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Abstract

Behavioural cloning has been extensively used to train agents
and is recognized as a fast and solid approach to teach general
behaviours based on expert trajectories. Such method follows
the supervised learning paradigm and it strongly depends on
the distribution of the data. In our paper, we show how com-
bining behavioural cloning with human-in-the-loop training
solves some of its flaws and provides an agent task-specific
corrections to overcome tricky situations while speeding up
the training time and lowering the required resources. To do
this, we introduce a novel approach that allows an expert to
take control of the agent at any moment during a simulation
and provide optimal solutions to its problematic situations.
Our experiments show that this approach leads to better poli-
cies both in terms of quantitative evaluation and in human-
likeliness.

In reinforcement learning (RL) (Sutton and Barto 2018) the
difficulty for training an agent that can successfully solve
a task is directly proportional to the complexity of the task
itself. This happens because RL is based on the concept of
reward function, that is, a signal that should encourage a cor-
rect behaviour while discouraging a harmful one at the same
time. In a standard RL task, the reward function is hand-
crafted and must take into account all the possible circum-
stances that might affect the task to some degree.

Moreover, the goal, as described by the reward, must
be completely specified mathematically. As the complex-
ity of the task increases, both those aspects become in-
credibly hard. Therefore, specifying a correct reward func-
tion for complex tasks is usually considered an intractable
problem (Russell 2019). As a practical solution to this
problem, behavioural cloning (BC) (Torabi, Warnell, and
Stone 2018) and imitation learning (IL) (Kober and Pe-
ters 2010; Price and Boutilier 2003) approaches are used
to tackle it by using demonstrations, or recorded trajec-
tories. In these approaches, each trajectory corresponds to
a set of observations and actions in the form of a tuple
D = (04,a;),i=1,...,T recorded from one or more ex-
perts, and where T' denotes the end of the episode. Those
demonstrations are then used as a dataset to train a policy
in a supervised learning fashion; at the end of the training
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procedure, the obtained network represents the actual policy
that takes decisions in the RL environment.

Despite showing promise, even these approaches have
their limitations (Codevilla et al. 2019; Kanervisto, Kart-
tunen, and Hautamaki 2020; Kanervisto, Pussinen, and Hau-
tamaki 2020). Among the others, the most important one re-
sides in their inherent dependency from the expert’s trajecto-
ries assumed optimality. Previous work (Kanervisto, Pussi-
nen, and Hautamaki 2020) shows that BC agents usually
struggle in replicating human-level performances, let alone
surpassing them. This happens because, despite the agent’s
ability to generalize over the training examples, a task usu-
ally comes with subproblems (Russell 2019) whose solu-
tions might not be exemplified in the gathered data. The
number of those subproblems exponentially increases with
the complexity of the task (Russell 2019), and a dataset that
takes into account all those things would be too hard and
costly to aggregate and validate.

In 2010, (Ross, Gordon, and Bagnell 2011) proposed the
Dataset Aggregation (DAgger) Algorithm in order to address
the problem of providing more representative trajectories in
the BC dataset. DAgger addresses this problem by using the
BC agent trained on the original dataset as an expert. Then
it trains a new BC agent on the new dataset, which will be
used to gather even more representative data and so on. The
underlying idea of the method is that the problem of not hav-
ing enough data can be solved by extracting more trajecto-
ries from an expert-trained agent. Although the idea seems
reasonable, as the newly extracted data would surely follow
the expert’s data distribution, it is limited by the fact that
such an agent is trained on incomplete data. Therefore it is
necessarily sub-optimal and progress, if any, might proceed
slowly.

One of the evolutions of this algorithm is represented by
Human-Gated Dataset Aggregation Algorithm (Kelly et al.
2019) (HG-DAgger). This approach uses the same idea as
the previous but includes human feedback in the training
loop. HG-DAgger relies on the idea that in order to im-
prove, an agent must be provided with high-quality labels.
To gather them, a human expert can take over control dur-
ing a standard RL game played by the BC agent and provide
corrective trajectories. At the end of this correction step, the
new demonstrations are added to the original dataset and
the agent is fine-tuned on this augmented dataset, similarly



to the original DAgger algorithm. We argue that while the
method leads to higher quality labels, their effect on the pol-
icy highly depends on the BC dataset. This happens because
adding these corrections to the dataset means merging their
distribution with the one from the original trajectories. As
a result, the distribution of the data will change but stay
anchored to the original one, unless the number of correc-
tive and baseline actions become comparable. Thus, in cases
where the optimal trajectory is very distant from the exam-
ples that we have, it won’t be possible for the agent to follow
it.

