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IDENTIFICATION OF UNIVERSAL FEATURES IN 

THE CONDUCTIVITY OF CLASSES OF TWO-

DIMENSIONAL QFTs USING THE AdS/CFT 

CORRESPONDENCE 

 

Abstract 

We study the electrical conductivity of strongly disordered, strongly 

coupled quantum field theories, holographically dual to non-

perturbatively disordered uncharged black holes. The computation 

reduces to solving a diffusive hydrostatic equation for an emergent 

horizon fluid. We demonstrate that a large class of theories in two 

spatial dimensions have a universal conductivity independent of 

disorder strength, and rigorously rule out disorder-driven conductor-

insulator transitions in many theories. We present a (fine-tuned) axion-

dilaton bulk theory which realizes the conductor-insulator transition, 

interpreted as a classical percolation transition in the horizon fluid. We 

address aspects of strongly disordered holography that can and cannot 
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be addressed via mean-field modeling, such as massive gravity. 

1. Introduction 

We examined electrical transport in strongly coupled holographic 

quantum field theories at zero charge density, constructing perfect metals 

amidst disorder. Our findings have implications for realistic models of 

disordered strange metals. 

2. Conductivity 

Consider a static, asymptotically anti-de Sitter space with a black 

hole horizon sourced entirely by uncharged bulk matter and a dynamical 

metric. We can choose the bulk metric using diffeomorphism invariance. 

 [ ],2222 ji
ij dxdxGQdtPdrLds +−=  (1) 

,i  j  indices represent the spatial boundary directions, while ,M  N  

represent all dimensions, and L  is AdS radius. All functions in the metric 

are functions of r  and .x  We further choose bulk coordinate ,0 ∞<< r  

with 0=r  black hole horizon, and ∞=r  AdS boundary. Uncharged 

matter not required, energy conditions obeyed. 

We add a ( )1U  gauge field to the bulk, so the action of our theory is 

 .
4

2
uncharged

2






 −−= ∫ + F

Z
gxdS d
L  (2) 

Function Z  is a parameter of (uncharged) scalar matter, but for our 

purposes it is an arbitrary function of r  and .x  Gauge field’s two-point 

functions correspond to current-current correlation functions in the 

boundary theory, including electrical conductivity matrix .ijσ  The 

conductivity may be related, via membrane paradigm [1], to data on the 

horizon of the black hole alone. The expected value of the boundary 
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current is given by 

 [ ( )],α∂+γγ=σ= jj
ij

j
iji EZEJ E  (3) 

where jE  is the applied electric field, [ ]...E  denotes a uniform spatial 

average, ( )0==γ rGijij  is the induced metric on the horizon, and α  is 

the unique function which obeys equation 

 ( ( ))α∂+γγ∂= jj
ij

i EZ0  (4) 

with appropriate boundary conditions (for example, periodicity in 

compact boundary spatial directions). The membrane paradigm was used 

in holographic systems in [2], and similar computations appear in [3, 4, 5] 

for black holes with translational symmetry broken only in one direction. 

These results are special cases of this general formula. This formula may 

break down if black hole horizon fragments and becomes disconnected, as 

was considered in [6, 7]. 

We can interpret (4) as a hydrostatic equation enforcing local charge 

conservation in an emergent horizon fluid. This is subtle - the local 

“electric current” in (4) is not the same as the expected value of the local 

current in the dual theory; only their spatial averages are equal. A 

powerful set of techniques have been developed to understand the 

qualitative behavior of transport in such fluids [8]; for example, it 

immediately follows from (4) that .ijij σ=σ  

In particular, if [ ]ijZ γσ ;  is the conductivity matrix with given Z  

and :ijγ  

 ( [ ]) .
1

;
1

det;det
8eZ

Z ijij =











 γσγσ  (5) 

If we set ,1=Z  (5) gives 
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 ( ) .
1

det
4e

=σ  (6) 

If we expect that on average for a disordered sample, the conductivity 

matrix is isotropic ( ),ij
ij σδ=σ  that fixes conductivity to be ,1 2e=σ  

exactly the clean result! 

