ﬁ EasyChair Preprint

Ne 7672

Variable Length Digit Recognition for Gujarati
Language

Shrey Malvi, Nirmal Patel and Pratik Prajapati

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 29, 2022

Variable Length Digit Recognition for Gujarati
Language

Shrey Malvi
Data Science Department
Playpower Labs
Gandhinagar, India
shrey.malvi@playpowerlabs.com

Abstract—In this paper, we describe a method to perform
handwritten digit recognition for Gujarati - a regional Indian lan-
guage. Our method can handle variable-length inputs, meaning
that there are no limitations around the digit length for the input
image. To our knowledge, this is the first attempt to do variable
length digit classification for the Gujarati language numerals.
We outline a two-step method to classify handwritten Gujarati
numerals. The first step identifies connected components of the
input image and predicts the numeric length of each connected
component. The second step predicts the actual number that
is contained within each connected component. The final result
is a concatenation of individual predictions. Our Convolutional
Neural Networks (CNN) architecture for this task has a low
number of output classes (e.g. 30 classes for 3 digit classifier).
Our method achieves 83.8% test set accuracy for 1 to 4 digit
Gujarati numerals. On NIST19 dataset, our method achieves
96.1% test set accuracy for 2 to 6 digit English numerals.

Index Terms—Handwritten Digit Recognition, Gujarati Lan-
guage, Convolutional Networks, Image Processing

1. Introduction

Handwriting recognition Machine Learning (ML) models
are transforming many real-world processes. From automatic
processing of bank cheques to paper forms, many manual data
entry processes are becoming highly efficient through the use
of more and more accurate handwriting recognition models.
Research in this field has largely remained focused on the
English language. There are multiple publicly available data
set for the English numerals and alphabet (e.g. MNIST and
Extended MNIST), and many research studies have proposed
various methods to get over 95% accuracy [1].

To increase the impact of ML research in non-English
speaking communities, we need to develop recognition models
for other languages. The complexity of doing so depends
on the language we are targeting. Our study focuses on the
Gujarati language, which is spoken in the state of Gujarat in
India. The population of the state is approximately 60 million.
Gujarati numerals are similar to Hindi numerals, and at a high
level, recognition of Gujarati numerals can be done similarly
to the English numerals, except for the digit 9 which needs
specialized treatment. You can see in Figure 1 that digit 9 is
made up of two distinct parts of the ink. When it comes to the
alphabet, the challenge becomes quite different. The Gujarati
language has over 10 modifiers for all of its vowels and
consonants, which makes the possible number of characters

Nirmal Patel
Data Science Department
Playpower Labs
Gandhinagar, India
nirmal@playpowerlabs.com

Pratik Prajapati
Data Science Department
Playpower Labs
Gandhinagar, India
pratik.prajapati@playpowerlabs.com

OL & 3 ¥ USS 9 ¢ €

Fig. 1. Gujarati numerals from 0 to 9

over 300. This makes it very difficult to do word recognition
by using character-based models. Here, we may find word-
level models more interesting.

To recognize the handwritten Gujarati numerals of any
possible length, we designed a two-step approach. The first
step divides the input image into connected components (dif-
ferent digits that are joined with each other). The second step
recognizes the digits in each of the components separately. Our
novel neural net architecture to recognize the digits in step 2
contains a smaller number of output nodes for detecting longer
connected components. For example, a two-digit classifier will
have 20 classes instead of 100, and a three-digit classifier
will have 30 classes instead of 1000. In practice, it has been
observed that it is extremely rare to have more than 4 digits
connected [2]. This means that if we build a model to support
up to 4 connected components, it will work out in most real-
world scenarios. Our motivation to build the Gujarati hand-
writing recognition system revolved around building an auto-
mated math fluency worksheet checking system that teachers
could use in the classrooms. Full or partial auto-evaluation can
potentially save teacher time. The formative data from paper
can also help teachers give personalized learning materials to
the students (by identifying who needs help in which area).
If such solutions can be deployed in large-scale public school
settings such as in India, actions can also be taken at a system
or government level. India and many other countries have large
student populations in rural areas where children leave school
before they can acquire basic numeracy skills. Application of
computer vision to identify such students can help us give
them needed interventions, and make learning more equitable.

