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            Abstract 
In this paper, we generalized the method to calculating the square root of matrix whose characteristic is quadratic and how to Cayley-

Hamilton theorem may be used to determine the formula for all square root of matrix whose order is 2×2. 
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1. Introduction  
 

Let Mn(C) be the set of all complex matrices whose order is n×n. Matrix Q is said to be a square root of matrix P, if the 

matrix product Q.Q = P.  

  Now, what is the square root of matrix such as  [
𝑝 𝑞
𝑟 𝑠

]. It is not, in general [
√𝑝 √𝑞

√𝑟 √𝑠
]. 

 It is easy to see that the upper left entry of its square is  𝑝 + √𝑞  and not p. 

    In recent years, several article have been written about the root of a matrix, and one can refer to [4-6]. A number of 

method have been proposed to computing the square root of matrix and these are usually based on Newton’s method, 
either directly or the sign function(see e.g., [1-3]). 

 

2. Generalized Method  

The set of all matrices which their square is P, denoted by √𝑃, i.e., 

                                       √𝑃 = {𝑌: 𝑌 ∈ 𝑀𝑛(𝐶), 𝑌2 = 𝑃}    

This set can be very large .For example, we will see that √𝐼 has infinite members. We can define the n-th  root of a matrix P 

as follows. 

                                      √𝑃
𝑛

= {𝑌: 𝑌 ∈ 𝑀𝑛(𝐶), 𝑌𝑛 = 𝑃}  

It is well known to all, if P = [
𝑝 𝑞
𝑟 𝑠

], then characteristic equation is  

                                      𝜆2 − (𝑇𝑟𝑎𝑐𝑒 𝑃)𝜆 + 𝑑𝑒𝑡𝑃 = 0…………………(1) 

Apply cayley - Hamilton theorem, putting  𝜆 = 𝑃, then equation (1) is 

                                      𝑃2 − (𝑇𝑟𝑎𝑐𝑒 𝑃)𝑃 + (𝑑𝑒𝑡𝑃)𝐼 = 0 

Thus, we have               𝑃2 = (𝑇𝑟𝑎𝑐𝑒 𝑃)𝑃 − (𝑑𝑒𝑡𝑃)𝐼 … . ..……………..(2) 

Putting , 𝑃2 = 𝑄, then equation (2) is 

                                       𝑄 = (𝑇𝑟𝑎𝑐𝑒 𝑃)𝑃 − (𝑑𝑒𝑡𝑃)𝐼 

                                       𝑄 + (𝑑𝑒𝑡𝑃)𝐼 = (𝑇𝑟𝑎𝑐𝑒 𝑃)𝑃 

                                       
1

(𝑇𝑟𝑎𝑐𝑒 𝑃)
[𝑄 + (𝑑𝑒𝑡𝑃)𝐼] = 𝑃……………………..(3) 

Lemma 2.1. Let P be a 2×2 matrix. Then 𝑡𝑟𝑎𝑐𝑒 𝑃2 = (𝑡𝑟𝑎𝑐𝑒𝑃)2 − 2 𝑑𝑒𝑡𝑃. 

Proof : Suppose 𝜆1 and 𝜆2 are the two eigen values of the matrix P. Then we can easy to see that  𝜆1
2 and 𝜆2

2 are the eigen 

values of P2 . We know that , 𝑡𝑟𝑎𝑐𝑒 𝑃 =  𝜆1 + 𝜆2 and 𝑑𝑒𝑡𝑃 =  𝜆1𝜆2. 

Then,     𝑡𝑟𝑎𝑐𝑒 𝑃2 = 𝜆1
2+𝜆2

2
 

                              = (𝜆1  +  𝜆2)2 − 2𝜆1𝜆2 

                              = (𝑡𝑟𝑎𝑐𝑒 𝑃)2 − 2 det 𝑃 
 

Second proof: In other words, let   P = [
𝑝 𝑞
𝑟 𝑠

]   

Then,                                              P2 = [
𝑝 𝑞
𝑟 𝑠

] [
𝑝 𝑞
𝑟 𝑠

]    

                                                        P2 = [
𝑝2 + 𝑟𝑞 𝑝𝑞 + 𝑞𝑠

𝑝𝑟 + 𝑟𝑠 𝑠2 + 𝑟𝑞
]   

Therefore,          

                                           𝑇𝑟𝑎𝑐𝑒 𝑃2 = (𝑝2 + 𝑟𝑞) + (𝑠2 + 𝑟𝑞) 

