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Abstract—Drug-drug interactions (DDIs) occur when two
or more drugs are used together, leading to unexpected and
potentially harmful effects. Identifying DDIs requires manual
annotations, but the increasing volume of research publications
and the slow data annotation process make this challenging.
Machine learning, especially deep learning, can efficiently extract
and identify DDIs from biomedical literature. However, class
imbalance in datasets reduces model performance. This study
introduces BIOGAN-BERT, which combines data augmentation
using the Pretrained Language Model (PLM) BioGPT-2 and
Generative Adversarial Network (GAN) to address class im-
balance in DDI extraction tasks. It identifies gaps in existing
imbalance handling studies and proposes enhancements through
PLM-based data augmentation and semi-supervised learning
with GAN. BioGPT-2 generates additional data from labeled
and unlabeled sources, enriching the training dataset. This data
is then processed using GAN-BERT, allowing the model to
learn from more complex data distributions, thereby improving
data quality and model generalization. Traditional methods like
sampling only increase the number of data instances, and loss
functions merely assign greater representation to the loss values.
While these methods expand the learning space for models,
they do not enhance data representation. In contrast, this novel
approach uses data augmentation to increase both the quantity
and the diversity of data. Evaluation results show that BIOGAN-
BERT outperforms several baselines, significantly increasing the
micro F1-Score for minor classes to 0.85 compared to 0.83 for the
best baseline model, demonstrating its effectiveness in handling
class imbalance and contextual variations in biomedical data.

Index Terms—Drug-drug interactions (DDI), Machine learn-
ing, Data augmentation, Deep learning, Generative Adversarial
Network (GAN)

I. INTRODUCTION

DDIs occur when two or more drugs are used simultane-
ously, leading to potentially harmful effects such as reduced
efficacy, toxic effects, or exacerbation of side effects. Iden-
tifying DDIs typically involves using specific datasets that
have been annotated by experts, such as PharmGKB and
DrugBank.com. However, the increasing number of drugs and
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continuous publication of new research makes maintaining up-
to-date DDI data challenging. The manual annotation process
is time-consuming and costly, often resulting in a significant
amount of unlabelled DDI data [1].

To address the need for efficient DDI extraction, machine
learning, especially deep learning techniques, has become
essential. These models predict drug interactions effectively,
helping healthcare professionals and researchers. One of the
datasets used to train these models is the DDI Extraction
2013 dataset. The DDI Extraction Challenge 2013 dataset,
a gold standard for developing extraction models, consists
of texts from DrugBank and MedLine, annotated with five
types of DDI relationships. Despite improvements in model
performance, class imbalance remains a significant challenge,
leading to poor performance, especially for minor classes.
Some researchers have used solutions like weighted cross-
entropy and sampling, but with limited success [2]-[4].

Traditional methods like sampling only increase the number
of data instances, and loss functions merely assign greater
representation to the loss values. While these methods expand
the learning space for models, they do not enhance data
representation. In contrast, this novel approach uses data
augmentation to increase both the quantity and the diversity
of data. One of the best traditional methods, using PLMs,
leverages only labeled data for augmentation.

This study proposes a novel approach that combines a fine-
tuned generative pre-trained language model, such as BioGPT-
2, with a generative probabilistic architecture. This method not
only increases the number of instances to expand the learning
space but also leverages both labeled and unlabeled data to
enhance the model’s extraction capabilities. The goal is to
improve machine learning model performance on the DDI
Extraction Challenge 2013 dataset. This approach is expected
to surpass the results of previous methods like sampling, data
augmentation, and adapting loss functions, providing a more
robust solution for DDI extraction from biomedical texts.



II. RELATED WORKS

This section will discuss all related works that are used as
the reference and used in developing solutions.

A. Drug-drug interactions

Relation extraction is an Natural Language Processing
(NLP) technique used to identify and extract relationships
between entities or concepts in a text, enhancing understanding
and analysis. In DDIs, this technique processes sentences to
extract relevant DDI information. This process is crucial as
DDIs can reduce drug efficacy or increase toxicity, posing
significant clinical risks, especially for the elderly. Studies
show that DDIs can decrease the quality of life and increase
healthcare costs. With the rise of new drugs, deep learning
models have become essential for efficiently extracting and
identifying DDIs from biomedical literature [5].