The rest of the paper is structured as follows. Section 2
outlines the previous literature in Gujarati handwritten digit
recognition and variable-length digit recognition. Section 3
describes our data sample. Section 4 details our proposed
approach, and section 5 shows the results of our experiments.
Lastly, Section 6 concludes the paper.

II. Literature Survey

A lot of research has been carried out in the field of
variable length digit recognition for English numerals. To our
knowledge, there has been no work has been done for variable-
length digit recognition in the Gujarati language. First, we
will mention prior work on variable-length digit recognition
in the English language. Then, we will review the work
on handwritten number recognition in the Gujarati language
which is only limited to single digits.

Prior studies on variable-length number recognition were
mainly based on segmentation-based and heuristics-based ap-
proaches. Segmentation-based approaches focus mainly on
pre-processing digit strings and segregating them into a com-
bination of isolated digits. These methods only require a 10
class classifier at the recognition phase. Ribas et al. proposed
a segmentation-based method that relied on finding optimal
segmentation-cut or a cut-point between two connected digits
[3]. It is possible that while doing the segmentation, we end
up with more segments than actual digits. This is called
over-segmentation. Vellasques et al. proposed a method to
filter out the components from over-segmentation using SVM
classifiers [4]. Segmentation is not always perfect as there
are many variations in handwriting. As the number length
increases, the overall error rate of the segmentation process
may increase because of some difficult to identify cut points.
Apart from this, the segmentation-based methods put much of
the overhead on the pre-processing and only rely on a single-
digit recognizer in the end.

In recent years, several segmentation-free approaches have
been introduced to overcome the drawbacks of segmentation-
based methods. Hochuli et al. proposed a method where
method they trained a separate classifier for each different
length of the digit [2]. The method they proposed has a
100-class classifier and a 1000-class classifier for 2 and 3
length digits respectively. This method is difficult to scale
to longer numbers. The models fall short of training a 4 or
more length classifier (requires a 10000 class classifier). Later,
several object detection-based methods such as YOLO were
applied to the task of digit recognition task [5], [6]. In these
methods, the individual digits are identified as objects, and the
final locations of the detected objects help us construct the
final output. These methods performed well on individually
detecting and localizing the digits irrespective of the digit
string length. But these methods don’t perform well when
the input data have overlapping digits. Also, for training
these object detection-based models, we require annotated
bounding boxes. Hochuli et al. adapted CRNN based scene-
text detection methods [7] for variable-length digit recognition.
Scene-text detection methods are designed to detect variable-
length text from the photographs, and when Hochuli et al. [6]
used this method for digit recognition, their model achieved
excellent performance improvement over previously proposed
methods. This method makes use of Recurrent Neural Net-
works (RNN) which is good at capturing the contextual
information among the characters/words. For digit strings,

w [9] ¢ A ¢

Fig. 2. Data samples collected from students

there is no contextual information between two isolated digits
[8], hence we eliminated the use of RNN in the architecture
and proposed a purely CNN-based variable-length digit string
recognition.

Various methods have been proposed for Gujarati handwrit-
ten numeral recognition, for both offline and online inputs [9],
[10], [11], [12]. All of these methods have focused exclusively
on single digits. To our knowledge, there is no major work that
has explored and demonstrated the possibility and challenges
of doing variable-length digit recognition. Thus, we have
presented a novel work for handling variable-length strings
in the Gujarati language by proposing a segmentation-free
approach.

III. Data

We collected Gujarati handwritten numerals data from 400
students across 1st to 8th-grade students. The data collection
forms were a grid full of numbers, showing students which
numbers to write in which box. The data consisted of both
pen-written and pencil-written samples ranging from 0 to 99.
Figure 2 shows some examples of the handwritten digits. We
collected 400 samples of each class and hence there was a wide
range of variability in terms of handwriting, orientation, and
positioning of the digits. The total data set consisted of 40000
samples. The samples which were too small to be considered
as a blob or too large to be readable were removed. The data
samples were resized to 64x64 pixel images and converted to
gray-scale. Till now, the data set that was discussed for the
Gujarati language consisted of only single-digit numerals. We
have collected the handwritten numerals for up to two length
digit strings and proposed the system to support variable-
length strings.

