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Abstract

This paper investigates the effects of self-inductance and mutual inductance on saggy coil magnetic resonant inductive coupling
power transmission (IPT). The simulation of the saggy coil is conducted using a specialist tool called IPTVisual to visualise
the phenomenon of saggy winding in the system. The results provide important intuitions for optimising saggy coil inductive
coupling devices for better performance and reliability in a variety of applications. The setup of simulations and experimental
shows a slight difference. The mutual inductance and coupling coefficient of two saggy coils are analysed and discussed. There
is a difference of 1.74% in self-inductance in saggy coil with two fixed mounting point of 1 m distance when comparison is made
between simulation and experimental results.

1 Introduction

In power transmission systems, an inductive coupling system
is one of the most commonly used in terms of near-field power
transfer systems. In a resonant system, the self-inductance,
mutual inductance along coupling coefficient contribute signif-
icantly to the power transfer efficiency, stability and transmit-
ting power performance.

Inductive coupling concepts revolve around the principle
of electromagnetic. It uses induced electromagnetic force to
transfer energy between transmitter and receiver coils. The
individual self-inductance of each coil plays a major role in
the influences of one coil’s magnetic field on another.

Introducing the saggy coils in the system changes the out-
comes of the inductive coupling significantly. Saggy coils
contribute to the irregularities in the magnetic field distribution.
This affects the self-inductance as well as the mutual induc-
tance between transmitter and receiver coils. Subsequently, this
leads to the challenges such as the potential for energy losses.

The hanging cable derivation is derived from analysing it as
a physical problem. The only forces acting on a hanging cable
at a certain point are its weight and the tension in the cable.
It must be considered that the resultant of these forces equals
zero when the cable is at rest. By the sum of these forces being
known, a differential equation is created, resulting in the unique
solution of cosine hyperbolic [1].

2 Catenary Equations

The condition when the coil in an inductive coupling power
transfer (IPT) is loosened or saggy can significantly affect
the self-inductance and mutual inductance. The catenary effect
shows this phenomenon of line sagging in power transmission

lines. This could be applied to the concept of inductive cou-
pling power transmission where the power transfer efficiency is
dependent on the configuration of the transmitter and receiver
coils. When the coil is tightly wound, the magnetic field lines
generated by the current flowing are concentrated within the
coil which subsequently offers a higher self-inductance. How-
ever, the magnetic field lines become less concentrated when
these coils are not tightly wound in which case the coil lines
are sagging. As a result, the self-inductance would be reduced
significantly depending on the condition of the saggy coils. The
self-inductance of a straight cylindrical wire has been discussed
in [2].
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−m+
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+ r

)
(1)

l is the length of the wire, r is the cross-sectional radius of
the wire, and m =

√
l2 + r2.

Based on the equation of self-inductance in Eq. 1, the mutual
inductance then can be evaluated. In inductive coupling, mutual
inductance plays an important aspect in determining the effec-
tive power transfer efficiency between transmitter and receiver
coils. In saggy coil configuration, the coil becomes loosely
wound resulting in the change in proximity and alignment of
the coils hence affecting the mutual inductance. The mutual
inductance between any two arbitrary windings in free space,
C1 and C2, is given by Neumann’s Formula.

M =
µ0

4π

∮
C1

∮
C2

d⃗l1d⃗l2
D

(2)

µ0 is vacuum permeability. l⃗1 and l⃗2 are the two differential
elements being integrated from the two windings, respectively.
D(⃗l1, l⃗2) is the distance between l⃗1 and l⃗2.
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y = a cosh
(x
a

)
(3)

Cosh is the hyperbolic cosine function. The scaling factor a
represents the ratio between the horizontal tension component
exerted on the coil and the weight of the winding per unit length
when two arbitrary mounting points are determined. When a
is predetermined, the shape of the catenary is established. In
this paper, a is treated as a constant on the spacing between
these two mounting points. In this study, the scenario where
the catenary is tangent to the x-axis (the ground) is focused,
thus necessitating the subtraction of a to derive the equation
will be employed in the analysis.

z = a cosh

(
r − r0

a

)
+ z0 (4)

Case 1: Knowing two mounting points 〈x1,y1,z1〉 and
〈x2,y2,z2〉, and constant a, solving constants r0 and z0.

cosh2(x)− sinh2(x) = 1 (5)

Arc length:

l =
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Case 2: Knowing two mounting points 〈x1,y1,z1 〉 and
〈x2,y2,z2〉, and line length l, solving constants a, then con-
verted to Case 1.

