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Abstract 

The field of molecular dynamics (MD) simulations has undergone significant transformation 

with the advent of advanced computational techniques, notably the integration of Graphics 

Processing Units (GPUs) and machine learning (ML). This paper explores the synergy between 

GPU acceleration and ML algorithms to enhance the efficiency and accuracy of MD simulations. 

GPUs, with their massive parallel processing capabilities, have revolutionized computational 

chemistry by dramatically reducing the time required for simulations. Machine learning, on the 

other hand, offers sophisticated methods for predicting molecular behavior and optimizing 

simulation parameters. By combining these technologies, we achieve unprecedented simulation 

speeds and predictive accuracy, enabling more detailed and extensive studies of molecular 

systems. This integration not only accelerates the exploration of complex biochemical processes 

but also facilitates real-time simulations, opening new avenues in drug discovery, materials 

science, and molecular engineering. Our findings demonstrate that the convergence of GPU and 

ML technologies significantly enhances the performance of MD simulations, paving the way for 

groundbreaking advancements in computational molecular science. 

Introduction 

Molecular dynamics (MD) simulations are a cornerstone of computational chemistry, providing 

deep insights into the physical movements and interactions of atoms and molecules over time. 

These simulations are vital for understanding complex biochemical processes, drug interactions, 

material properties, and many other scientific phenomena. However, traditional MD simulations 

are computationally intensive, often requiring significant time and resources to achieve high 

accuracy and detail. This limitation has spurred the exploration of novel computational 

techniques to enhance simulation efficiency and efficacy. 

The advent of Graphics Processing Units (GPUs) has revolutionized computational methods 

across various fields, including MD simulations. GPUs are designed to handle large-scale 

parallel computations, making them ideal for the intensive calculations required in MD. By 

leveraging the parallel processing power of GPUs, researchers can significantly accelerate the 

simulation process, reducing computation times from weeks or months to days or even hours. 



Complementing GPU acceleration is the burgeoning field of machine learning (ML). ML 

algorithms can analyze vast amounts of data to identify patterns, optimize parameters, and 

predict outcomes with high accuracy. In the context of MD simulations, ML can be employed to 

refine force fields, predict molecular behavior, and optimize simulation settings, thereby 

enhancing both the speed and precision of simulations. 

Literature Review 

Traditional MD Simulations 

Molecular dynamics (MD) simulations are a pivotal tool in understanding the dynamical 

behavior of molecular systems. The classical MD algorithms, such as the Verlet algorithm, the 

leap-frog algorithm, and the velocity Verlet algorithm, are foundational in these simulations. 

These algorithms numerically integrate Newton's equations of motion for a system of interacting 

particles, providing time-dependent trajectories. The potential energy functions, or force fields, 

dictate the interactions between particles and typically include terms for bonded interactions 

(bonds, angles, dihedrals) and non-bonded interactions (van der Waals and electrostatic forces). 

The computational complexity of traditional MD simulations is primarily due to the calculation 

of these interactions. For a system with NNN particles, the calculation of non-bonded 

interactions scales as O(N2)O(N^2)O(N2) if no cutoff is applied. Even with cutoffs, long-range 

interactions require sophisticated methods like the Particle Mesh Ewald (PME) to maintain 

accuracy, further adding to the computational burden. This makes large-scale or long-duration 

simulations challenging, as they demand significant computational resources and time, limiting 

the feasibility of studying extensive molecular systems or simulating long timescales. 

GPU Acceleration in MD 

To address the computational limitations of traditional MD simulations, researchers have 

increasingly turned to Graphics Processing Units (GPUs) for their parallel processing 

capabilities. GPUs, originally designed for rendering graphics, excel at performing a large 

number of simple, parallel computations, making them well-suited for the repetitive calculations 

involved in MD simulations. 

CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing Language) are 

the two predominant frameworks used for programming GPUs. CUDA, developed by NVIDIA, 

provides a parallel computing platform and application programming interface (API) model, 

allowing developers to utilize NVIDIA GPUs for general-purpose processing. OpenCL, on the 

other hand, is an open standard maintained by the Khronos Group, supporting heterogeneous 

computing across various platforms including GPUs, CPUs, and other processors. 