In this paper, we propose a novel approach to address
e problem and possibly solve it. In our approach, the hu-
man expert supervising the algorithm can take over control
of a simulation and provide corrective micro-trajectories to
the agent similar to the HG-DAgger algorithm. Then, in-
stead of augmenting the dataset, we perform a BC train-
ing step on the spot. Such guided training represents an in-
termediate step between the standard BC training and the
testing phases. We assess the validity of our approach on a
Minecraft agent and provide both quantitative and qualita-
tive comparison of our agent’s performance with respect to
pure BC and two DAgger agents trained on the same envi-
ronment.

Related Work

Our approach takes the original DAgger algorithm (Ross,
Gordon, and Bagnell 2011) as the main inspiration. In that
work, the authors use the idea of fixing wrong actions of
a standard BC agent by re-evaluating its errors through an-
other policy. Although the idea sounds promising, it assumes
that the policy used for correction is better than the actual
policy at solving the task or a particular instance of it. We
argue that such an assumption is strong and perhaps too opti-
mistic, as having such an agent would make the actual agent
useless and solve the problem inherently. Moreover, gener-
ating an expert agent for each possible problem is to be con-
sidered impractical due to the enormous amount of resources
it would require for non-trivial tasks (Russell 2019).

Our method uses one of the DAgger variants, HG-DAgger
(Kelly et al. 2019), as a secondary source of inspiration. This
algorithm addresses the problem described above and deals
with it by introducing a human expert in the training pro-
cedure. The presence of a human expert is used at training
time to correct trajectories that show dangerous behaviours.
Therefore, the overall quality of the training trajectories in-
creases and the average performance of the agent increases
as well. Even though we believe that this algorithm repre-
sents a valid solution to the original DAgger problem, we
argue that introducing the human expert at training time im-
plies a gigantic work of correction and provides very slow
improvement for a newly generated policy. Therefore, a non-
trivial task might require a non-feasible amount of work to
be done to train a single agent.

Moreover, previous work on inverse reinforcement learn-
ing (Ziebart et al. 2008) and on RL human feedback (Singh
et al. 2019) are taken into account for the development of our
method, to provide suggestions on keeping our method fast
and reliable. In particular, (Ziebart et al. 2008) proposes the

maximum entropy principle for exploring the reward space.
This principle inspired the idea of detaching the BC dataset
from the expert correction so that the data distributions re-
main separate and provide maximum exploration capabil-
ities to the agent. On a more technical part, (Singh et al.
2019) proposes a novel method to make the best use of a
low number of trajectories. In our paper, this idea helped us
in shaping the training step on the corrective trajectory.

Human-Driven Dynamic Dataset
Augmentation

In this section, we present Human-Driven Dynamic Dataset
Augmentation (HDD-DAugment), a method for improving
RL agents trained from human demonstrations, that ad-
dresses and solves all the problems presented above. Sim-
ilarly to the HG-DAgger algorithm, the motivation for our
approach is to provide high-quality labels to an agent. We
believe that these labels can be provided only by an ex-
pert, which must be therefore included in the training loop
to some extent. However, differently from the baseline ap-
proach, we integrate the expert’s corrections in the form of
one-time micro-trajectories learned on the spot, skipping the
dataset augmentation step.

In the HG-DAgger algorithm described in Algorithm 1,
a novice policy my, is pre-trained over a dataset Dpc that
is then augmented iteratively based on corrections provided
by an expert. The resulting dataset D is then used to fine-
tune the agent by performing additional training epochs in
the standard BC fashion. Although the solution is indeed
valid and leads to an improvement of the policy, we argue
that it might suffer from data-related problems in contexts
that deal with high dimensional data such as images. Among
those problems, the most prominent is maintaining the data
in memory, for which a solution requires performing an infi-
nite number of read/write operations from slow mass storage
memories. In those cases, we believe that two main reasons
could slow down or even prevent an improvement over a
standard BC agent.

First, dealing with high dimensional data drastically in-
creases their variability, and therefore a much more vast set
of trajectories is required to allow learning. As a conse-
quence, augmenting the dataset results in a longer training
time. Also, memory is affected: a high dimensional dataset
might not fit into memory. In those cases, data are stored to
mass storage devices, and become an additional cost both in
economic and computational terms. Although time can be
saved with highly-engineered solutions, memory for mas-
sive datasets of this kind is still problematic.