A simple way to understand this result: suppose that in local 

coordinates, the metric is given by 

 .2222 dyadxadxdx yx
ji

ij +≈γ  (7) 

Then we expect “locally” xyxx aa~σ  and yxyy aa~σ  [9]. On 

average ya  and xa  should have identical distributions, so we expect that 

xxσ  and xxσ1  have the same distributions. This implies ;1 2e=σ  

analogous statements are known for random resistor lattices in 2=d  

with analogous (e.g., log-normal) resistance distributions. And more 

generally, if Zlog  is symmetrically distributed about ,0  then in an 

isotropic theory, 21 e=σ  follows from (5) in the thermodynamic limit. 

The robustness of σ  in these strongly disordered 2=d  models is 

remarkable, and deserves further comments. In models where 

momentum dissipation is introduced through massive gravity [10] or “Q-

lattice” axions [11], one finds the hydrodynamic result [12] 

 ,
2

PQ +ε

τ
+σ=σ
Q

 (8) 

where Q  is charge density, ε  energy density, P  pressure, Qσ  

dissipative “quantum critical” conductivity without disorder, and τ  a 

“momentum relaxation time”, inversely related to graviton mass. Before 

now, it was unclear whether the fact that (8) holds beyond the 

hydrodynamic limit was an unrealistic feature of massive gravity or 
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similar theories. Our work confirms this is a sensible prediction of 

massive gravity for many systems at .0=Q  (8) further implies another 

mechanism, ,0→τ  by which the conductivity can reach its lower bound, 

.Qσ  The conductivity saturating this lower bound, at least qualitatively, 

is likely to occur at strong disorder [8]. Confirmation that strongly-

disordered charged holographic models (with )1=Z  have a conductivity 

no smaller than 21 e  in 2=d  would be a further non-trivial test of 

predictions of simple mean-field physics. 

In 2≠d  and/or if Z  is distributed more generically, it is valuable to 

employ insight gained from equivalence between Markov chains on 

lattices and resistance of a resistor lattice [13]. For arbitrary ,Z  this 

analogy can be leveraged to find lower and upper bounds to ,σ  for a self-

averaging disordered sample: [8] 

 
[ ]

.
2

21

2

2

d

Z

e

L

dZe

L
iid

ii
d γγ

≤σ≤








γ

γ −−−
E

E  (9) 

It is straightforward to test these results and bounds by numerically 

solving (4) for various disorder realizations. Good agreement with our 

exact analytic results and consistency with our bounds is obtained. 

3. Conductor-Insulator Transition 

(9) constrains σ  to deviate from the clean result by the strength of 

fluctuations in Z  and .ijγ  It is evident from (9) that if ijγ  and Z  are 

finite at all points on the horizon, then the black hole necessarily 

conducts electrical current, no matter how strong the disorder. This is a 

remarkable result. In contrast, in non-interacting quantum field theory, a 

conductor-insulator transition occurs at a finite disorder strength [14] in 

,2>d  and at arbitrarily small disorder in 2≤d  [15]. This transition 

relates to the destructive interference of matter waves scattering off of 
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the disorder. Apparently, bulk fluctuations of the gauge field in 

holographic theories do not suffer from such interference. While it is 

known [16, 17] that metal-insulator transitions occur at a finite disorder 

strength in an interacting quantum system, even such systems ultimately 

succumb to (many-body) localization at strong disorder. Perhaps 

holographic models have taken the “coupling ∞→ ” limit first, rendering 

such a transition impossible. 

Realizing a holographic conductor-insulator transition takes more 

care. A “helical lattice” approach has generated such a transition in [18, 

19], but there is no satisfying physical interpretation. However, even in 

these papers, the conductivity in the insulating phase only decays as 

algebraically in T  as ,0→T  in contrast to canonical insulators. 

Assuming 2=d  and a probe limit with AdS-Schwarzschild geometry, 

we need a large [ ]Z1E  for ,0=C  requiring percolating 0→Z  bubbles 

across the horizon. When these finite-Z  regions disconnect, charge 

transport is halted, causing a disorder-driven holographic metal-insulator 

transition, similar to random resistor lattices [20]. 

Numerically compute conductivity for Z  ansatz with ”bubbles” where 

0→Z  percolate across horizon to test proposal. Numerics support this; 

see Figures 1 and 2. 