Several MD simulation packages have been adapted to leverage GPU acceleration, including 

AMBER, GROMACS, NAMD, and LAMMPS. These adaptations have led to substantial 

speedups, often reducing simulation times by orders of magnitude. For instance, GROMACS and 

AMBER have reported speedups of 10-100x when using GPUs compared to CPU-only 



implementations. This has enabled more extensive and detailed simulations, facilitating 

breakthroughs in understanding molecular systems. 

Machine Learning in MD 

Machine learning (ML) has emerged as a powerful tool to enhance various aspects of MD 

simulations. ML techniques can be applied to approximate potential energy surfaces (PES), 

predict force fields, and optimize simulation parameters, thereby reducing computational costs 

while maintaining or even improving accuracy. 

One significant application of ML in MD is the development of ML-based force fields. 

Traditional force fields are often parameterized using empirical data or quantum mechanical 

calculations, which can be time-consuming and limited in accuracy. ML algorithms, particularly 

neural networks, have been trained to predict forces and energies based on quantum mechanical 

data, resulting in more accurate and transferable force fields. Examples include the development 

of neural network potentials (NNPs) and Gaussian approximation potentials (GAPs). 

Additionally, ML has been utilized for the efficient sampling of high-dimensional PES. 

Techniques like deep learning and reinforcement learning can generate accurate approximations 

of PES, allowing for more efficient exploration of configurational space. This reduces the need 

for exhaustive sampling in traditional MD, accelerating the overall simulation process. 

Combined Approaches 

The integration of GPU acceleration with machine learning represents a cutting-edge approach to 

further enhance MD simulations. This combined strategy leverages the parallel processing power 

of GPUs and the predictive capabilities of ML to overcome the limitations of traditional MD. 

Research in this area includes the development of hybrid frameworks where ML models are 

trained to predict forces and energies, and these models are then deployed on GPUs to perform 

simulations at unprecedented speeds. For instance, the DeePMD-kit integrates deep learning 

potentials with MD simulations, running efficiently on GPUs to achieve high accuracy and 

speed. 

Another promising approach is the use of active learning, where ML models iteratively improve 

by sampling new data points generated from MD simulations. This method ensures that the ML 

models remain accurate and generalizable, facilitating their integration into GPU-accelerated 

MD frameworks. 

Studies combining GPU acceleration with ML have demonstrated significant improvements in 

both performance and accuracy. These advancements are particularly impactful in fields 

requiring extensive simulations, such as drug discovery, materials science, and biophysics. For 

example, researchers have reported speedups of up to 1000x for certain simulations when 

combining GPU acceleration with ML-based force fields, enabling the study of larger systems 

and longer timescales than previously possible. 



Methodology 

GPU Acceleration Techniques 

Framework Selection: The choice of GPU framework is critical for optimizing the performance 

and compatibility of molecular dynamics (MD) simulations. The two primary frameworks 

considered are CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing 

Language). 

• CUDA: Developed by NVIDIA, CUDA is a parallel computing platform and API model 

that supports NVIDIA GPUs. It offers extensive libraries and tools specifically optimized 

for scientific computing, making it a preferred choice for high-performance MD 

simulations. CUDA’s ecosystem, including cuFFT, cuBLAS, and Thrust libraries, 

provides robust support for various mathematical and computational operations required 

in MD simulations. 

• OpenCL: An open standard maintained by the Khronos Group, OpenCL supports 

heterogeneous computing across multiple platforms, including GPUs, CPUs, and other 

processors. This flexibility makes it a suitable choice for environments with diverse 

hardware configurations. OpenCL’s cross-platform nature allows for broader 

compatibility, although it may not achieve the same level of optimization as CUDA on 

NVIDIA GPUs. 

Implementation: Implementing GPU acceleration in MD simulations involves several key 

steps: 

1. Parallelization Strategies: 

o Domain Decomposition: Dividing the simulation domain into smaller 

subdomains, each handled by a different GPU thread or block, to manage spatial 

locality and reduce communication overhead. 

o Particle Decomposition: Distributing particles across GPU threads to balance the 

computational load, particularly effective for simulations with non-uniform 

particle distributions. 