Second, DAgger-like approaches incorporate the correc-
tions into the original dataset Dpc, such that at the end of
the procedure Dpc C D. This prevents the agent from drift-
ing away from the original solution, as a good portion of the
augmented dataset will still represent the original one. We
believe that such robustness to change is both an upside and
a drawback: whenever the variability of the data is high, pre-
venting the drift might anchor the agent to a solution that is
very distant from the optimal one. On the other hand, allow-
ing the agent to detach from it by learning from an indepen-



Algorithm 1: HG-DAgger

Algorithm 2: HDD-DAugment

Input: 7, 7y,, Dpc
Output: 7y, ,, 7T

1: D+ Dyc

2: T+

3: forepoch¢=1: K do

4: forrollout j =1: M do

5: for timestep ¢ € T of rollout j do
6: if expert has control then

7: Record expert labels into D;
8: end if

9: if expert is taking control then
10: record doubt into Z;
11: end if
12: end for
13: D+ DU Dj
14: I+ 1U7I;
15:  end for
16:  train my,,  onD
17: end for
18: 7+ f(T)

19: return Ty, ,, 7T

dent dataset allows the agent to freely explore new solutions
to the problem. Indeed, this comes with a risk of detaching
from the initial task, but the complete control that the expert
exerts over the agent helps in preventing this.

By skipping the standard aggregation step, our approach
avoids the data-related problems and can be used to train
a network on high dimensional datasets: HDD-DAugment
(Algorithm 2) does not make use of the initial BC dataset,
thus making the intermediate training steps much faster
than the baseline approaches. Our method processes an ex-
pert’s corrective trajectory as an independent mini-batch of
(o, at) tuples that are stored only temporarily in RAM and
are deleted as soon as the training step ends. As a conse-
quence of this, we do not need to perform onerous read and
write actions, nor occupy memory with corrective data or
need a powerful machine to overcome those limitations. At
the same time, using the corrective trajectory independently
from the baseline dataset makes it independent from the un-
derlying data distribution. Therefore, the policy can explore
a wider range of solutions for the problem.

While this might come with problems if the number of
corrections is too high, a single correction does represent
a small step in an arbitrary direction and is equivalent to
the idea of random noise added to the policy in evolution-
ary algorithms (Moriarty, Schultz, and Grefenstette 1999).
Thus, small changes to the policy weights can be allied with
no harm. Moreover, since each correction is provided singu-
larly by an expert, a careful design of corrective trajectories
and limiting their number can easily avoid this negative phe-
nomenon.

Experiments

We have performed our experiments on a Minecraft agent,
using the MineRL (Guss et al. 2019) dataset. In particu-

Input: 7y, ™

Output: 7
1: train 7 on Dy with regular BC
2: for gamei =1: K do
3:  while not ending condition do

4: for timestep ¢ € T of rollout j do
5 perform RL step
6: if expert takes control then
7: Dexp + ]
8: while expert gives control back do
9: Dexp — Dexp U {(Oex;m aexp)}
10: end while
11: train 7w on Doy
12: end if
13: end for
14:  end while
15: end for

16: return m

lar, our agents have been trained to solve the FindCave task
proposed in the NeurI[PS BASALT challenge (Shah et al.
2021) 2021. To complete this task, an agent must spot a
cave and take a picture of it by throwing a snowball while
being in front of it. The experiments are focused on two
sub-problems that we have discovered during the compe-
tition. In particular, we found out that standard BC agents
were struggling to jump on ramps of blocks and handle the
camera controls. To address them, we propose a compari-
son between four agents. As the first step, each policy has
been trained with standard BC until convergence. From our
experiments, this happened after around 150 epochs. Then,
three of them were fine-tuned with DAgger, HG-DAgger and
HDD-DAugment respectively, while the fourth one was left
unchanged.

For each fine-tuned agent we have gathered a similar num-
ber of additional data. In particular, the DAgger and the HG-
DAgger agents have been trained for 15 iterations, each one
consisting of one game played by the respective policy and
5 additional training epochs. In both cases, this led to an in-
crement of about 10% in the size of our dataset. To reach a
similar number of additional data, we have played 58 games
with the agent trained with HDD-DAugment. After the train-
ing, we have collected 20 games played by each agent, with
a maximum duration of 3 minutes each. Since comparing
trajectories qualitatively is not easy, we have decided to use
a fixed seed on our environment, to set the same spawning
point for every agent. We have assessed the agents’ perfor-
mance according to four different metrics.