Solution vector:
v =

(r0
a

)
(7)

{
f1(v) = a cosh
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)
− a cosh
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−∆z

f2(v) = a sinh
(
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)
− a sinh

(−r0
a

)
− l

(8)

f = (f1, f2) : R2 → R2 (9)

f1 comes from the catenary line equation with two points
(r1, z1) and (r2, z2), f2 comes from the arc length of the
catenary line in Equation 8.

The numerical solution is based on Newton’s Method for two
variables. Initial guess to help solution converge:

v0 =

(
∆r

2
| 0.5

)
(10)

Newton function of f : N = Nf : R2 → R2

N(v) = v − J−1
v f(v) (11)

where Jv is the Jacobian matrix of f at v.
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where
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= − sinh
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f1
a =

A−B + C

a
(15)

f2
a =

D − E − F

a
(16)

Table 1 List of equations used in (15) and (16).

A: a(cosh ∆r−r0
a

− cosh ( r0
a
))

B: (∆r − r0) sinh (
r−r0

a
)

C: (∆r − r0) sinh (
r−r0

a
)

D: a(sinh(∆r−r0
a

) + sinh( r0
a
))

E: (∆r − r0) cosh(
∆r−r0

a
)

F: r0 cosh
(
r0
a

)

Fig. 1 Illustration of saggy winding with two fixed points at z-
axis (d is the distance between two poles, hp is the total height
of poles, and hc is the gap between top and bottom part of the
winding).

3 Simulations

Implementing the catenary equation and the outcome of the
simulation is conducted using a specialist tool based on this
paper [3]. Two arbitrary mounting points along the z-axis are
determined for the simulation of saggy coil configurations. The
self-inductance is then evaluated based on the parameter of
interest which is the wire cross-sectional area of 0.385 mm with
5 coil turns. The coupling coefficient between the transmitter
and receiver coils is then observed when these two mounting
points are increased. Subsequently, the positions of mounting
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points would influence the self-inductance of the saggy coils.
Fig. 2 illustrates the variation of saggy coils corresponding to
different distances between the two arbitrary points along the
z-axis.

In Tab. 2, l represents the coil length, atop denotes the saggy
line at the top, abottom signifies the saggy line at the bottom,
and dz indicates the distance between the two mounting points.
Number of coil turns, N = 5. Unit for l, z, dz, atop and abottom

are in m.

Table 2 Simulation results (l, z, atop, abot are in m, L in µH).

Coil Shape l z dz atop abot L

Catenary 15 (1,1) 1 1 2 57.78
Saggy 0.75 0.75 2.25 57.54
Coil with 0.5 0.5 2.5 54.55
fixed z
(Fig. 2)

Catenary 15 (1, 0.2) 1 1.3 1.7 47.41
Saggy (1, 0.3) 1 1.3 1.7 43.53
Coil with (1, 0.4) 1 1.3 1.7 41.55
varied z (1, 0.5) 1 1.3 1.7 40.30
(Fig. 3a) (1, 0.6) 1 1.3 1.7 39.46

(1, 0.7) 1 1.3 1.7 38.90
(1, 0.8) 1 1.3 1.7 38.54
(1, 0.9) 1 1.3 1.7 38.33
(1, 1) 1 1.3 1.7 38.26

Square 18.5 (1, 1) 1 1.1 1 67.51
Coil
(Fig. 3b)

Saggy Square 21 (1,1) 1 1.1 1.1 84.68
Coil
(Fig. 3c)

4 Experimental Setup

The experiment setup consists of a coil purposely set up for
saggy conditions to meet the catenary concept. Fig. 4 shows
the litz wire of 5 number of coil turns. Each turn is set to be 1
cm gap between each and held in place using Kapton tape. The
experimental setup is depicted in Fig. 5 where two mounting
points are positioned as the anchor points holding up the coil
to form the saggy condition.

The distance between the mounting ground and the two
mounting points is kept constant at 1 m. Initially, the distance
between the two mounting points dz is set to 1 m which then
gradually decreased to 750 mm, 700 mm, 500 mm and 250 mm
to observe the changes in self-inductance. Combinations of z
positions are set to observe the variations of mounting points
as in Fig. 3a for example in the simulation setup.