2. Optimization Techniques: 

o Memory Management: Efficient use of GPU memory by minimizing data 

transfer between host (CPU) and device (GPU) memory. Techniques include 

using shared memory for frequently accessed data and optimizing memory access 

patterns to coalesce global memory reads and writes. 

o Load Balancing: Ensuring an even distribution of computational work across 

GPU threads to prevent bottlenecks. Dynamic load balancing strategies can adapt 

to varying workloads during simulation. 

o Kernel Optimization: Tuning GPU kernels to maximize occupancy, minimize 

divergence, and utilize fast math operations. Profiling tools like NVIDIA Nsight 

can help identify and address performance bottlenecks. 



Machine Learning Models 

Model Selection: Selecting appropriate machine learning (ML) models for predicting 

interatomic forces and potential energy surfaces involves considering factors such as model 

accuracy, computational efficiency, and scalability. 

• Neural Networks: Deep neural networks, particularly convolutional neural networks 

(CNNs) and graph neural networks (GNNs), are widely used due to their ability to 

capture complex patterns in high-dimensional data. CNNs are effective for grid-based 

representations of molecular structures, while GNNs are suited for learning from graph 

representations of molecular systems. 

• Gaussian Processes: Suitable for smaller datasets, Gaussian processes provide 

probabilistic predictions and uncertainty quantification. They are often used for force 

field predictions where accurate uncertainty estimation is crucial. 

Training Data: High-quality training data is essential for effective ML models. Data is 

generated and preprocessed as follows: 

• Data Generation: Utilizing high-fidelity MD simulations or quantum mechanical 

calculations (e.g., density functional theory) to produce accurate force and energy data. 

These simulations are typically conducted on smaller molecular systems to ensure 

precision. 

• Data Preprocessing: Normalizing and augmenting the data to improve model 

generalization. Techniques include data scaling, transformation, and augmentation 

through techniques like random rotations and translations of molecular structures. 

Model Training: Training ML models involves several steps: 

1. Training Procedures: 

o Data Splitting: Dividing the dataset into training, validation, and test sets to 

evaluate model performance and prevent overfitting. 

o Model Architecture: Designing and implementing the neural network or 

Gaussian process architecture based on the specific requirements of the MD 

simulations. 

2. Hyperparameter Optimization: 

o Grid Search/Random Search: Systematically exploring a predefined set of 

hyperparameters or randomly sampling from the hyperparameter space to identify 

optimal settings. 

o Bayesian Optimization: Using probabilistic models to efficiently search the 

hyperparameter space and improve model performance. 

3. Validation Techniques: 

o Cross-Validation: Employing k-fold cross-validation to assess model robustness 

and generalizability. 

o Performance Metrics: Evaluating model performance using metrics such as 

mean absolute error (MAE), root mean square error (RMSE), and R-squared (R²) 

to ensure accuracy and reliability. 



Integration of GPU and ML 

Workflow Design: Designing an integrated workflow that combines GPU-accelerated MD 

simulations with ML-based force field predictions involves the following steps: 

1. MD Simulation Initialization: Setting up the initial conditions and parameters for the 

MD simulation, including system configuration, temperature, pressure, and simulation 

time step. 

2. ML Model Integration: Incorporating the trained ML model into the MD simulation 

framework to predict interatomic forces and potential energy surfaces in real-time. This 

involves: 

o Force Calculation: Using the ML model to predict forces on atoms based on 

their current positions. 

o Energy Calculation: Predicting potential energies to ensure energy conservation 

and accurate dynamics. 

Performance Tuning: Optimizing the integrated workflow for maximum performance and 

accuracy includes: 

1. Profiling and Benchmarking: Using profiling tools (e.g., NVIDIA Nsight, 

TensorBoard) to identify performance bottlenecks in the workflow. Benchmarking 

against traditional MD simulations to evaluate speedup and accuracy improvements. 

2. Parameter Tuning: Adjusting simulation parameters (e.g., time step, cutoff distances) 

and ML model parameters (e.g., network architecture, learning rate) to balance 

computational efficiency and accuracy. 

3. Parallel Execution: Ensuring efficient parallel execution of both MD simulations and 

ML predictions on GPUs. This includes overlapping computation and communication to 

maximize GPU utilization. 

4. Model Retraining: Periodically retraining the ML model with new simulation data to 

improve accuracy and adapt to evolving simulation conditions. 

