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Abstra ct. T his paper addresses a serious problem in the practical 
implementation of (higher-order) equational unification in higher-order logical 
frameworks. Naive implementations of (higher-order) equational unification in 
which variables to be solved are directly represented by free logic variables 
leads to non-decidability. This paper solves this problem and develops a 
workable solution set. We propose an implementation of (higher-order) 
equational unification in a logic programming style using lambda prolog. We 
formally expose the implementation result in an abstract level, which looks 
similar to standard (higher-order) equational unification rules. The design of the 
formal exposition and the implementation is such that the mapping between 
them is transparent. This result gives concrete and uniform framework for 
(higher-order) equational unification. 

Keywo rds: Logic programming, decidability, (higher-order) equational 
unification. 

1   Intr oduction 

Equational unification algorithms have been developed in [5, 6, 8, 10]. The 
technique in these papers is to apply the transformation rules repeatedly until a trivial 
solution is reached. Consider solving an equational unification problem as a query 
submitted to a logic programming language. In a natural and clear way when we 
directly represent variables to be solved by free logic variables, non-decidability 
easily occurs. Free logic variables are infinitely instantiated in a loop by the 
application of the transformation rules. Consider solving the goal z + 0 =? succ(z) with 
the rules {x + 0 → x, x + succ(y) → succ(x + y)} where z is a free logic variable. 
Although the goal has no solution values, without any controlling strategy, z is subject 
to infinite instantiations, which leads to non-termination. In particular, z is substituted 
by the left-hand side values of the rewrite rules. Even worse than this, z is instantiated 
during the proof search by recursively defined subterm relation clauses. 

In our solution to this problem, we need to check free logic variable occurrences in 
goal formulas in order to rule out their infinite instantiations by using encoding terms. 
Suppose z1,..,zn are free logic variables in goal formulas and c1,..,cn are new arbitrary 
constants not available in the current signature. Assume that φ is a one to one 
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mapping from {z1,..,zn} to {c1,..,cn}, written as {zi → c i} (1 ≤ i ≤ n). For a given term 
s , t is the encoding of s  if and only if t = s φ, in other words  t is the resultant term after 
applying φ to s. We apply the transformation rules to s and its encoding t 
simultaneously for preserving the mapping at each step as s, t → …→ sn, tn such that 
tn is the encoding of sn. Consider the provability of s, t as the goals 

z + 0 =? succ(z), c1 + 0 =? succ(c1), 
z =? succ(z), c1 =

? succ(c1)  (by a paramodulation step with x + 0  → x). 

In trying to prove z =? succ(z), c1 =
? succ(c1), z is not instantiated by the left hand 

side values of the rewrite rules. Particularly, a paramodulation step is applied to z 
together with c1 and c1 fails to match any left hand side values. The step therefore 
fails. On the other hand, z is not instantiated during the proof searches by recursively 
defined subterm relation clauses. A proof search is applied to z together with c1 and it 
fails because c1 fails to match any term in subterm relation clauses. The proof 
searches which instantiate free logic variables vacuously are eliminated by using 
encoding terms and therefore the goal fails. The constants c1,..,cn are used as decision 
parameters to check the occurrences of free logic variables to achieve a decidable 
solution set. 

By using encoding terms, we organize the search for successful derivations, 
especially cutting infinite branches which do not yield solution. Although our 
methodology can be applicable to any equational unification strategy, in order to 
eliminate high non-determinism, we focus on the narrowing strategy and consider the 
paramodulation steps at non-variable positions. Since our transformations simulate 
narrowing derivations, properties such as completeness, soundness, decidability of 
our transformation system are same as the properties of narrowing. The completeness 
and soundness results are given for general case. In order to prove our arguments, we 
consider the termination for a special case. Termination of narrowing is guaranteed by 
imposing restrictions on rewrite rules [15] in which case our transformations are also 
terminating. All these results are given in the Appendix. The system can be uniformly 
extended to higher-order equational unification settings. Assuming higher-order 
unification1 as a meta-level rule, implementation of higher-order equational 
unification is as simple as that of first-order equational unification. We do not give the 
proof for higher-order cases. Because referring to the work in [17], it is same with 
first-order cases. After a brief introduction to our notation, we consider first-order 
equational unification in Section 2. We present unification as a set of transformation 
rules. We later extend the strategy with paramodulation step. We propose an 
implementation in λProlog. In Section 3, we extend the formulations for higher-order 
cases. Experiments are reported in the Appendix. 