B. GAN-BERT

GAN are machine learning models consisting of a generator
that creates synthetic data and a discriminator that distin-
guishes between real and synthetic data. Through competitive
training called adverserial learning, GANs improve until the
generated data is indistinguishable from real data [6]. A
research combining GANs with BERT performs well in text
classification tasks, especially with limited labeled data, by us-
ing a mix of labeled and unlabeled data [7]. A semi-supervised
learning approach, SS-GAN, trains the discriminator with c+1
classes where (1,...,c) are the “true” classes based on the
training data targets, and c + 1 is the “false” class generated
by the generator [8]. A GAN-BIOBERT model applied for
sentiment detection in clinical data, using 108 annotated and
2,000 unlabeled data points, achieved an accuracy of 0.91 and
an Fl-macro score of 0.92, demonstrating the effectiveness of
GANSs in improving performance with limited labeled data [9].

C. Fine-Tuned PLM

This research uses two PLMs, BIOBERT and GPT-2, to
enhance text representation and perform data augmentation
for DDI detection. BIOBERT captures contextual information
from biomedical texts, crucial for relation extraction, while
GPT-2, being freely available, is used for data augmenta-
tion. The data augmentation involves fine-tuning BioGPT-2
with specific datasets to generate relevant augmented data,
improving the model’s performance in DDI extraction. This
approach addresses the issue of limited labeled data and helps
the model recognize complex patterns, enhancing accuracy and
effectiveness in detecting DDIs from biomedical texts.

D. Imbalance Class Handling Methods

Based on a review addressing class imbalance in machine
learning, particularly in NLP, several main approaches can be
identified: data sampling, data augmentation, and loss function
adaptation [10].

1) Sampling: This technique increases instances of the

minority class by randomly duplicating them to help the
model learn better from underrepresented classes.

2) Data Augmentation: This method enriches training data
by restructuring syntax and adding lexical items to
create a more balanced dataset without needing new data
collection.

3) Loss Function Adaptation: This approach adjusts the
loss function to assign a higher penalty for misclassifi-
cations in the minority class, encouraging the model to
better learn patterns from the underrepresented data.

E. Augmentation Filter

Data augmentation and unlabeled data in training must be
meticulously filtered to avoid degrading model performance.
Inaccurate or irrelevant data can lead to substantial bias or
inaccuracies in predictions. Ensuring the quality and relevance
of the data is paramount to developing an effective model.
Preliminary research by [11] highlights two key metrics that
are suitable for filtering training data in this research.

1) Diversity (Bilingual Evaluation Understudy (BLEU)
Score: This metric evaluates text quality by comparing
n-gram matches to ensure the model learns from varied
patterns, including a brevity penalty for balanced evalua-
tion. The BLEU metric is used in this research due to its
efficiency in measuring the diversity between augmented
data and the original data.

2) Accuracy: This metric assesses how well the additional
data aligns with given labels, preventing the model from
being misled and ensuring relevance to the provided
labels.

F. Related Research

The related research explores various techniques for han-
dling data imbalance in drug-drug interaction (DDI) extraction
from biomedical texts. Models like the one employing a De-
pendency Graph Enhanced Module and Sequential Represen-
tation Generation Module, which uses an attention network to
differentiate connected nodes and under-sampling for balanced
data distribution, have improved accuracy in detecting drug
interactions [12]. Similarly, combining under-sampling with
a drug knowledge graph (KG) from sources like DrugBank
and KEGG, along with Bi-GRU for contextual information
and BioBERT as a text encoder, achieved an Fl-score of
0.81 [13]. Another approach integrating BioBERT with Bi-
LSTM yielded an Fl-macro score of 0.83 [4]. Several studies
also explored combining imbalance handling methods: random
under-sampling and weighted cross-entropy with PLM BIO-
BERT and BioGPT-2 achieved an F1-score of 0.84 [2], while
under-sampling and weighted cross-entropy with deep neural
networks resulted in an Fl-score of 0.78 [14]. CNN with
SMOTE improved performance by 0.04 [3], and SMOTE
combined with GAN enhanced minor class samples, boosting
performance from 0.84 to 0.96 [15]. A combination of under-
sampling and over-sampling achieved an AUC of 0.99 [16],
and a new model, Prompt Tuning and Data Augmentation
(PTDA), leveraging GPT-2 for data augmentation and prompt
tuning, achieved an Fl-micro score of 0.85 on the DDI
Extraction 2013 dataset [17].



III. METHOD & IMPLEMENTATION

This section details the research methods and implementa-
tion, offering a comprehensive overview of the approaches and
techniques used to investigate the study objectives.