3.1. Holographic realizations 

We now ask whether the percolation mechanism proposed above for a 

disorder-driven metal-insulator transition can occur in a “realistic” 

holographic model: a bottom-up Einstein-Maxwell-dilaton ( )Φ -axion ( )α  

theory with action 

( ) ( )222

22

1

16

2
α∂+

 Φ∂−



π

Λ−
−=

Φ−
+∫

e

G

R
gxdS dd

M  

( ) ( ) ( )
.

4

2

22



α
−

Φ+α
− F

e

Z

L

UV
 (10) 
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Here M  is a mass scale, whose precise value is unimportant - we choose 

it so that Φ  is strictly dimensionless, for simplicity, and 

 
( )

.
2

1
2L

dd +
−=Λ  (11) 

At ,0→G  generalizing choices yields similar results, but (10) with axio-

dilaton scalar kinetic terms is essential. ( )αZ ’s cosine potentials may suit 

our needs, and arise due to instanton effects in effective actions (as in 

QCD). In our holographic model, ( )αZ  is not suppressed by dLG  (the 

scale of bulk’s quantum corrections). 

 

Figure 1. ( )σdet  from a black hole horizon for a theory in ;2=d  we set 

,1=e  and use periodic boundary conditions with ,, π≤yx  with a 

discretized spatial grid of 2701  points. We take ijij δ=γ  and exp=Z  

[ ( )],21 ZBZ +−  where ( ( ( ) ++φ−= ∑ =
2sinexp 2

1
xZ jx

N

j
( ))2sin2 yjy +φ  

),2 2ξ  with jxφ  and jyφ  independent random phases, and 0>B  is a 

random constant. We took various values of B  and fixed .70120π=ξ  

When [ ] ,28.0 *
~ ZZ ≡>E  curves at different B  approximately collapse, 

implying that current avoids the non-conducting bubbles; when 

[ ] ,*
~ ZZ <E  the value of conductivity is sensitive to .B  In the limit 

∞→B  and ,0→ξ  a metal-insulator transition appears at .*Z  
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Figure 2. Surface plots of ( )yxZ ,  for various bubble densities. 

Depending on whether regions of high or low Z  percolate across the 

horizon determines whether we are in the metallic or insulating phase, as 

is clear upon comparing with Figure 1. 

For conductor-insulator transitions, ( )αV  must have at least two 

minima, cα  and ,iα  with ( ) 0>αcZ  and ( ) .0=αiZ  α  drives the 

transition and Φ  stabilizes it, although theories with finite Lifshitz or 

hyperscaling-violating exponents may also work [21]. Insulators form 

when bubbles of iα=α  percolate across the horizon; we aim to 

demonstrate how to create and maintain these bubbles at low 

temperatures. [21] is a citation. For this purpose, a simple choice of 

potentials, though certainly not the only, is 

( ) ,
2

43
2

7 2
2

2
2

λΦ−λΦ− λ
+λ−Φλ−

λ
=Φ eeU  (12a) 

( ) ,
2 2

0

4
2

α

α
+α−=αV  (12b) 

( ) .1
2

0








α

α
−=αZ  (12c) 

Using Z  in [22], we set ,00 →α  ,2>λ  and ( )αV  marginal to avoid 

axion backreaction on the dilaton. The Harris criterion [21] implies 
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inability to source disordered modes of all wavelengths without UV 

geometry backreaction. 

Let us begin by sourcing the dilaton with (positive) δ -like sources on 

the AdS boundary - analogous to point-like impurities in the dual theory. 

Each impurity produces an expanding bubble which becomes insulating; 

width of the “bubbles” of α  is .1~ T  If density of the impurities is ,n  

then the bubbles percolate across the horizon when .~ nT <  Within each 

bubble, ,0α→α  and thus at low temperatures we obtain an insulator. 

A second mechanism for obtaining the transition is as follows: 

suppose .α  

As 0→T  in the insulating phase, we predict: 

 .
8

exp~
2


















 ζ

λ
−σ

λ

T
T  (13) 

4. Outlook 

Recent models [23, 24, 25, 26] propose momentum non-conservation 

in (quasi-2d) strange metals. We constructed perfect conductors in strong 

disorder and predict finite charge density will not decrease conductivity. 

We encourage extending holographic approach to charged black holes and 

finding non-holographic field theories with disorder-resistant .Qσ  
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