Given two sets V of variables and F  of function symbols, the set of (first-order) 
terms   T(V, F) is the smallest set containing V such that f(t1,…,tn) is in T(V, F ) 
whenever f   F  and each ti  T(V, F ) for (1 ≤ i ≤ n). Each f  F  has an arity and f is 
called constant if f is a symbol of arity zero. Var (t) denotes the set of variables in t. A 
first-order term may be viewed as finite , ordered, labeled  tree, the leaves of which are 
labeled with variables and constants. A position within a term t may be represented as 
a sequence of positive integers describing the path from the root of t to the root of the 

                                                             
1 Restricted version of higher-order unification is considered. See [13] for background.  
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subterm at that position, denoted by t|p. A term u has an occurrence in t if u = t|p for 
some positions p in t. t[s]p is used to denote the term t with its subterm t|p replaced by 
s . A substitution is a mapping written as {x1 → t1,…., xn → tn} where xi ≠ ti for           
(1 ≤ i ≤ n). t σ denotes the term obtained after applying the substitution σ. 

2   Specifying F ir st-Or der  Equat ional Unificat ion 

2.1   Unification by Tr ansforma tions 

Definit ion 1 Let x equal x x be a binary predicate. Given any two terms s and t, the 
goal equal s t is solved with a most general unifier of s  and t if and only if there exists 
a unifier of s and t. Otherwise, the goal fails. 

We use new constants that are not in the signature as decision parameters. 

Definit ion 2 Let φ be a one to one substitution (mapping) from a set of free logic 
variables to a set of new constants (not in the signature). A term t is the encoding of a 
term s if and only if t = s φ. We may call t an encoding term and s an encoded term. 
We may also call the new constants encoding constants. 

E xample  1 Given the function symbols f, g  F , the new constants  c1, c2, free logic 
variables x and y, f(c1, g(c1, c2)) is  the encoding of f(x, g(x, y)) where                              
φ = {x → c1, y → c2}.■  

In the following, we use c to denote any encoding constant. The transformation 
rules are applied to encoded and encoding terms in the same equality goal. 

Definit ion 3 Let = =? be a 4-ary function symbol. It can be written in a notation            
s , s' = =? t, t'  where t'  and s'  are the encodings of t and s  respectively. s, s'  = =? t, t' is 
symmetric, in other words  s, s'  = =? t, t' implies  t, t' = =? s, s' . 

Definit ion 4 We denote an ordered list by [s1,…,sn]. The symbol [] is used for empty 
lists. We give the following operations on lists:  

 s1 :: [s2,…,sn, sn+1] = [s1,…, sn+1]. 
 [s1,…, sn] ∂ [t1,…, tn] = [s1,…, sn, t1,…, tn]. 
 L1 ∂ (t :: L2) = (L1 ∂ L2) U {t} for any ordered lists L1, L2 possibly empty. 

Unification problem can be denoted by λx1…λxn.[s1 =? t1,.., sn =? tn] where s i, ti           
(1 ≤ i ≤ n) are first-order terms. Let E be a set of equations. We may call [u1,.., un] a  
E-unifier  of λx1.λx2…. λxn.[s1 =

? t1,.., sn =
? tn] if si σ = E ti σ for all i (1 ≤  i ≤ n) where        

σ  = {x1 → u1,…., xn → un}. When E is empty, we may call it a unifier . 

Consider that Definition 2 can be extended for unification problems. For example, 
λx.[g(x, a ) =? g(a , c)] is the encoding of λx.[g(x, a) =? g(a , F )] where φ = {F  → c} (c 
is an encoding constant and F  is a free logic variable). Lists are used in an unordered 
fashion by the transformations. We use the notation L U {t} to denote that t is selected 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


arbitrarily. Unification by transformations is given in Definition 5. We use the 
following equality: ((λx.s) t)β = s {x → t}. 