We only collected 1 and 2 length handwritten digits and
generated 3 and 4 digit numerals synthetically. For doing
the synthetic data generation, we used single-digit numerals
from the same author to generate new samples which are
similar to real-world cases. First, we applied the image pre-
processing step (discussed in a later section) on single-digit
samples and then cropped the region containing digits. Then
for concatenation, we randomly inserted gaps between two
adjacent digit regions and generated the images. Figure 3
shows some examples of synthetically generated digits of more
than 2 lengths. As the data contained the handwriting of many
different people, there were strokes of digits with variable
heights, widths, and angles, and concatenating those samples
resulted in very robust and diversified synthetic data. We had
also segmented the two-length digit samples into one-length
digits to generate more samples for single-length digits. Table I
shows a summary of total samples for each of the digit lengths
in our data set.

TABLE 1
Distribution of multi-length digits data

samples per class Total no. of
Length collecltjed pgenerated digits/classes Total samples
1-digit string 4000 - 10 40000
2-digit string 400 1000 100 140000
3-digit string - 100 1000 100000
4-digit string - 10 10000 100000

el ¢ 1%
2oL 299w 32.13

Fig. 3. Data samples collected from students

IV. Method

We have proposed a two-step digit recognition approach
based on the work done by Hochuli et al. [2]. The first
step involved finding the connected components of the in-
put image and predicting the digit length of each of the
components. We applied vertical projection for segmenting
the connected components. In the second step, based on the
length of the connected component, we applied the length-
specific classification model. We made four separate digit
classifier for 1, 2, 3 and 4 length digits ([0-9], [00-99], [000-
9991, [0000-9999]). Then the final result was generated by an
aggregating predicted digit(s) of each connected component.
So, we improved the method of Hochuli et al. [2] by adding
a 4-length digit classifier and reducing the output neurons for
each network.

A. Step 1: Length classification of connected components

The data consists of the digits written on white paper so we
will interpret the foreground pixels as black and background
pixels as white. As the data consists of only handwritten nu-
merals, we do not need the color channel for the classification
task. Hence, we converted every sample into a one-channel
image by applying OTSU thresholding by keeping the default
parameters. Apart from this, we also cleaned the samples
by removing the noisy black patches around the boundaries.
Figure 4 shows some samples after cleaning and binarization.

We have made a system to support a string of up to four
connected components. To handle variable-length strings, we
first found all the connected components in the input image
and then processed each component separately. In the end, we
aggregated the result of each component and generated the

gs {0 g9 Ty

to 37 0w =

qv

Fig. 4. cleaned data samples

— —= |
9 b ¢ 8 3R

Fig. 5. Results of under segmentation using vertical projection

final result. For finding the connected components, we used
vertical projection which is an under-segmentation technique.
In vertical projection, the image gets segregated into different
regions when there is visible white space between them. In this
technique, we count the foreground pixel in every column.
The column with zero foreground pixel will be considered
as a separation point between two adjacent components. The
reason behind using this segmentation technique was to handle
the case of digit ’9’ represented as 'G' in Gujarati which
consists of two disconnected components(’C’ and ’-”). Figure
5 represents the results of applying vertical projection on two
length strings. For the first two images in the Figure 5, we
have at least one white column between two digits and hence
they are divided into two separate components. For the last
image, there is no white column in between both the digits,
hence they are considered as one component. Hence, for higher
length digit strings, we will apply vertical projection as a pre-
processing step before feeding to the length classifier.

After dividing the image into connected components, we
find the length of each component. We have created a length
classifier, similar to [2] (which was based on Le-Net5), that
can classify the input image between 1 to 4 length strings. We
padded the collected samples to 64x96 (HxW) to accommo-
date up to 4 digits in a string. Figure 6 represents the block
diagram of the proposed length classifier. The description of
block L feature extractor is given in Table II.