                                           𝑇𝑟𝑎𝑐𝑒 𝑃2 = 𝑝2 + 𝑠2 + 2𝑟𝑞        

                                           𝑇𝑟𝑎𝑐𝑒 𝑃2 = 𝑝2 + 𝑠2 + 2𝑝𝑠 − 2𝑝𝑠 + 2𝑟𝑞   

                                           𝑇𝑟𝑎𝑐𝑒 𝑃2 = (𝑝 + 𝑠)2 − 2(𝑝𝑠 − 𝑟𝑞)        …………….(1)   

But,  𝑡𝑟𝑎𝑐𝑒 𝑃 = 𝑝 + 𝑠 and det 𝑃 = 𝑝𝑠 − 𝑞𝑟, then equation (1),  

                                           𝑇𝑟𝑎𝑐𝑒 𝑃Let P, Q ∈  Mn(C)  2 = (𝑡𝑟𝑎𝑐𝑒 𝑃)2 − 2 det 𝑃 
                                             

                   

                

 

 

 

 

 

 



 

 

 

 
Remark.1. Let P, Q ∈ M2(C)  and P2 = Q. Then the following statements are holds: 

(1) det 𝑃 =  √det 𝑄         

(2) tracet 𝑃 =  √trace 𝑄 + 2√det 𝑄 

 

Example 2.1 Let  𝑄 =  [
8 5
3 8

]. So detQ = 64-15 = 49, and traceQ = 8+8 = 16, therefore if 𝑃2 = 𝑄 ,then,  

                                              detP = √detQ = √49 = ±7, and  

                                         𝑡𝑟𝑎𝑐𝑒 𝑃 =  √trace 𝑄 + 2√det 𝑄 =  √16 +2√49 = √16 ± 14, taking positive and negative sign then , 

                                         𝑡𝑟𝑎𝑐𝑒 𝑃 = ±√30  𝑜𝑟 𝑡𝑟𝑎𝑐𝑒 𝑃 = ±√2 , thus, from equation (3), 
 

                                          𝑃 =
1

(𝑇𝑟𝑎𝑐𝑒 𝑃)
[𝑄 + (𝑑𝑒𝑡𝑃)𝐼], 

                                         𝑃 =
1

±√30
{[

8 5
3 8

] + (±7) [
1 0
0 1

]} or 𝑃 =
1

±√2
{[

8 5
3 8

] + (±7) [
1 0
0 1

]} 

 Therefore,  

        𝑃 =
1

±√30
{[

8 5
3 8

] + (7) [
1 0
0 1

]} or 𝑃 =
1

±√30
{[

8 5
3 8

] + (−7) [
1 0
0 1

]} and  

        𝑃 =
1

±√2
{[

8 5
3 8

] + (7) [
1 0
0 1

]} or 𝑃 =
1

±√2
{[

8 5
3 8

] + (−7) [
1 0
0 1

]}, on calculating then we have,  

         𝑃 = ±
1

√30
[
15 5
3 15

]   or   𝑃 = ±
1

√30
[
1 5
3 1

] , and  𝑃 = ±
1

√2
[
15 5
3 15

]   or   𝑃 = ±
1

√2
[
1 5
3 1

] 

     

Lemma 2.2 Let  P  ∈ M2(C). If trace P = 0, then  𝑃2 ∈ 〈𝐼〉 . 

Proof.  We will prove this lemma in two ways. In general, we have   

                                                              𝑃2 − (𝑇𝑟𝑎𝑐𝑒 𝑃)𝑃 + (𝑑𝑒𝑡𝑃)𝐼 = 0…………………..(1) 

Therefore, if trace P = 0, then from (1) we obtain, 

                                                             𝑃2 + (𝑑𝑒𝑡𝑃)𝐼 = 0 

                                                    𝑃2 = −(𝑑𝑒𝑡𝑃)𝐼 and   𝑃2 ∈ 〈𝐼〉 

Second proof: ,   let   P = [
𝑝 𝑞
𝑟 𝑠

], and 𝑝 + 𝑠 =  0  

Then,                                              P2 = [
𝑝 𝑞
𝑟 𝑠

] [
𝑝 𝑞
𝑟 𝑠

]    

                                                        P2 = [
𝑝2 + 𝑟𝑞 𝑝𝑞 + 𝑞𝑠

𝑝𝑟 + 𝑟𝑠 𝑠2 + 𝑟𝑞
] 

Putting 𝑝 = −𝑠, then                       P2 = [
𝑝2 + 𝑟𝑞 0

0 𝑠2 + 𝑟𝑞
] 

Hence ,  when 𝑝2 = 𝑠2 then P2 = (𝑝2 + 𝑟𝑞). 
 