The first set is labelled as transmitter whilst the second set of
saggy coil is prepared as receiver and self-inductance is mea-
sured individually. These two saggy coils are then connected Fig. 2 a) d = 1 m, atop = 1.2 m, abot = 2 m, b) d = 1 m, atop =

1 m, abot = 2 m, c) d = 0.75 m, atop = 0.75 m, abot = 2.25 m, d)
d = 0.5 m, atop = 0.5 m, abot = 2.5 m.
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Fig. 3 Catenary saggy coil with; a) Varied two z points, b)
Square coil, c) Saggy square coil.

to the drive board to induce the voltage and form the reso-
nant inductive coupling. The system is operated in resonance
frequency, fs = 515 kHz. The mutual inductance between two
saggy coils is then measured at the open circuit. Fig. 6 depicts
an abstract of an experimental setup example for saggy coils
in IPT system (L1 and L2 are the self-inductance for primary
and secondary coils, respectively whilst M12 is the mutual
inductance).

5 Results

The outcomes of simulation setups have been validated with
the experimental results. Fig. 7 shows a bar chart comparison
of self-inductance in simulation and measured in experimental

1 cm  gap

5 coil turns each

1st set

2nd set

Fig. 4 Litz wire with wire cross-sectional radius of 0.385
mm, and total coil length of 15 m. The wire with N = 5 is
kept together using Kapton tape to prevent entanglement while
keeping the gap between turns of 10 mm.

atop

abottom

Two mounting points

Distance between two
mounting points, d = 1 m. 

Fig. 5 Experimental setup to measure self-inductance of saggy
winding of two mounting points at z-axis with varying distance
between two poles. Distance between two mounting points, d
= 1000 mm. d is decreased gradually to observe the changes in
self-inductance.

Function 
Generator

Driver Board Transmitter 
Coil

Receiver 
Coil

Converter 
CircuitLoad

M12

L1 L2

Fig. 6 Block diagram of experimental setup example for the
saggy coils.
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Catenary saggy coil
With fixed z (1, 1)

Catenary saggy coil
With varied z

z (1, 0.2)

z (1, 0.3)

z (1, 0.4)
z (1, 1)

z (1, 0.9)

z (1, 0.8)

z (1, 0.7)

z (1, 0.6)

z (1, 0.5)

Saggy Square coil
z (1, 1)

Square coil, z (1, 1)

Fig. 7 A bar chart showing the comparison of self-inductance in simulation and measured in experimental setup for the saggy
coils and the square saggy coils.

setup for the saggy coils and the square saggy coils. The results
are divided into four main groups which are the catenary saggy
coil with fixed z, the catenary saggy coil with varied sz, and
the ideal square coil without saggy and saggy square coil.

There is a difference of 1.74% in self-inductance when taken
into a saggy coil with two fixed mounting points of 1 m distance
when a comparison is made between simulation and experi-
mental results (57.78 µH and 58.78 µH respectively). Tab. 2
shows the self-inductance decreased when dz is reduced grad-
ually. When dz is decreased from 1 m to 750 mm, L is 57.54
µH and dropped to 57.55 µH when dz is positioned at 500 mm
of distance. The mutual inductance M are 1.612 µH, 1.606 µH,
1.606 µH respectively.

In catenary saggy coils with varied z, only one mount-
ing point is fixed whilst the other is reduced gradually. At
(z1, z2) = (1, 1), L is measured at 38.26 µH. When z2 is at
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, the self-inductance indi-
cated as 47.41 µH, 43.53 µH, 41.55 µH, 40.30 µH, 39.46 µH,
38.90 µH, 38.54 µH and 38.33 µH respectively. The mutual
inductance, M are 1.323 µH, 1.214 µH, 1.159 µH, 1.126 µH,
1.104 µH, 1.085 µH, 1.076 µH and 1.071 µH respectively. In
square coil, the self-inductance is at 67.51 µH with M of 1.888
µH whilst the saggy square coil resulting in 84.68 µH with M
of 2.366 µH.

6 Conclusion

This paper investigated the impact of saggy winding on the
self-inductance and mutual inductance in inductive coupling
power transmission. The outcomes from the simulation and
experimental validations show the changes in self-inductance
when the saggy winding with the catenary concept is intro-
duced in the system. This is not only limited to the inductive
power transmission system but could potentially be imple-
mented for a much larger application with a similar concept. By
taking into consideration the saggy coil factor, the performance
of the inductive coupling system can be optimised. This could
be used to predict the reliability and stability of the system.
Future work will include the experimental setup of saggy coils
with the driven board to observe the power transfer efficiency
with the different geometrical shapes of the saggy coils.
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