The transformations in Definition 5 are applied to a 3-ary relation denoted by      
unif A1 A2 A3. A1 stands for an original unification problem. A2 stands for its encoding. 
A3 stands for a unifier. The symbol ↔ is used to denote an arbitrary transformation. 
For a closed unification problem M and a free logic variable S, when the goal          
unif M M S is satisfied, S is instantiated with a unifier. In overcoming any notational 
confusion in the definitions, it is assumed that predicates are satisfied from left to 
right in the expressions of conjunction. For instance, for the transformation step 4 in 
Definition 5, equal X Y is satisfied first and the resultant substitution is applied to the 
goal automatically by the meta-level system before further any transformation step on 
the goal begins. 

Definit ion 5 Let M denote any unification problem and M'  be the encoding of M. Let 
L denote any ordered list and a , f respectively denote any constant and function 
symbol. Given that X1, X1' , Y1, Y1' ,.., Xn, Xn' , Yn, Yn' are any terms, unification can be 
defined by the following transformations applied to a 3-ary relation unif. 

1. unif M M'  (Z1 :: Z2) iff unif (M Z1)
β (M'  c)β Z2 where Z1, Z2 are new free logic 

variables, c is a new arbitrary constant that is not in the signature. 

2. unif [X1 =
? Y1,.., Xn =? Yn] [X1' =

? Y1',.., Xn'  =
? Yn'  ] [] iff  

unif [] [X1, X1'  = =? Y1, Y1' ,.., Xn, Xn'  = =? Yn, Yn'  ] []. 

3. unif [] (L U {a , a = =? a , a}) [] iff unif [] L []. 

4. unif [] (L U {X1, c = =? Y1, Y1' }) [] iff equal X1 Y1 and unif [] L{c → Y1' } []. 

5. unif [] (L U {f(X1,.., Xn), f(X1',.., Xn' ) = =? f(Y1,.., Yn), f(Y1',.., Yn' )}) [] iff  
unif [] (L ∂ [X1, X1'  = =? Y1, Y1' ,.., Xn, Xn'  = =? Yn, Yn'  ]) []. 

6. unif [] [] [] iff Tr ue. 

E xample  2 Consider solving λx.λy.λz.[f(x, a) =? f(z, y)]. We use N in ↔N to denote the 
number of the transformation. When the goal 

unif λx.λy.λz.[f(x, a) =? f(z, y)] λx.λy.λz.[f(x, a) =? f(z, y)] S 

is satisfied, the free logic variable S is instantiated by [U3, a , U3]. 

unif λx.λy.λz.[f(x, a ) =? f(z, y)] λx.λy.λz.[f(x, a ) =? f(z, y)] S  ↔1, ↔1, ↔1  

unif [f(U1, a) =? f(U3, U2)] [f(c1, a ) =? f(c3, c2)] S1   ↔2 
where S is instantiated by (U1 :: (U2 :: (U3 :: S1))) (c1, c2, c3 are new constants and U1, 
U2, U3 , S1 are new free logic variables) 

unif [] [f(U1, a), f(c1, a) = =? f(U3, U2), f(c3, c2)]  []   ↔5 
where S1 is instantiated by []. 

unif [] [(U1, c1 = =? U3, c3), (a , a  = =? U2, c2)] []    ↔4 

unif [] [(a , a  = =? U2, c2)] []     ↔4 
where U1 is instantiated by U3. 

unif [] [] []       ↔6 
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where U2 is instantiated by a . 

True. ■  

In the definitions, constant and function symbols are treated differently for 
syntactic manners. In the following, the symbols a , f are used to denote any constant 
and function symbol respectively. The correctness and completeness of the 
transformations are given in the Appendix. 

2.2   Equational Unifica tion by Tra nsfor mations 

We focus on paramodulation steps at non-variable positions. By applying the 
inductive method in Definition 6, we can compute subterms at non-variable positions. 

Given a term T1 and its encoding T1' , for any non variable position p in T1, the goal 
sub  S T1 C S'  T1'  C'  (S, C, S' , C' are free logic variables) is satisfied where S, C, S' , C' 
are respectively instantiated with T1|p, λu .T1[u]p, T1' |p and λu.T1'[u]p and u has no 
occurrence in T1 and T1'. 