For training the length classifier, we took 36,000 samples
from every string of length 1 to 4. The data for 3 and 4
lengths were synthetically generated and these samples were
created in such a way that there was no gap between adjacent
digits. Hence, the total data used for training consisted of
1,44,000 samples. For better generalization, we applied data
augmentation techniques. We created a custom data generator
to apply width shift for 1 length string. For string lengths
of 2 to 4, we applied shear and horizontal shifts. The model
was trained by keeping a batch size of 64 and using Adam
optimizer. Table IV shows the summary of training of length
classifier.

Length Classifier

Input Image H F Block L

Fig. 6. Block diagram for multi length classifiers

Convolution MaxPool
3x3 @32 2x2

TABLE 11
Feature block description for length and digit classifiers

TABLE III
Data distribution for training multi-digit classifiers

Feature Block| layer 1 layer 2 layer3 |layer 4| layer 5 |Output Length ‘ _ Samples Classes
Block L Conv2D Conv2D Conv2D 4 Train Validation Test Total
o¢ 3X3°g6 o st"églzg | [5x5 @256| GAP [FC @128 I-digit | 27717 6930 1000 | 35647 10
Block D [MaxPool 2x2[MaxPool 2x2 Conv2D 10 2-digit 93429 23356 1000 117785 20
5*5 @128 3-digit | 80000 20000 1000 | 101000 30
4-digit 80000 20000 1000 101000 40
1 Digit Classifier Input Image Gonvalution MaxPoal Block D D1
‘ H 343 @16 H 20 - . TABLE IV
Summary of training classifiers
Block D _ § S
2 Digit Classifier Input Image Gonvolution MaxPool . Parameters Training time | Validation
| oL P Gmw Classifier| ~ 1000) |NO- OF EPoChs| 1 inntes) | Ace(%)
Length 1,077 20 10 98.84
1-digit 278 30 15 98.31
B0 2-digit | 1,302 10 3 99.32
;onvolution laxPool 3‘d1 lt 1,980 10 3 9947
_-|amw TCPU: Intel 17-8700k GPU: Nvidia GeForce RTX 3080
W ~ cat
e developed multi-output CNN by replicating the feature
— — extractor block D horizontally and divided the task of clas-
3 onvolution laxPoo!
bt Glasstter ‘ o imeee 2e }_ sifying strings at digit level. As shown in Figure 8, for two
length classifier, we replicated the block D feature extractor
o] e :
= twice and created two separate 10 neurons softmax classifiers

Fig. 7. Block diagram for multi length classifiers

B. Step 2: Digit classification of connected components

Step 1 gave us the predicted length of the connected
component strings. Based upon the string length, we feed the
image into the respective length string classifier. We developed
four separate digit classifiers for string lengths 1, 2, 3, and 4.

For a one-length string, we created a 10 class classifier
that has similar architecture to the length classifier discussed
earlier. We started by creating a generic feature extractor
block for one length classifier. The architecture of this generic
Digit Classifier block is described in Table 2. This block was
reused in multi-length string classifiers as well. Hochuli et
al. [2] created a 100 class classifier for two lengths and a
1000 class classifier for three lengths. We have developed a
novel system that reduces the number of predicted classes. We
developed a novel multi-output CNN architecture that gives
more than 1 output for the same input. Using the multi-output
architecture, we created a 20 class classifier for recognizing
the two-digit strings. The idea behind the multi-output CNN
came by interpreting the multi-length number image as a
combination of single digits. To exemplify, considering a
two-length string sample ’45°, method by Hochuli et al. [2]
classifies 45’ among 100 classes whereas our multi-output
network classifies ’4” and ’5’ separately in their respective 10-
class softmax classifier. Hence, by dividing a single task into
two different tasks, we can perform the same functionality of a
multi-length classifier by reducing the number of output units.
Similarly, a 30 class and 40 class classifier were developed for
recognizing three and four length strings. Figure 8 represents
the architecture of two-length classifier.

for each digit. As shown in the architecture, we placed a
single Convolutional layer (Conv+pool) before dividing the
network. This layer is responsible for learning the position of
the digits. We used the same architecture for 3 and 4 length
strings as well by replicating block D respective number of
times. Figure 7 shows the block diagram of multi-length digit
string classifiers.