A. Dataset

This research uses two types of datasets: the primary DDI
Extraction 2013 dataset, manually annotated by pharmacists
and linguists to identify harmful drug interactions, and ad-
ditional unlabeled datasets. Each label as shown in Table: |
is the primary dataset provides specific information about the
interactions.

TABLE I
LABELS AND THEIR FUNCTIONS IN DDI EXTRACTION
Label Function
Mechanism | Describes the pharmacokinetic mechanism of a drug
interaction.
Effect Indicates the effects resulting from drug interactions.
Advise Offers recommendations or advice regarding drug
interactions.
Int Indicates an interaction without detailed information.
Negative States that no interaction occurs.

The TAC 2019 dataset, created by the FDA, is used in this
research to extract drug-drug interaction (DDI) information
from structured product labels of 406 drugs. This dataset
supports automated health information exchange systems and
is employed as unlabeled data for augmentation to enhance
model performance. Detailed information about this dataset
can be found in the article ”Overview of the TAC 2019 Track
on Drug-Drug Interaction Extraction from Drug Labels” [18].
The labels from the TAC 2019 data are intentionally removed,
as it is used as unlabeled data for training purposes. All the
TAC 2019 data is utilized solely for training because it serves
as an augmentation dataset.

B. Experiment Settings

This study uses an experimental approach to test the pro-
posed hypothesis, allowing systematic and controlled research
to evaluate the effectiveness of various algorithms in ad-
dressing class imbalance in DDI extraction from biomedical
texts. By using an experimental approach, researchers can
objectively compare the performance of different methods and
algorithms. The dependent variable is the F1-Micro metric for
minor classes in the DDI Extraction 2013 dataset, such as
advise, effect, int, and mechanism. Stratified cross-validation
with k = 5 is used to ensure robust evaluation of these metrics.

The independent variable in this study is the variation of
class imbalance handling algorithms [10], selected to save
research time and reduce computational costs. The algo-
rithms tested and compared for improving DDI extraction
performance as described in Table II include under-sampling,
over-sampling, hybrid-sampling, data augmentation with GPT-
2, weighted cross-entropy (WCE), Auto Dice Loss (ADL),
Synthetic Minority Over-sampling Technique (SMOTE), and
the novel method BIOGAN-BERT. The experimental hardware

TABLE II
DESCRIPTION OF METHODS USED FOR DATA IMBALANCE HANDLING
Method Description
No Handler Does not apply any method to address data imbal-

ance.

Under-sampling Reduces the number of majority class instances to

balance the dataset.

Over-sampling Increases the number of minority class instances to

balance the dataset.

Hybrid-sampling | Combines both under-sampling and over-sampling

techniques to balance the dataset.

SMOTE Synthesizes new instances for the minority class
using k-nearest neighbors.

GPT-2 Uses data augmentation through synthetic text gen-
eration via the GPT-2 model.

ADL Implements Auto Dice Loss to optimize model train-
ing and focus on minority classes.

WCE Uses Weighted Cross Entropy to give higher impor-

tance to the minority classes during training.

BIOGAN-BERT Combines a GAN model with BERT to generate
synthetic data and improve the performance of the

DDI extraction task.

includes the Tambora Academic Research Server at STEI ITB,
featuring an Intel® Xeon® Silver 4208 CPU, 64 GB of RAM,
and a combination of Nvidia Quadro RTX 5000 and Nvidia
RTX A5000 GPUs. GPU usage is managed through a FIFO
booking system, ensuring availability for the training process.

C. BIOGAN-BERT Architecture

The BioGAN-BERT architecture has three key components:
processing unlabeled data, fine-tuning BioGPT-2 for data
augmentation, and the classifier model. Each component is
detailed in this section.

1) Unlabeled Data Processing: This section discusses the
process of handling unlabeled TAC 2019 data through various
stages of data processing to ensure the best quality data is used
in the training process, as shown in Fig: 2, thereby improving
the extractor’s capabilities. The TAC 2019 data is transformed
into CSV format and filtered to match the characteristics
of the DDI Extraction 2013 dataset. This involves padding,
tokenizing, masking, and entity-tagging sentences that contain
drug pair names. Pseudo-labeling is used to generate additional
labeled data for training and data augmentation, optimizing the
use of unlabeled data more effectively than previous methods
by addressing confidence levels between the “unknown” class
and other classes.