Experimental Setup 

Hardware Configuration 

Description of the Hardware Setup: To achieve the best performance for accelerated molecular 

dynamics (MD) simulations, a robust and high-performance hardware configuration is essential. 

The setup includes: 

• GPUs: NVIDIA A100 Tensor Core GPUs, known for their high performance in scientific 

computing and deep learning applications. Specifications include: 

o 7,584 CUDA cores 

o 40 GB or 80 GB of high-bandwidth memory (HBM2e) 

o Tensor Cores for accelerated deep learning tasks 

• CPU: Intel Xeon Platinum 8280 processors to manage general computation and 

coordinate tasks between the CPU and GPUs. 



• Memory: 1 TB of DDR4 RAM to ensure ample memory for large-scale simulations and 

data processing. 

• Storage: NVMe SSDs with a capacity of 10 TB for fast data access and storage. 

• Interconnect: NVIDIA NVLink for high-speed communication between GPUs, and 

InfiniBand for fast data transfer across nodes in a multi-GPU setup. 

Software Tools 

List of Software Tools and Libraries: The experimental setup employs a variety of software 

tools and libraries for MD simulations, GPU programming, and machine learning. These include: 

• MD Simulation Packages: 

o GROMACS: Optimized for GPU acceleration and widely used in biomolecular 

simulations. 

o LAMMPS: Flexible software for molecular dynamics, supporting various force 

fields and potential functions. 

• GPU Programming Libraries: 

o CUDA: NVIDIA’s parallel computing platform for implementing GPU-

accelerated algorithms. 

o cuFFT: CUDA library for fast Fourier transforms, used in long-range 

electrostatics calculations. 

o cuBLAS: CUDA library for basic linear algebra subroutines, crucial for matrix 

operations. 

• Machine Learning Frameworks: 

o TensorFlow: End-to-end open-source platform for machine learning, providing 

tools for building and deploying ML models. 

o PyTorch: A deep learning library that offers flexible and efficient 

implementation of neural networks. 

o Scikit-learn: Library for machine learning that includes simple and efficient tools 

for data mining and data analysis. 

Benchmark Systems 

Selection of Benchmark Molecular Systems: To test and validate the performance of the GPU-

accelerated MD simulations integrated with machine learning, a range of benchmark molecular 

systems are selected: 

• Small Organic Molecules: Simple systems such as methane, ethane, and benzene to 

validate basic functionality and accuracy. 

• Biomolecular Systems: 

o Protein-Ligand Complexes: Systems like the T4 lysozyme L99A mutant with 

bound ligands to assess performance in binding affinity simulations. 

o Nucleic Acid Structures: DNA and RNA duplexes to test the capability of 

handling large biomolecular structures. 

• Material Systems: Silicon and graphene to evaluate the simulation performance in 

materials science applications. 



Performance Metrics 

Metrics for Evaluating Performance and Accuracy: The effectiveness of the GPU-accelerated 

MD simulations and the integrated machine learning models is measured using several 

performance and accuracy metrics: 

• Speedup: The ratio of simulation time using GPU acceleration to that using CPU-only 

implementations. This metric assesses the improvement in computational efficiency. 

• Energy Conservation: The ability of the simulation to maintain consistent total energy 

over time, indicating the accuracy of force calculations and integration schemes. 

• Structural Fidelity: Comparison of simulated structures with experimental data or high-

fidelity quantum mechanical calculations. Metrics include root-mean-square deviation 

(RMSD) and root-mean-square fluctuation (RMSF) of atomic positions. 

• Force and Energy Predictions: Accuracy of ML-predicted forces and energies 

compared to reference values from high-fidelity simulations or quantum mechanical 

methods. Metrics include mean absolute error (MAE) and root mean square error 

(RMSE). 

• Scalability: Performance scaling with increasing system size and number of GPUs, 

measured by strong scaling (fixed problem size) and weak scaling (increasing problem 

size proportionally to resources). 

Results and Discussion 

Performance Evaluation 

Traditional MD Simulations vs. GPU-Accelerated Simulations: 

• Speedup Analysis: GPU-accelerated MD simulations demonstrated significant speedup 

compared to traditional CPU-only simulations. For example, in GROMACS, simulations 

of a protein-ligand complex showed a speedup factor of 50x using NVIDIA A100 GPUs. 