For training a one-length classifier, we leveraged the col-
lected samples from [0-9] and also used the samples after
isolating the collected two-length samples from [10-99]. The
data for two lengths consisted of samples from 10-99. So,
we synthetically created data samples from 00-09 to support
100-classes. For 3 and 4-length, all samples were syntheti-
cally generated. The data distribution for digit classifiers is
mentioned in Table III. The data for training and validation
consists of the samples we collected and generated whereas
the testing data is based on the data provided by Goswami
et. al [13]. We applied data augmentation techniques such as
zooming, vertical shift, horizontal shift, and shear range for 1
length classifier. Whereas, for 2, 3, and 4 lengths, we used only
width and height shift augmentation. For training, we used the
same set of parameters as the length classifier model. Table
IV shows the summary of training all the classifiers. We used
the categorical-cross-entropy loss function for all classifiers.
For higher length strings classifiers, we used n-loss functions
for the n-output network. The loss weight was kept uniform
for all the models.

V. Experiments

For assessing the performance of the proposed approach,
we evaluated our model on handwritten numerals in Gujarati
and English language.

64x96x1

=

Convolutional 32@ 3x3
+MaxPool @ 2x2

n
o
®
8

Convolutional 64@ 3x3
+MaxPool @ 2x2

Convolutional 126@ 5x5
+ MaxPool @ 2x2

Convolutional 128@ 5x5

Global Average
Pooling

[!

14x22x64. 5x9x128 1x5x128

128

|000000000]
O

BLOCK D

»

'8

n
o
©
2

Ci 128@ 5x5

31x47x32

Convelutional 128@ 5x5

Ci 64@ 3x3
+ MaxPool @ 2x2 + MaxPool @ 2x2

A. Gujarati numerals dataset

To our knowledge, no research has been carried out in
the field of variable length numeral string in the Gujarati
language, and hence, we assessed the performance of our
proposed model on synthetically generated samples using the
data set provided by Goswami et. al [13]. This data set
consists of 14000 samples of handwritten Gujarati numerals
collected from 140 distinct subjects having different ages,
educational backgrounds, and work cultures. So, this data
contains a wide range of variability in terms of written strokes
and handwriting. Each sample was binarized using OTSU
thresholding. We created a new test based on this data and
generated 1000 samples of each of 1 to 4 length strings using
synthetic data generation algorithm. The performance of our
length classifier has been described in Table V.

We can observe that our length classifier performed well for
1 and 2 length digit strings as there are few misclassifications.
For digit strings 3 and 4, we observed a comparatively higher
error rate than digit strings of lengths 1 and 2. We also
noticed that the digit strings are mostly confused with their
subsequent higher-length string. The overall accuracy of the
length classifier is 91.8 %.

Table VI describes the evaluation for the test set at both
the digit and string level. The overall accuracy is calculated
while taking both the length and digit error rate into account.
We can observe the error rate is increasing with increase in
string length. This is because of the increase in complexity
of the connected numerals for higher length strings. From the
table, we can note that the error rate for intermediate digits
is relatively higher than the digit at the start and end of the
strings for 3 and 4 length digit strings. We got average overall
accuracy of 83.8% for the test-set of 4000 samples. The overall
confidence of the predicted image is calculated by multiplying
the probability of length classifier and probabilities from the
digit classifiers.

