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Abstract—We propose a new pipeline to facilitate deep learning
at scale for agriculture and food robotics, and exemplify it using
strawberry tabletop. We use this multimodal, autonomously self-
collected, distributed dataset for predicting strawberry tabletop
yield, aiming at informing both agronomists and creating a
robotic attention system. We call this system the augmented
agronomist, which is designed for agronomy forecasting, and
support, maximizing the human time and awareness to areas
most critical. This project seeks to be relatively protective of
both its neural networks, and its data, to prevent things such as
adversarial attacks, or sensitive method leaks from damaging
the future growers livelihoods. Toward this end this project
shall take advantage of, and further our existing distributed-
deep-learning framework Nemesyst. The augmented agronomist
will take advantage of our existing strawberry tabletop in our
Riseholme campus, and will use the generalized robotics platform
Thorvald for the autonomous data collection.

Index Terms—deep learning, database, agriculture, nemesyst,
thorvald, strawberries

I. INTRODUCTION

Machine/Deep learning is becoming a bigger and more
important part of our daily lives through the rise of an ever-
increasing quantity of available data. 3rd-party services use
machine learning in combination with user data for tasks
ranging from, natural language processing [5], image recog-
nition, diagnosis [J3]], detection, classification [|6], generation,
imputation, broadly prediction; medical diagnosis [2f], self-
driving cars [8]], facial recognition [7]], etc. However one area
with which deep learning has remained relatively stagnant
is in agriculture, where data is scarce, forcing the use of
remote sensing datasets or the like, as well as the existing
research using classical techniques without many of the recent
advances. [1, 4} [13] The primary reason why agriculture has
remained relatively constant for this long is likely the lack of,
and consistency of data, but also the lack of willingness, and
trust of the growers/ agriculturalists to release their potentially
sensitive techniques latently in any data they provide. Thus if
there is little to no data there can be little advancement with
deep learning techniques, meaning prospective research will
require self collected data to find any meaningful relations be-
tween the features and targets with which to predict accurately
and far enough ahead to facilitate timely and effective actions.
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We contribute our work-in-progress methods and results
towards creation of a larger and more accurate plant yield pre-
diction framework which both automates but crucially involves
experts in a time-effective and prescribed manner. Our work
is facilitated by the RASberry research programmeﬂ which
is a collaboration effort between UoL, Saga Robotics, and
BerryGardens, funding autonomous strawberry data collection,
under our direct control. This involves the generic expandable
Thorvald platform, which is an autonomous robot ready for
use in many terrains. Thorvald is an ideal candidate platform
to use for our own experiments thanks to its autonomy, and
available resources. The only drawback of using strawberries
is that they are only grown from late June to early October.

II. PLANT YIELD PREDICTION LITERATURE

As it stands there are many existing methods that have been
used to attempt to predict crop yield, using data such as remote
sensing [16} 4], satellite image, climate conditions, geolocation
data, etc. [9] However, there is high variation in the type,
quality, and quantity in the datasets used, with very little from
a standard dataset with which to use. [14] |16, [15] The vast
majority of papers use remote models relying primarily on:
temperature, humidity, precipitation, and soil moisture. Some
others attempt image based approaches but lack of data is a
serious problem for them [13|]. This means as far as yield
prediction is concerned it is necessary to create a consistent,
and granular dataset [14]. All these papers use many different
techniques, with a wide variety of data types such that they
only marginally narrow the focus for our data collection efforts
to things such as climate conditions, [[10] meaning we will
have to collect a large variety of data and thereafter assess the
correlation to achieve the best results.

III. TECHNIQUES

As depicted in Fig. |1} we use Nemesyst [[11}|12] to manage
MongoDB instances across all desired Thorvalds. We aggre-
gate this data to the distributed database layer, where all the
data is made available to offline back-end deep learning sites.
These sites are responsible for training, and model evaluation
of neural network models (NNs), along with packaging them
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Fig. 1. RASberry data distribution and aggregation pipeline.[11]]

back into the database for unpacking and use at a local level.
These NNs can then be selected based on their performance
and suitability to the application, such as the most performant
yield prediction of strawberries versus other berries. The
selected NNs used locally can then be used in future to inform
decision making processes of the robot, such as attention
mechanisms. Attention mechanisms can be used with our
databases as a message passing interface to alert and request
the attention of specialist agronomists to identify uncertain
cases and help with learning along with any immediate control
needs.

IV. RESULTS

In the 10-12 fruitful weeks, before the first frosts in October,
of June-bearing strawberries, we managed to collect in excess
of 40GiB of compressed data (+100GiB if uncompressed),
consisting of regular plant imaging, and environment sensing
thanks to our Thorvald robots. This data represents a diverse
set of scenarios containing:

o 3 still images (RGB, depth, IR, position) every 20cm
at various plant angles, and the respective environmental
data (temperature, humidity, etc) locally to the camera.
Continuous environmental data every 15 min. throughout
the year, including the lead up to the growing season.
Stationary camera footage, and its local environment data
every 30 minutes for select plants to provide in depth
growth and performance data.

Video based plant image capture during tabletop traversal.
Yield/ picking data for the number of strawberry punnets
collected over time.

However due to constraints in human time, we could only
collect yield values twice a week, meaning this last dataset
is still relatively small, and would in future need to use

TABLE 1
TIME SERIES FORECASTING OF YIELD BY NUMBER OF PUNNETS.

Technique Mean Absolute Error (Test set)
Vanilla Recurrent Neural Networks 0.210
Long Short-Term Memory 0.381
Gated Recurrent Units 0.155

autonomous pickers to provide more, and consistent labels to
our NNs, to train more advanced NNs. Table [If thus shows
some very early experimental results that demonstrate the
ability of various recurrent networks to learn with this limited
labeling. Due to the size of the data and how early on in the
process we are our results (I) are split plainly 80% training,
20% testing, with around 10-13 epochs for saturation taking
less than a few minutes to train using only environmental and
yield data at this early stage.

V. CONCLUSION

It has been shown that using distributed Nemesyst database
pipelines for data aggregation and modelling as well as
distribution in more complex scenarios such as autonomous
agricultural data collection, how this can augment the ability
of growers to collect data and predict outcomes such as crop
yields. A need has been identified for more autonomous data
collection to collect more data along with more consistency
to feed to NNs to learn more complex representations. Lastly
our pipeline can also be used as message passing interfaces for
agronomists to monitor, be alerted of any uncertain/ unusual
cases, label difficult examples, and potentially control the
robots to support their efforts. Our next step is to provide
certainty metrics to assess how certain the deep learning
models are of the result in such that this can be used for
more effective decision making.
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