Definit ion 6 Let sub  be a 6-ary relation. It is inductively defined on all terms A, A' , 
X1… Xn, X1'…Xn' , D, D' as follows: 

 sub a  a  (λu.u) a  a  (λu.u). 

 sub (f X1…Xi…Xn) (f X1…Xi…Xn) (λu.u) (f X1'…Xi'…Xn') (f X1'…Xi' . …Xn') (λu.u). 

 sub A (f X1...Xi..Xn) (λu.(f X1..(D u) β..Xn)) A'  (f X1' .. Xi' ...Xn') (λu.(f X1'..(D' u) β..Xn')) 
iff sub  A Xi D A'  Xi' D' . 

Lemma 1 Let T1 be a first order term and T1'  be the encoding of T1. For any non 
variable position p  in T1, the goal sub S T1 C S'  T1'  C' (S, C, S' , C'  are free logic 
variables) is satisfied where S, C, S', C'  are respectively instantiated with T1|p,        
λu.T1[u]p, T1' |p and λu.T1'[u]p and u has no occurrence in T1 and T1'  (By using a trivial 
induction on the length of term tree, the proof can be done). 

Definit ion 7 A rewrite rule is denoted by λx1…λxn(s →R t) where s , t are first-order 
terms. 

In paramodulation steps, fresh variables of an equation (or rule) are used. For 
computing fresh variables, we apply the transformation below denoted by →Variant to a 
closed rewrite rule for replacing all bound variables with new free logic variables. For 
its encoding, we replace all bound variables with new constants. →Variant

* stands for 
iterative applications of the transformation →Variant until none is applicable. 

Definit ion 8 Let R denote any rewrite rule and R'  be the encoding of R. Let var ia nt be 
a binary relation and its inductive definition is as follows: 

 variant (R1 →R R2) (R1' →R R2' ) where R1'  →R R2'  is the encoding of R1 →R R2. 

 variant R R'  iff va riant (R Z)β (R'  c)β where Z is a new free logic variable, c is a 
new arbitrary constant that is not in the signature. 

We can adopt the narrowing strategy in which the witness pair unifies. For the 
witness pair list, we can use the equality form ≈ ≈? only the unification by 
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transformation steps is applicable. In Definition 9, term decomposition step is applied 
to the witness pair list as many as until none is applicable. We thereafter apply the 
variable elimination method given by the transformation step 8 in Definition 10: 

 
Definit ion 9 Let ≈ ≈? be a 4-ary function symbol. It can be written in a notation            
s , s' ≈ ≈? t, t'  where t'  and s' are the encodings of t and s  respectively. s, s'  ≈ ≈? t, t' is 
symmetric, in other words  s , s'  ≈ ≈? t, t' implies t, t'  ≈ ≈? s , s' . The symbol →Dec is 
used for the following transformations:  

 L U {a , a ≈ ≈? a , a} iff L. 

 L U {f(X1,..,Xn), f(X1' ,.., Xn'  ) ≈ ≈? f(Y1,.., Yn), f(Y1' ,.., Yn'  )} iff  
L ∂ [X1, X1'  ≈ ≈? Y1, Y1' ,.., Xn, Xn'  ≈ ≈? Yn, Yn' ]. 

→Dec
* stands for iterative applications of the transformation →Dec until none is 

applicable. 

Definit ion 10 Equationa l unification can be defined by adding the two more to the 
transformations in Definition 5: 

7. unif [] (L U {A, A' = =? B, B'}) [] iff  
sub D A C D' A' C'  (D, C, D' , C'  are free logic variables) and  
variant R R →Variant

* variant (U →R N) (U' →R N' )  for a closed rewrite rule R and  
[D, D'  ≈ ≈? U, U' ] →Dec

* L1 and  
unif [] (((C N)β, (C' N')β = =? B, B') :: (L1∂ L)) []. 

8. unif [] (L U {X1, c ≈ ≈? Y1, Y1' }) [] iff equal X1 Y1 and unif [] L{c  → Y1'} []. 

