PAEP49887.2020.9240905.
- [56] Budashko, V. V. Ship's power plants of combined propulsion complexes: concepts, technologies, researching: Monograph / Budashko V. V.. – Odessa: NU "OMA", 2020. – 136 p. ISBN 978-617-7857-01-2.
- [57] Будашко, В.В. Високовольтні технології в морській електроінженерії: монографія [Текст] / В.В. Будашко, О.М.

Піпченко, В. В. Пономаренко, В. А. Шевченко // Одеса: НУ «ОМА», 2020. – 398 с. ISBN 978-617-7857-02-9.

- [58] Budashko, V. Power plant, propulsion complex and control system of autonomous dual-purpose underwater vehicle [Text] / V.V. Budashko // 15th International Naval Engineering Conference and Exhibition (INEC/iSCSS 2020), 5-9 October 2020, Virtual online conference. Pp. 1-9. Aviable at: <u>https://events.rdmobile.com/Lists/Details/1071014</u>.
- [59] Budashko, V. The synthesis of control system to synchronize ship generator assemblies [Text] / V. Budashko, V. Shevchenko // Eastern-European Journal of Enterprise Technologies. – 2021. – V. 1. – № 2(109). – P. 45-63. ISSN 1729-3774. Doi: <u>10.15587/1729-4061.2021.225517</u>.
- [60] Budashko, V. Solving a task of coordinated control over a ship automated electric power system under a changing load [Text] / V. Budashko, V. Shevchenko // Eastern-European Journal of Enterprise Technologies. – 2021. – V. 2. – № 2(110). – P. 54-70. ISSN 1729-3774. Doi: 10.15587/1729-4061.2021.229033.
- [61] Будашко, В.В. Наукові аспекти синтезу систем управління синхронізацією суднових генеруючих агрегатів [Текст] / В.В. Будашко, В. А. Шевченко, Д. І. Марфела // Сучасні енергетичні установки на транспорті і технології та обладнання для їх обслуговування (СЕУТТОО-2021) // Матеріали 12-ї міжнародної науково-практичної конференції, 6-8 вересня 2021 р. – Херсон: ХДМА, 2018. – С. 66-71.
- [62] Будашко, В. В. Координоване управління судновою автоматизованою електроенергетичною системою при змінах навантаження [Текст] / В. В. Будашко, В. А. Шевченко, С. О. Зеленюк, Д. І. Марфела // Results of modern scientific research and development Proceedings of the 7th International scientific and practical conference. Barca Academy Publishing. Madrid, Spain. 2021. Pp. 109-116.
- [63] Гвоздева, І. М. Двовимірне сингулярне розкладання компонент часових рядів [Текст] / І. М. Гвоздева, В. Ф. Миргород, В. В. Будашко // Прикладні питання математичного моделювання. – 2021. – Т. 4 (№ 2.1). – С. 66-75. – Херсон: ХНТУ. ISSN 2618-0332. Doi: 10.32782/KNTU2618-0340/2021.4.2-1.6.
- [64] Гвоздева, І. М. Двовимірне сингулярне розкладання компонент часових рядів / І. М. Гвоздева, В. Ф. Миргород, В. В. Будашко // Матеріали XXII Міжнародної конференції з математичного моделювання (МКММ-2021), 13-17 вересня 2021 р., м. Херсон. – 2021. – Херсон: ХНТУ. – С. 30. Режим доступу: \WWW/ URL: <u>http://surl.li/agrpj</u> – 21.09.2021 р. – Загол. з екрану.
- [65] Budashko, V. Diagnosis of the Technical Condition of High-Tech Complexes by Probabilistic Methods [Text] / V. Budashko, I. Hvozdeva, V. Shevchenko, V. Myrhorod, A. Sandler, O. Glazeva // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Slavske, 22-26 Feb. 2022, Ukraine: IEEE TCSET 2022. – P. 7-14. Doi: 10.1109/TCSET49122.2020.235588.
- [66] Budashko, V. Optimization of the control system for an electric power system operating on a constant power hyperbole [Text] / V. Budashko, A. Sandler, V. Shevchenko // Eastern-European Journal of Enterprise Technologies. – 2022. – V. 1. – № 8(115). – P. 6-17. ISSN 1729-3774. Doi: 10.15587/1729-4061.2022.252172.
- [67] Budashko, V. V. Prospektive globale wissenschaftliche Trends: Modern technologies and concepts of researching for ship power plants of combined propulsion complexes: Monograph [Text] / V.V. Budashko // ScientificWorld-NetAkhatAV Lußstr 13, Karlsruhe, Germany in conjunction with Institute «SE&E», 2021. – Book 7. – Part 7. – 152 p. ISBN 978-3-949059-43-8 Doi: 10.30890/2709-2313.2021-07-07.
- [68] Budashko, V. Diagnosis of the Technical Condition of High-tech Complexes by Probabilistic Methods [Text] / V. Budashko, A. Sandler, V. Shevchenko // International Journal on Marine Navigation and Safety of Sea Transportation (TransNav). – 2022. – V. 16. – № 1. – P. 105-111. ISSN 2083-6473, ISSN 2083-6481 (electronic version). Doi: 10.12716/1001.16.01.11.