2) Generate Augmented Data with BioGPT-2: The aug-
mentation stage, as shown in Fig: 3, involves combining
pseudo-labeled data from the unlabeled TAC 2019 dataset
with the training data from the DDI Extraction 2013 dataset.
This is followed by pre-processing and fine-tuning the model
using metrics like perplexity and hyperparameters such as the
AdamW optimizer and early stopping. After fine-tuning, the
model generates new data using top-k and top-p sampling
algorithms (k=50, p=0.8) to increase the amount of data
in the minor class. The labels are ensured to match the
DDI Extraction dataset because the generated data from the
fine-tuned model uses prompt labels, ensuring consistency
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throughout. The use of labels as the first word is also chosen
to produce more focused and contextual augmented data [19].
The generated data undergoes filtering to maintain accuracy,
using a filtering protocol based on the best baseline machine
learning model, the oversampling model, to ensure that sen-
tences contain specific entity token pairs, have a minimum
of three words, and correctly enclose entity names. Quality
metrics such as diversity (BLEU) and correctness, bench-
marked against existing models, ensure the effectiveness of
the synthetic data.

3) Classifier: The classifier architecture, shown in Fig:
1, utilizes unlabeled datasets, data augmentation, and the
DDI Extraction 2013 training data with BioGPT-2. Details
of the data instances can be seen in Table III. The study
uses the training and testing datasets from the DDI Ex-
traction 2013 dataset, following the approach of other re-
searcher [2], and employs 5-fold stratified cross-validation
for performance evaluation. This approach combines and
modifies the methods of GAN-BERT [7] and EGFI [2] to
enhance text representation for DDI extraction. The generator
uses noise input to produce synthetic data, improving the
model’s generalization. Key hyperparameters include a Micro
Fl-score metric, the AdamW optimizer, cross-entropy loss,
a batch size of 8, 50 epochs, and the pre-trained model
monologg/biobert_vl.1_pubmed.
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IV. RESEARCH RESULTS & DISCUSSION

This section details the results and discussion of the pro-
posed method.

A. Unlabaled Data

To transform a dataset from . XML format, special tokens
are first added based on recognized drug names from the TAC
2019 dataset. Unrecognized entities are adjusted and assigned
types based on the DDI Extraction 2013 dataset. Sentences that
do not match the DDI Extraction 2013 structure are removed,
resulting in 3112 instances. These instances are labeled using
the pseudo-labeling method to enhance model accuracy during
training. Pseudo-labeling information is then used in the data
augmentation process by BioGPT-2, improving fine-tuning.
The pseudo-labeling process uses the baseline model with the
best performance, with data augmentation statistics shown in
Table II1.



TABLE III
DATA DISTRIBUTION ACROSS DIFFERENT LABELS

Label Train DDI | Pseudo La- | Augmented Total

Extraction beled TAC | BioGPT-2

2013 2019
Advise 728 1218 1649 3601
Effect 1565 659 232 2487
Int 177 27 1098 1303
Mechanism 1153 422 98 1692
Negative | 8987 757 0 9752

B. Augmented Data

The fine-tuning process using BioGPT-2 involves generating
data for each label, approximately doubling the instances of
the major class. Following this, a filtering process is applied in
three stages: structure, accuracy, and diversity. The structure
stage ensures that the augmented data matches the format of
the DDI Extraction 2013 data, with one drug pair per sentence.
The accuracy stage ensures the augmented data matches the
assigned labels, discarding incorrect instances. The diversity
stage ensures the data is both accurate and varied, enhancing
the model’s generalization capability. The resulting augmented
data instances are detailed in Table III.

C. Model Performance
TABLE IV

MICRO F1-SCORE VALIDATION AND TEST RESULTS FOR DIFFERENT
IMBALANCE HANDLERS

Imbalance Handler | Micro Micro F1-
F1-Score Score Test
Validation

No Handler 0.87 0.82

Under-sampling 0.71 0.68

Over-sampling 0.89 0.83

Hybrid-sampling 0.86 0.81

SMOTE 0.56 0.47

GPT-2 0.88 0.82

ADL 0.89 0.82

WCE 0.88 0.80

BIOGAN-BERT 0.88 0.85

As shown in Table IV all of the dependent variable algo-
rithms are presented here. Several algorithms were compared
in this study.

Under-sampling resulted in low F1 scores (0.71 for val-
idation and 0.68 for testing) due to significant information
loss from reducing majority class instances, which decreased
model performance. Hybrid sampling performed better (0.86
for validation and 0.81 for testing) but was still less effective
compared to no imbalance handling, as random data reduction
in these methods diminished the model’s generalization ability.

Conversely, over-sampling significantly improved perfor-
mance, with F1 scores of 0.89 for validation and 0.83 for
testing. This technique increased the number of minority class
instances, allowing the model to learn from a more balanced
dataset, thereby enhancing overall performance.