E xample  3 Given E = {λx(f(x) →R g(x))} , when the goal 

unif λy.λx.[f(y) =? g(x)] λy.λx.[f(y) =? g(x)] S 

is satisfied, the free logic variable S is instantiated by [U2, U2]. 

unif λy.λx.[f(y) =? g(x)] λy.λx.[f(y) =? g(x)] S    ↔1, ↔1 

unif [f(U1) =
? g(U2)] [f(c1) =

? g(c2)] S1    ↔2  
where the free logic variable S is instantiated by (U1 :: (U2 :: S1)) (c1, c2 are new 
constants and U1, U2, S1 are new free logic variables) 

unif [] [f(U1), f(c1) = =? g(U2),  g(c2)] []     ↔7 
where S1 is instantiated by []. 

unif [] [(U1, c1 ≈ ≈? U3, c3), (g(U3), g(c3) = =? g(U2), g(c2))] []  ↔8 
where variant (f(U3) →R g(U3)) (f(c3) →R g(c3)) holds for c3 being a new constant and 
U3 being a new free logic variable. 

equal U1 U3 and unif [] [g(U3), g(c3) = =? g(U2), g(c2)] {c1 → c3} [] 

unif [] [g(U3), g(c3) = =? g(U2), g(c2)] []    ↔5 
where U1 is instantiated by U3 by the proof of equa l U1 U3. 

unif [] [U3, c3 = =? U2, c2] []      ↔4 

unif [] [] []       ↔6 
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where U3 is instantiated by U2. 

True. ■  

The correctness, completeness and termination results of the equational unification 
transformations are given in the Appendix. 

2.3   Imp le mentation 

We present the concrete implementation of the equational unification in λProlog 
[14]. Before our formulation, we give a brief introduction to the language. In addition 
to the logical connectives ,  ,  in goal formulas as used in classical logic 
programming, implicational and universal goals are also supported. To prove an 
implication    B  C, assume B as an hypothesis and attempt to prove C. Similarly, to 
prove a universal quantifier x.B prove a generic instance B{x → c} where c  is a 
constant that is not in the current signature. The comma (,), semicolon (;), and arrow 
() represent conjunction, disjunction and implication respectively while :- denotes 
the converse of implication. λx.e  is written as x \ e. The symbol pi represents 
universal quantification. The symbols nil and :: denote the empty list and the list 
constructor respectively. Types are assigned to terms. The expression type s  denotes 
that s  is a term of type . A list whose elements are of type  is given the type list . 
An atomic formula is a term of type o . λProlog makes use of curr ied syntax: A term 
of the form f(t, s) can be written as (f t s). We assume universal closure over all 
variables written as tokens with an upper case initial letter. 

Impleme nting Unifica tion by Tra nsfor mations 

type some  (  list )  list . 
type all (  )  . 
type eq      . 
type eqq          . 
type eqq_          . 
type rule     . 

type m_a_r   list   list   o. 
type append   list   list   list   o. 
type eqtoeqq list   list   list   o. 

m_a_r X (X :: L) L. 
m_a_r X (Y :: K) (Y :: L) :- m_a_r X K L. 

eqtoeqq nil nil nil. 
eqtoeqq ((eq X1 Y1) :: L1) ((eq X2 Y2) :: L2)  
        ((eqq X1 X2 Y1 Y2)::L3) :- eqtoeqq L1 L2 L3. 

append nil K K. 
append (X :: XS) YS (X :: ZS) :- append XS YS ZS. 

some and all are used to represent the outmost λ-bound variables in unification 
problems and rewrite rules respectively. We have eq , eqq, eqq_ and rule in places of 
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=?, = =?, ≈ ≈? and →R respectively. We may select an element t form a list as L U {t} 
(see Definition 4) by executing m_a_r  in a non-deterministic way. eqtoeqq clause is 
used for the transformation step 2 in Definition 5 and append  for list concatenation. 
We execute the object-level substitution L {c  → Y1'} (see the transformation step 4 in 
Definition 5) by using cp  and subst clauses. 

type a   . 
type f, h    . 
type g       . 
type cp      list   o. 
type subst   list   list   list   o. 

cp X X U :- m_a_r X U _. 
cp a a _. 
cp (f X1)(f Y1) U :- cp X1 Y1 U. 
cp (h X1)(h Y1) U :- cp X1 Y1 U. 
cp (g X1 X2) (g Y1 Y2) U :- cp X1 Y1 U, cp X2 Y2 U. 

subst nil nil _. 
subst ((eqq X1 X2 X3 X4) :: L1)((eqq X1 Y2 X3 Y4) :: L2) U :-  
                       cp X2 Y2 U, cp X4 Y4 U, subst L1 L2 U. 