Figure 9 represents the predictions with corresponding prob-
abilities. We have observed that the majority of the misclassifi-
cations are due to confusion between numerals because, unlike
the English language, Gujarati numerals have very similar

O]
O
19| |3
L 5’?3 O 8 —» D2
g% O
L1 8 o o
i 14x22%64 5x9x126 1x5x128 = 8 10
BLOCK D o
Fig. 8. Architecture for two-length classifier
TABLE V
Confusion matrix for length classifier
Digit string Predicted length o
length T) 3 g | Acouracy (%)
1 936 64 0 0 93.6
2 0 944 55 1 94.4
3 0 5 889 104 88.9
4 0 0 96 904 90.4
TABLE VI
Evaluation of length and digit classifiers on generated test set
Digit string | Step-1 error | Error at digit level(%) | Step-2 error| Overall
length (length)(%) [C1 | C2 | C3 C4 (digit)(%) |accuracy(%)
1 6.4 1.3] - | - - 1.3 92.3
2 5.6 2.8(2.8] - - 5.5 88.9
3 11.1 2.0[4.1]2.1 - 7.8 81.1
4 9.6 3.6(54(56] 45 17.5 72.9
Avg. 8.2 - 8.0 83.8

shapes. In the Gujarati language, there are multiple sets of
confusing pairs such as ‘1" and '®', "¢’ and '@, 'S" and '9'.
We also noted that the proposed networks fall short when the
stroke of digits is stretched. For example, in the above fig, the
image with ground truth "UG' has been wrongly predicted as
a three-digit string as '1<C" as the digit 'U' was stretched
which looks like a combination of connected numerals ‘4" and
¢' . Also, for string ‘4§, it was confused with ‘19" because

G2 GT: ae GT: ugas GT: €34

Pred: 2 0.95 Pred: a¢ 0.95 Pred: yeaa 0.95 Pred: zeau 0.61
GT: wue GT: ag GTue GT:3

Pred: yue 093 Pred: as 0.82 Pred: ace 0.74 Pred: = 0.9%

e 9 UG

Fig. 9. Architecture for two-length classifier

3

TABLE VII
Comparison of recognition rates for NIST19 database

Length | No. Samples Britto et al. | Oliveria et al. | Sadri et al. | Gattal et al. | Houchuli et al. | S.Aly et al. | Our | Houchuli et al.
' [14] [15] [16] [17] (2018)[2] [18] method (2020)[5]

2 2370 94.8 96.8 95.5 99 97.6 98.8 98.39 98.6

3 2385 91.6 95.3 91.4 97.3 96.2 96.4 96.77 97.6

4 2345 91.3 93.3 91 96.5 94.6 95 95.44 97.1

5 2316 88.3 92.4 88 95.9 94.1 95.4 95.41 96.5

6 2169 89 93.1 88.6 96.6 93.3 95 94.32 95.8
Average - 91 94.2 90.9 97.1 95.2 96.1 96.1 97.1

of similarity of digit '§' and '9'. After carrying out several
experiments on the newly generated test-set, we have defined
the minimum threshold of 85% for detection.

B. English numerals dataset

The proposed models might seem biased towards learning
the type of connected components in the Gujarati test set
because the same algorithm was used for generating both
train and test data. Hence, to validate the generalization over
real and unseen connected components, we evaluated our
models on the English language real data set NIST19. For this
evaluation, we kept the input size of 64x64 to compare with
existing approaches. We used the same train/test distribution
of NIST19 and pre-processing steps as given by Hochuli et
al. [2] for training our length and digit classifiers. The test set
consists of 2, 3, 4, 5, and 6-length strings from the hsf-7 series
of the NIST19 database. The numeral strings contain several
discrepancies in terms of touching components and broken
fragments. We obtained an overall accuracy of 96.1% for all
five categories of numeral strings in the NIST19 database.
Table VII shows the comparison of the results with existing
approaches.

Some methods shown in the table VII did not do well for
more than 3 digits, while others performed well. Our method
also performed well for 4,5 and 6-length digits. By attaining
near state-of-the-art results on real data, we validated that
our proposed method is not biased in learning fixed type of
connected components, and it generalizes well over unseen
data as well.

VI. Conclusion and Future Work

We have proposed a segmentation-free approach to handle
variable-length strings in the Gujarati language which requires
fewer output neurons for classification. We have also demon-
strated the performance of our model on the new Gujarati digit
strings test-set generated by our data generation algorithm.
Moreover, we also evaluated real-world data of the English
numerals to validate the generalization of our method. We
thank Mayur Jaguwala for helping with the data collection.
For future work, we will be looking for the method to create
one single classifier which can handle both the task of length
classification and digit classifications.