Example 2.2 Let 𝑄 = [
1 3
2 2

]. Then 𝑑𝑒𝑡𝑄 =  2 − 6 =  −4,  and 𝑡𝑟𝑎𝑐𝑒 𝑄 =  1 + 2 = 3. If 𝑃2 = 𝑄  then  

                                    detP = √detQ = √−4 = 2𝑖, and  

                                         𝑡𝑟𝑎𝑐𝑒 𝑃 =  √trace 𝑄 + 2√det 𝑄 

                                                       =  √3 + 2√−4 

                                               =  √3 + 4𝑖 ,  
Now,  

                                         𝑃 =
1

(𝑇𝑟𝑎𝑐𝑒 𝑃)
[𝑄 + (𝑑𝑒𝑡𝑃)𝐼], 

                                         𝑃 =
1

±√3+4𝑖
{[

1 3
2 2

] + 2𝑖 [
1 0
0 1

]} 

                                   𝑃 =
1

±√3+4𝑖
{[

1 + 2𝑖 3
2 2 + 2𝑖

]} 

Lemma 2.3  For each  𝛽 ∈ 𝐶 and any matrix P, √𝛽𝑃 = √β√P. 

Proof: Suppose that 𝛽 ≠ 0 and 𝑌 ∈ √𝐵𝑃. So 𝑌2 ∈ βP, hence 
𝑌

√𝛽
 ∈ √𝑃,  which implies that  𝑌 ∈ √𝛽√P .  

Conversely, if  𝑌 ∈ √𝐵𝑃 , then  
𝑌2

𝛽
= 𝑃. Hence 𝑌2 = 𝛽𝑃 and 𝑌 ∈ √𝛽𝑃 . 

Now, we try to compute √𝐼 . Suppose that P  ∈  M2(C) and 𝑃2 = I. Let 𝑃 = [
𝑝 𝑞
𝑟 𝑠

]. 

Then,  

                                                            P2 = [
𝑝2 + 𝑟𝑞 𝑝𝑞 + 𝑞𝑠

𝑝𝑟 + 𝑟𝑠 𝑠2 + 𝑟𝑞
], but  𝑃2 = I, then  

                                                   I = [
𝑝2 + 𝑟𝑞 𝑝𝑞 + 𝑞𝑠

𝑝𝑟 + 𝑟𝑠 𝑠2 + 𝑟𝑞
] 

                                          [
1 0
0 1

] = [
𝑝2 + 𝑟𝑞 𝑝𝑞 + 𝑞𝑠

𝑝𝑟 + 𝑟𝑠 𝑠2 + 𝑟𝑞
]    

Hence we have,                        

                                                 𝑝2 + 𝑟𝑞 = 1……………(1) 

                                          𝑝𝑞 + 𝑞𝑠 = 0……………(2) 

                                          𝑝𝑟 + 𝑟𝑠 = 0…………….(3) 

                                           𝑠2 + 𝑟𝑞 = 1……………(4) 
 

 

 
 



× 

 

 
 

 

 
 

From (2) and (3), q = 0 or p + s = 0 and r = 0 or p + s =0. We consider two cases: 

(1) If  p + s = 0, then equation (2) and (3) hold. We have 𝑝2 + 𝑟𝑞 = 1or 𝑝 = √1 − 𝑟𝑞 and since a + d = 

0 and since  p + s = 0 we have  p = -s  = −√1 − 𝑟𝑞. Therefore  

𝑃 = {[
√1 − 𝑟𝑞 0

0 −√1 − 𝑟𝑞
] : 𝑏, 𝑐 ∈ 𝐶}. 

(2) If 𝑝 + 𝑠 ≠ 0 we must have q = 0 and r = 0. Hence 𝑝 = ±1and 𝑠 = ±1. Therefore there are two 

solutions  [
1 0
0 1

]  𝑎𝑛𝑑 [
−1 0
0 −1

]. Hence we can write  

      √𝐼 = {[
1 0
0 1

] , [
−1 0
0 −1

] ∪ [
√1 − 𝑟𝑞 0

0 −√1 − 𝑟𝑞
]  𝑏, 𝑐 ∈ 𝐶}. 

Example 2.3 Let 𝑄 = [
16 0
0 16

]. Therefore 𝑄 = 16 [
1 0
0 1

] = 16 I. Then √𝑄 = 4√𝐼, hence we have  

                       √𝐼 = {[
2 0
0 2

] , [
−2 0
0 −2

] ∪ [
4√1 − 𝑟𝑞 2𝑞

2𝑟 −4√1 − 𝑟𝑞
] : 𝑏, 𝑐 ∈ 𝐶}  
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