The notation _ is used in λProlog for logic variables appearing once in formulas. 
Function symbols a , h, f, g  are used as a  represents constants, f and h represent 1-ary 
functions, g represents 2-ary functions. The scope can be extended to n-ary functions 
in a similar way.  

type unf  list   list   list   list   o. 

unf (some X) (some Y) (Z::S) U :-  
                pi c\(unf (X Z) (Y c) S (c::U)). 
unf (X1::L1) (X2::L2) nil U :-   
                eqtoeqq (X1::L1) (X2::L2) L3, unf nil L3 nil U. 
unf nil L nil U :- m_a_r (eqq a a a a) L L1, unf nil L1 nil U. 
unf nil L nil U :- m_a_r (eqq (f X1) (f X2) (f X3) (f X4)) L L1, 

         unf nil ((eqq X1 X2 X3 X4)::L1) nil U. 
unf nil L nil U :- m_a_r (eqq (h X1) (h X2) (h X3) (h X4)) L L1, 

         unf nil ((eqq X1 X2 X3 X4)::L1) nil U. 
unf nil L nil U :-  
m_a_r (eqq (g X11 X12) (g X21 X22)  
           (g X31 X32) (g X41 X42)) L L1, 
unf nil ((eqq X11 X21 X31 X41):: 
         (eqq X12 X22 X32 X42)::L1) nil U. 
unf nil L nil U :- (m_a_r (eqq X X1 X Y1) L L1;  
                    m_a_r (eqq X Y1 X X1) L L1), m_a_r X1 U U1, 
((cp X1 Y1 _) => subst L1 L2 U1), unf nil L2 nil U. 

unf nil nil nil _. 

Referring to Definition 5, unify relation is given as a 3-ary symbol. The first 
argument is used for an original unification problem. The second argument is used for 
its encoding. The third is used for a unifier. Technically, we need to check 
occurrences of encoding constants (see Definition 2) in order to apply the variable 
elimination method (see the transformation step 4 in Definition 5). As the fourth 
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argument in unf clause (unf stands for unify), a list whose elements are encoding 
constants is used. We can check any encoding term if i t is an encoding constant by 
checking if it is in the list. Referring to the transformation step 4 in Definition 5, we 
can apply the substitution L {c  → Y1'} by the goal (cp c  Y1'  _ )   subst L L' U such 
that when it is proved, the free logic variable L' is instantiated by L {c → Y1'} given 
that U is a list of encoding constants not including c. The clause cp X X U :- m_a_r X 
U _  is used for copying encoding constants other than c . 

Impleme nting Equa tiona l Unification by Tra nsfor mations 

For function symbols a , h, f, g , sub relation in Definition 6 can be given as follows: 

type sub     (  )      (  )  o. 

sub a a (c\c) a a (c\c). 
sub (f X1) (f X1) (c\c) (f X2) (f X2) (c\c). 
sub (h X1) (h X1) (c\c) (h X2) (h X2) (c\c). 
sub (g X1 X2) (g X1 X2) (c\c) (g Y1 Y2) (g Y1 Y2) (c\c). 
sub S1 (f X1) (c\(f (X2 c))) S2 (f Y1) (c\(f (Y2 c))) :-  
                      sub S1 X1 X2 S2 Y1 Y2. 
sub S1 (h X1) (c\(h (X2 c))) S2 (h Y1) (c\(h (Y2 c))) :-  
                      sub S1 X1 X2 S2 Y1 Y2. 
sub S1 (g X1 X2) (c\(g (X3 c) X2))  
    S2 (g Y1 Y2) (c\(g (Y3 c) Y2)) :- sub S1 X1 X3 S2 Y1 Y3. 
sub S1 (g X1 X2) (c\(g X1 (X3 c)))  
    S2 (g Y1 Y2) (c\(g Y1 (Y3 c))) :- sub S1 X2 X3 S2 Y2 Y3. 

r wt is used to represent rewrite rules. E contains only the rule λx f(x) →R h(x). 

type rwt   o. 
rwt (all x\rule (f x) (h x)). 

type dec                list   list   list   o. 