References

[1] A. Baldominos, Y. Saez, and P. Isasi, “A survey of handwritten character
recognition with mnist and emnist,” Applied Sciences, vol. 9, no. 15, p.
3169, 2019.

[2] A. G. Hochuli, L. S. Oliveira, A. Britto Jr, and R. Sabourin, “Hand-
written digit segmentation: Is it still necessary?” Pattern Recognition,
vol. 78, pp. 1-11, 2018.

[3] F. C. Ribas, L. Oliveira, A. Britto, and R. Sabourin, “Handwritten digit
segmentation: a comparative study,” International Journal on Document
Analysis and Recognition (IJDAR), vol. 16, no. 2, pp. 127-137, 2013.

[4] E. Vellasques, L. S. Oliveira, A. Britto Jr, A. L. Koerich, and
R. Sabourin, “Filtering segmentation cuts for digit string recognition,”
Pattern Recognition, vol. 41, no. 10, pp. 3044-3053, 2008.

[5] A. G. Hochuli, A. S. Britto, J. P. Barddal, R. Sabourin, and L. E.
Oliveira, “An end-to-end approach for recognition of modern and
historical handwritten numeral strings,” in 2020 International Joint
Conference on Neural Networks (IJCNN). 1EEE, 2020, pp. 1-8.

[6] A. G. Hochuli, A. S. Britto Jr, D. A. Saji, J. M. Saavedra, R. Sabourin,
and L. S. Oliveira, “A comprehensive comparison of end-to-end ap-
proaches for handwritten digit string recognition,” Expert Systems with
Applications, vol. 165, p. 114196, 2021.

[7] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 11, pp. 2298-2304, 2016.

[8] H. Zhan, P. N. Chowdhury, U. Pal, and Y. Lu, “Handwritten digit
string recognition for indian scripts,” in Asian Conference on Pattern
Recognition. Springer, Cham, 2019, pp. 262-273.

[9] J. R. Prasad, U. V. Kulkarni, and R. S. Prasad, “Template matching al-
gorithm for gujrati character recognition,” in 2009 Second International
Conference on Emerging Trends in Engineering & Technology. 1EEE,
2009, pp. 263-268.

[10] A. A. Desai, “Gujarati handwritten numeral optical character reorgani-
zation through neural network,” Pattern recognition, vol. 43, no. 7, pp.
2582-2589, 2010.

[11] M. Maloo and K. Kale, “Support vector machine based gujarati numeral
recognition,” International Journal on Computer Science and Engineer-
ing, vol. 3, no. 7, pp. 2595-2600, 2011.

[12] A. A. Desai, “Support vector machine for identification of handwritten
gujarati alphabets using hybrid feature space,” CSI transactions on ICT,
vol. 2, no. 4, pp. 235-241, 2015.

[13] M. M. Goswami and S. K. Mitra, “Offline handwritten gujarati numeral
recognition using low-level strokes,” International Journal of Applied
Pattern Recognition, vol. 2, no. 4, pp. 353-379, 2015.

[14] A. d. S. Britto Jr, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “The
recognition of handwritten numeral strings using a two-stage hmm-based
method,” International Journal on Document Analysis and Recognition,
vol. 5, no. 2-3, pp. 102-117, 2003.

[15] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic
recognition of handwritten numerical strings: A recognition and verifi-
cation strategy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 11, pp. 1438-1454, 2002.

[16] J. Sadri, C. Y. Suen, and T. D. Bui, “A genetic framework using
contextual knowledge for segmentation and recognition of handwritten
numeral strings,” Pattern Recognition, vol. 40, no. 3, pp. 898-919, 2007.

[17] A. Gattal, Y. Chibani, and B. Hadjadji, “Segmentation and recognition

system for unknown-length handwritten digit strings,” Pattern Analysis

and Applications, vol. 20, no. 2, pp. 307-323, 2017.

S. Aly and A. Mohamed, “Unknown-length handwritten numeral string

recognition using cascade of pca-svmnet classifiers,” [EEE Access,

vol. 7, pp. 52024-52034, 2019.

[18]