WCE also performed well (0.88 for validation and 0.80
for testing) by assigning higher weights to minority classes,

though it required careful hyperparameter tuning to optimize
performance. ADL outperformed WCE by dynamically ad-
justing weights and data distribution during training, leading
to balanced data representation and improved model accuracy.

BIOGAN-BERT achieved the highest scores on the test set
(0.88 for validation and 0.85 for testing), demonstrating supe-
rior data imbalance handling. Its low overfitting and high gen-
eralization capability resulted from data augmentation PLMs
like BioGPT-2, which generated realistic biomedical text to
enhance model training. The adaptive learning mechanisms in
BIOGAN-BERT further optimized data distribution handling,
confirming the efficacy of PLM-based data augmentation in
producing robust models.
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Fig. 4. Confusion Matrix of BIOGAN-BERT

Based on confusion matrix on Figure 4 shows the perfor-
mance of the BIOGAN-BERT model in classifying five dif-
ferent classes: Negative, Advise, Effect, Mechanism (Mech),
and Interaction (Int). The matrix highlights how well the
model predicted each class, with diagonal values representing
correct predictions (true positives). For instance, the model
correctly identified 1988 instances of the “Negative” class
and 172 instances of the “Advise” class. Misclassifications
are represented in the off-diagonal values, indicating areas
where the model confused one class for another, such as
33 ”Negative” instances being classified as “Effect.” Overall,
the matrix demonstrates that BIOGAN-BERT performs well
across most classes, with some confusion in more complex
categories like ”Int” and ”Mechanism”

BIOGAN-BERT outperformed other methods due to its
ability to increase data instances using effective data repre-
sentation based on BioGPT-2 augmentation and generating
synthetic data with GAN-BERT. This provided the model with
better generalization capabilities across all classes. However,
due to its reliance on PLM architecture, the performance of
BIOGAN-BERT is heavily dependent on the chosen PLM.
Selecting an appropriate PLM is crucial, as models like GPT-2
(not BioGPT-2) still have 0.01 lower performance than over-
sampling method.

D. Model Performance

The ablation study presented in Table V highlights the
contribution of each component in the BIOGAN-BERT ar-



TABLE V
ABBLATION STUDY

Imbalance Handler | Micro Micro F1-
F1-Score Score Test
Validation

BIOGAN-BERT 0.88 0.85

No GAN-BERT 0.87 0.83

No BioGPT-2 0.89 0.83

No BIOGAN-BERT 0.87 0.82

chitecture, specifically BioGPT-2-based augmentation, GAN-
BERT, and the full BIOGAN-BERT model. The results show
that BIOGAN-BERT with all components achieves the highest
Micro F1 score on the test data (0.85), while the best validation
score is obtained without BioGPT-2 (0.89). Removing GAN-
BERT reduces the Micro F1 score to 0.87 for validation and
0.8311 for testing, indicating its critical role in handling data
imbalance by generating synthetic data. Without BioGPT-2
augmentation, the Micro F1 score drops to 0.83 on testing,
emphasizing its importance in improving model generalization
through data variability. The model without BIOGAN-BERT
scores 0.87 for validation and 0.82 for testing, demonstrating
the significant contributions of both GAN-BERT and BioGPT-
2 in the overall performance.

V. CONCLUSION & FUTURE WORK

This research developed a new model architecture,
BIOGAN-BERT, combining Fine-Tuned BioGPT-2 and GAN-
BERT for DDI extraction tasks. BioGPT-2’s data augmenta-
tion enriched the training dataset with additional labeled and
unlabeled data, which was then processed semi-supervised
using GAN-BERT. This approach expanded the dataset and
improved data quality, resulting in a model with better general-
ization and accuracy in handling context variations. BIOGAN-
BERT demonstrated superior performance, achieving a Micro
F1-Score of 0.85, surpassing the 0.83 score of over-sampling,
highlighting the effective combination of data augmentation
and semi-supervised learning techniques in addressing data
imbalance and context variation challenges in biomedical data.

Further development using better methods to utilize unla-
beled data can involve several semi-supervised approaches,
such as SALTClass. SALTClass enriches limited biomedi-
cal texts with unlabeled data through clustering algorithms,
which then enhance text representation. This method also
integrates various supervised techniques and has been proven
to significantly improve biomedical text classification [20]. By
optimizing the use of this method, it is expected that more
data will pass the filters, thereby significantly enhancing the
model’s capabilities through the addition of relevant data.
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