Number and severity of collisions. We define a col-
lision as a situation in which an agent gets stuck on a
wall or a block. We evaluate the collisions by dividing
them into severity classes, according to their duration: the
longer the collision, the higher its severity. In our experi-
ments, we have measured collisions that have lasted more
than 5, 10, 20, 30, 45, 60,90, 120 and 150 seconds. An oc-
currence in the 5s collision means that in one case an agent
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Figure 1: Examples of trajectories that lead to blinded situations. Above: the agent stares at the sky and loses almost every
spatial reference of its immediate surroundings; Below: the agent lowers its gaze at every timestep, until it sees nothing but

grass.

has been stuck for a period of time ¢ s.t. 5 < ¢t < 10,
and similarly for all the other values. In this experimental
setup, a single game can last at most 180 seconds. We com-
pare the agents by assessing the total time spent colliding in
each game and plotting their values over the total number of
games. In this way, we aim to penalize both a single colli-
sion that lasts for a very long time and many collisions that
are resolved quickly.

Number and severity of blinded situations. A blinded
situation is a particular state in which the agent repeatedly
moves the camera in the same direction along the Y-axis.
Examples of this situation are represented in Figure 1. In
these situations, the agent ends up looking at the sky or star-
ing at the ground and loses the vast majority of information
about its surroundings. The increment of the camera in each
direction is constant and in our case has been set to 5 degrees
per action. To evaluate a blinded situation we set the initial
camera position on the vertical axis to 0 degrees and keep
track of the evolution of the offset throughout the game. If
the agent overcomes a critical threshold, then it reaches the
”blinded state”. In our experiments, the values of the thresh-
old have been changed incrementally from 5 to 90 degrees
with a step of 5 degrees. Similarly to the number of colli-
sions, we sum all the instances related to a game and plot
the sequence with respect to the number of games to assess
the agents’ tolerance to this problem.

Similarity with expert trajectories. Provided that the hu-
man player is the expert, we know the shape of the opti-
mal solution to a particular situation. For our experiments
we have decided to rely on two situations: on the first, the
agent is required to step over a block, while the second one
assesses an agent that is stuck against a wall. By analyz-
ing the gathered data, we have found those to be the more
reliable measures as both of them had an adequate number
of instances. For each of them, we extract 20 instances of
the problem from the test games and compute an average
trajectory from the one performed by the agents. Then, we
compare them with the sequence of actions provided by the
expert to overcome the problem. To ensure fairness, we align
the first meaningful action to solve the situation and compute
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Figure 2: The graph shows the number of occurrences (y-
axis) per each measured duration (z-axis) of the four ap-
proaches we compare. In our study, an occurrence is defined
as a general instance of problem that the agent faces (e.g.
getting stuck, looping with camera movement and so on).
The BC agent gets stuck for very long amounts of time in
14 games out of 20. Both the DAgger and HG-DAgger poli-
cies show a high number of quick collisions, that rapidly de-
crease as the duration increases. The HDD-DAugment agent
shows a low number of collisions, regardless of their length.

the average trajectory accordingly.

Qualitative evaluation. Since this work has been inspired
by the BASALT competition (Shah et al. 2021), and since
human likeliness is the focal point of the competition, we
also provide a link to a YouTube video that shows the quali-
tative performance related to each agent. In it, each agent is
shown while performing a limited set of actions. While this
does not represent a reliable assessment of performances, we
believe it is still valid as a perceptual measure of the quality
of an agent. The link to the video is posted at (Malato and
Jehkonen 2021).
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Figure 3: The number of blinded situations (y-axis) for each
agent, computed with respect to different angle thresholds
(z-axis). The DAgger agent shows a linearly decreasing
trend. The HG-Dagger policy has some occurrences (< 10)
for very high thresholds.

Results

Number of collisions. Figure 2 shows the number of col-
lisions per each measured duration. The HDD-DAugment
agent handles collisions in the best way possible. While the
number of quick collisions is comparable to the baseline BC
agent, it is noticeable that the trend of our agent does not
vary as the duration of the collision increases. On the other
side, the trend of the BC agent skyrockets, meaning that it
often gets stuck indefinitely and wastes the majority of its
exploration time. Moreover, our agent gets mostly stuck in
situations that include a pond or a swap, from which is par-
ticularly hard to get out. Our approach also outperforms both
the DAgger and the HG-DAgger policies, which suffer from
a high number of non-severe collisions.

Moreover, Figure 4 shows that the improvement of our
agent with respect to the other candidates is quite notice-
able. In particular, our agent is the only one that never
gets stuck in some of the games. Also, even in the worst-
performing game, HDD-DAugment performs similarly to
the best HG-DAgger. The image shows clearly that on aver-
age our method outperforms all the others in terms of active
time of exploration.