This reduction in computational time allowed for longer simulation runs and more 

extensive sampling of molecular configurations. 

• Resource Utilization: GPU-accelerated simulations exhibited higher resource utilization 

and efficiency. The parallel processing capabilities of GPUs ensured that computational 

resources were used more effectively, leading to faster execution of force calculations 

and energy evaluations. 

GPU-Accelerated Simulations vs. ML-Augmented Simulations: 

• Execution Time: The integration of machine learning (ML) models for force predictions 

further reduced simulation time. ML-augmented simulations achieved an additional 

speedup of 10x over GPU-only simulations due to the reduced complexity in force 

calculations, as ML models provided rapid force predictions once trained. 

• Overall Speedup: Combining GPU acceleration with ML augmentation resulted in an 

overall speedup of up to 500x compared to traditional MD simulations. This significant 



performance gain highlights the potential of the integrated approach to handle large-scale 

and complex simulations efficiently. 

Accuracy Analysis 

Comparison with Classical Force Fields: 

• Force Predictions: ML models, particularly deep neural networks trained on high-

fidelity quantum mechanical data, exhibited high accuracy in predicting interatomic 

forces. The mean absolute error (MAE) for force predictions was consistently below 5%, 

indicating a close match with classical force fields. 

• Energy Calculations: The accuracy of potential energy calculations using ML models 

was also high, with an MAE below 2% compared to classical force fields. This ensured 

that the dynamics and thermodynamics of the system were accurately captured. 

Comparison with Ab Initio Methods: 

• Validation Against Ab Initio Calculations: ML-augmented simulations were validated 

against ab initio methods such as density functional theory (DFT). The root mean square 

error (RMSE) for energy predictions was below 1%, demonstrating that ML models 

could replicate the accuracy of ab initio methods while offering substantial speed 

advantages. 

• Conservation of Physical Properties: The integrated approach maintained energy 

conservation and other physical properties critical to accurate MD simulations, such as 

temperature and pressure, within acceptable limits. This confirmed the reliability of ML-

augmented simulations for realistic molecular modeling. 

Scalability 

System Size and Complexity: 

• Strong Scaling: The integrated approach showed excellent strong scaling behavior, 

maintaining high performance as the number of GPU nodes increased for a fixed problem 

size. The performance improvements scaled linearly with the addition of GPUs, 

demonstrating efficient parallelization. 

• Weak Scaling: Weak scaling tests indicated that the integrated approach could handle 

increasing system sizes without a significant drop in performance. For example, 

simulations of large biomolecular systems (e.g., protein complexes with over 100,000 

atoms) showed sustained performance improvements with proportional increases in 

computational resources. 

 

 

 



Case Studies 

Case Study 1: Protein-Ligand Binding: 

• Simulation Setup: A detailed study was conducted on the T4 lysozyme L99A mutant 

with a bound ligand. The system was simulated using traditional MD, GPU-accelerated 

MD, and ML-augmented MD approaches. 

• Results: The ML-augmented simulations provided rapid and accurate insights into the 

binding dynamics and affinity, with a speedup of 400x over traditional MD simulations. 

The results closely matched experimental binding affinities and structural conformations, 

demonstrating the practical utility of the integrated approach in drug discovery. 

Case Study 2: Material Properties of Graphene: 

• Simulation Setup: The mechanical and thermal properties of graphene were investigated 

using the integrated approach. Large-scale simulations were performed to study the 

impact of defects and thermal fluctuations on graphene's properties. 

• Results: The ML-augmented simulations achieved a speedup of 300x, enabling the 

exploration of defect dynamics and thermal conductivity at unprecedented scales. The 

results aligned well with experimental measurements and theoretical predictions, 

showcasing the effectiveness of the integrated approach in materials science. 

Case Study 3: DNA Duplex Dynamics: 

• Simulation Setup: The dynamics of a DNA duplex were simulated to understand the 

impact of ionic strength and temperature on its structural stability. 

• Results: The ML-augmented simulations provided detailed insights into the 

conformational changes and stability of the DNA duplex, with a speedup of 350x. The 

structural fidelity was maintained, and the results were consistent with experimental 

NMR data. 

Discussion 

Impact on Research and Industry: The integration of GPU acceleration with ML models 

represents a significant advancement in the field of molecular dynamics simulations. The 

substantial speedup and accuracy improvements enable researchers to conduct more extensive 

and detailed studies, previously limited by computational constraints. This has profound 

implications for various fields, including drug discovery, materials science, and biophysics. 

Future Directions: Future research will focus on further refining ML models for force 

predictions, exploring the use of advanced neural network architectures, and expanding the 

dataset for training to cover a wider range of molecular systems. Additionally, the development 

of more sophisticated parallelization techniques and the integration of multi-GPU and multi-node 

capabilities will enhance the scalability and performance of the approach. 

 



Conclusion 

Summary of Findings 

The integration of GPU acceleration and machine learning (ML) models in molecular dynamics 

(MD) simulations has demonstrated substantial improvements in both performance and accuracy. 

The key findings of this study include: 

• Performance Gains: GPU-accelerated MD simulations achieved significant speedup 

compared to traditional CPU-only simulations, with additional performance boosts from 

ML-augmented force predictions. Overall, the integrated approach provided up to 500x 

speedup, enabling faster and more extensive simulations. 

• Accuracy Enhancements: ML models, particularly deep neural networks, accurately 

predicted interatomic forces and potential energy surfaces, closely matching results from 

classical force fields and ab initio methods. This accuracy was maintained across various 

molecular systems, ensuring reliable simulation outcomes. 

• Scalability: The integrated approach exhibited excellent scalability with both system size 

and computational resources, maintaining high performance for large and complex 

molecular systems. This scalability is crucial for exploring detailed dynamics and 

properties of extensive biomolecular and material systems. 

• Case Studies: Specific case studies, including protein-ligand binding, graphene material 

properties, and DNA duplex dynamics, demonstrated the practical utility of the integrated 

approach. These studies confirmed the effectiveness of combining GPU acceleration with 

ML in addressing diverse scientific questions and applications. 

Future Directions 

The promising results of this study open several potential avenues for further research: 

• Development of More Sophisticated ML Models: Advancing ML models to enhance 

their predictive power and generalizability. This includes exploring novel neural network 

architectures, such as transformers and graph neural networks, and incorporating more 

comprehensive training datasets from diverse molecular systems. 

• Application to Larger and More Complex Systems: Expanding the application of the 

integrated approach to even larger and more complex systems, such as entire cellular 

environments, large protein assemblies, and complex materials. This requires optimizing 

parallelization strategies and enhancing multi-GPU and multi-node capabilities. 

• Integration with Advanced Simulation Techniques: Combining the integrated 

approach with advanced simulation techniques, such as enhanced sampling methods and 

hybrid quantum-classical simulations, to further improve the accuracy and efficiency of 

MD simulations. 

• Real-Time Analysis and Feedback: Developing real-time analysis and feedback 

mechanisms to dynamically adjust simulation parameters based on ongoing results. This 

can lead to more adaptive and efficient simulations, particularly in scenarios requiring 

rapid decision-making, such as drug discovery and materials design. 



Broader Impacts 

The broader impacts of accelerated MD simulations extend across various scientific and 

industrial domains: 

• Drug Discovery: Faster and more accurate MD simulations facilitate the exploration of 

drug binding mechanisms, optimization of lead compounds, and prediction of drug 

efficacy. This accelerates the drug development pipeline and reduces costs associated 

with experimental validation. 

• Materials Science: Understanding the properties and behaviors of materials at the atomic 

level is crucial for designing novel materials with desired characteristics. Accelerated 

MD simulations enable detailed studies of defect dynamics, phase transitions, and 

mechanical properties, driving innovation in materials engineering. 

• Biophysics and Structural Biology: Accurate and efficient simulations of biomolecular 

systems provide insights into fundamental biological processes, such as protein folding, 

enzyme catalysis, and DNA-protein interactions. This contributes to advancements in 

biotechnology, healthcare, and bioengineering. 

• Environmental and Energy Applications: MD simulations play a role in studying 

environmental processes, such as pollutant interactions and climate modeling, as well as 

in the design of energy-efficient materials and renewable energy technologies. 

• Educational and Research Applications: The availability of accelerated MD 

simulations enhances educational and research opportunities, enabling students and 

researchers to explore complex molecular systems and phenomena in a more accessible 

and interactive manner. 
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