Number of blinded situations. From Figure 3 we can
conclude that the camera management represents a problem
only for the BC agent, while all the other approaches suc-
cessfully solve it. Even so, the HDD-DAugment performs
the better on the test games, showing practically no instance
of the problem. It is also noticeable how to HG-DAgger al-
most always recovers for slightly failures of this kind, while
if it goes above a higher threshold of tilting, the chances of
repairing this problem decrease. This might indicate that the
HG-DAgger algorithm solves the problem only if it can look
at its surroundings, while a severe blinded situation still rep-
resents an impossible problem. Moreover, the low number
of occurrences in the HDD-DAugment agent indicates that
drifting from the baseline policy is not likely to happen, as
we expected.
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Figure 4: Number of frames (y-axis) that have been used
for active exploration in each game (z-axis). The BC agent
spends most of its time being stuck, along with the DAgger
policy. Having a lot of quick collisions, also the HG-DAgger
is penalized with this measure. Our HDD-DAugment policy
is the only one to reach the maximum uptime in some games
and rarely drops under 60% of uptime.

Similarity with expert trajectories. In Figures 5a and 5b
it is visible that the HDD-DAugment agent outperforms all
the others both in jumping a step and overcoming a rock
wall. It is particularly of interest the fact, also shown in the
related video, that our agent mimics the expert almost per-
fectly: when it faces a wall, it turns by almost 180 degrees
and keeps walking as nothing happened. This is a clear ex-
ample of a situation in which drifting from the baseline pol-
icy comes with major advantages and helps our agent solve
situations that none of the others could address easily. More-
over, this example shows that our approach can follow the
expert lead closely while not forgetting the knowledge de-
rived from the baseline training.

Qualitative evaluation. From the video, it is evident that
our HDD-DAugment agent is more human-like than all the
other agents. It is surprising, perhaps, to see that the HG-
DAgger is quite capable of exploring, although it shows its
robotic nature in actions like jumping over a block or climb-
ing a hill. Also, we can see that both the baseline BC and
the DAgger agents struggle to explore the environment and
get stuck most of the time, even though sometimes they can
solve situations like stepping on a block.

The video also shows situations for which, unfortunately,
the number of examples was so low that building a statistic
on it would have led to vague and non-meaningful results.
Anyway, the differences between our agent and the others
are clear. It is particularly interesting to see how our agent
manages to get out of a pond: while every other agent usu-
ally has to be lucky to find the correct path, our agent spots
the correct path and follows it. Finally, it’s visible that our
agent from time to time tilts its camera left and right while
exploring. We have decided to include this in the video to
show the possible negative effects of drifting from the base-
line policy. In our experience, those problems come from
non-coherent solutions provided by a human expert. There-
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Figure 5: (a) The average behaviour varies enormously between the agents even when they encountered a single step block.
The image shows that while the BC policy continues to walk forward indefinitely, the DAgger and the HG-DAgger agents both
try to tilt their cameras to get rid of the obstacle. The HDD-DAugment, instead, replicates almost perfectly the expert’s policy.
(b) When an agent faces a wall, the expert turns back and continues walking. The graph shows that the BC and DAgger agents
are unable to face this situation. On the other hand, the HG-DAgger policy tilts its camera left and right most of the time. On
the contrary, our agent turns the camera with a reasonable degree of certainty for several consecutive timesteps.

fore, it is possible to avoid them easily with a careful design
of the corrective trajectories.

Conclusions

In this paper, we propose Human-Driven Dynamic Dataset
Augmentation (HDD-DAugment), a novel approach that in-
corporates human feedback to address and tackle problems
of previous algorithms for improving the performances of
a behavioural cloning (BC) agent. Moreover, we apply our
approach to a standard BC agent and compare it with the
baseline BC policy itself and two other similar approaches,
DAgger and HG-DAgger. We evaluate the performances of
each approach with both qualitative and quantitative mea-
sures.

Our experimental work shows that while our agent is far
from being perfect, it either matches or improves the other
approaches in all the instances of problems that we have
assessed. In some cases, our agent was the only one that
could provide a solution. The obtained results prove that
even though HDD-DAugment is a more risky approach than
the others, it comes with great upsides and careful planning
of the human corrections greatly reduces those risks. More-
over, our algorithm is invariant to problems related to the
storage of data and the speed of training and provides a fast
and light way to train an agent even with extensive, high di-
mensional datasets.
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