dec (A::L1) L3 U :- m_a_r (eqq a a a a) (A::L1) L2, dec L2 L3 U. 
dec (A::L1) L3 U :-  
   m_a_r (eqq (f X1) (f X2) (f X3) (f X4)) (A::L1) L2,  
   dec ((eqq X1 X2 X3 X4)::L2) L3 U. 
dec (A::L1) L3 U :-  
   m_a_r (eqq (h X1) (h X2) (h X3) (h X4)) (A::L1) L2,  
   dec ((eqq X1 X2 X3 X4)::L2) L3 U. 
dec (A::L1) L3 U:-  
   m_a_r (eqq (g X11 X12) (g X21 X22)  
              (g X31 X32) (g X41 X42)) (A::L1) L2, 
   dec ((eqq X11 X21 X31 X41)::(eqq X12 X22 X32 X42)::L2) L3 U. 
dec ((eqq X1 X2 Y1 Y2)::L1) ((eqq_ X1 X2 Y1 Y2)::L2) U :-  
   (m_a_r X2 U _ ; m_a_r Y2 U _), dec L1 L2 U. 
dec nil nil _. 

We apply the term decomposition relation →Dec
* in paramodulation steps by 

executing dec. We apply as many decomposition transformations as possible. As the 
third argument, we use a list of encoding constants to check their occurrences in 
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equalities by using m_a_r clause. After we extend the subst clause to deal with the 
equalities eqq_  in object-level substitutions, we give the paramodulation step. 

subst ((eqq_ X1 X2 X3 X4) :: L1)((eqq_ X1 Y2 X3 Y4):: L2) U :-  
                          cp X2 Y2 U, cp X4 Y4 U, subst L1 L2 U. 

type variant list       list   o. 

variant L (rule X1 Y1) (rule X2 Y2) U :-  
(m_a_r (eqq A1 A2 B1 B2) L L1 ; m_a_r (eqq B1 B2 A1 A2) L L1), 

sub D1 A1 C1 D2 A2 C2, 
dec ((eqq D1 D2 X1 X2) :: nil) L2 U, 
append L1 L2 L3, 
unf nil ((eqq (C1 Y1) (C2 Y2) B1 B2) :: L3) nil U. 

variant L (all X1) (all Y1) U :-  
                   pi c\(variant L (X1 Z) (Y1 c) (c::U)). 

unf nil L nil U :- rwt R, variant L R R U. 
unf nil L nil U :-  
     (m_a_r (eqq_ X X1 X Y1) L L1; m_a_r (eqq_ X Y1 X X1) L L1),  
      m_a_r X1 U U1, ((cp X1 Y1 _) => subst L1 L2 U1),  
      unf nil L2 nil U. 

3   Specifying Higher-Or der  Equational Unification 

3.1   Patter n Unifica tion by Tra nsfor mations 

Unification problem is denoted by λx1…λxn.[s1 =
? t1,.., sn =? tn] where each s i, ti      

(1 ≤ i ≤ n) are patterns2. 

Definit ion 11 Patter n unification can be defined by adding the four more to the 
transformations in Definition 5. 

9. unif M M'  (Z1 :: Z2) iff unif (M Z1)
β (M'  (λc0... λcn-1.cn))β Z2 

where Z1, Z2 are new free logic variables of a suitable type, for M'  of the type  
(0 → …→ n) →  (1 ≤  n), c0, c1..., cn are new arbitrary constants not in the  
signature, and ci of the type i, i  {0, 1,..,n}. 

10. unif [] (L U {N, N' = =? K, K' }) [] iff  
unif [] (((N b)β, (N'  b) β = =? (K b)β, (K' b) β) :: L) [] 

where b is a new arbitrary function (or constant) of a suitable type. 

11.unif [] (L U {op X1…Xn, op  X1'…Xn' = =? op Y1…Yn, op  Y1'…Yn'}) [] iff  
unif [] L ∂ [X1, X1'  = =? Y1, Y1' ,.., Xn, Xn'  = =? Yn, Yn'  ] []. 

12.unif [] (L U {b , b = =? b, b}) [] iff unif [] L []. 

                                                             
2 See [13] for the definiton and unification of patterns. 
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For pattern unification, we extend the transformation system given in Definition 5. 
The transformations that are given in Definition 11 are used for dealing with bound 
variables. We use any n-ary operator symbol op (including application) for bound 
variables. E β represents the -normal form of E. 

E xample  4 Consider the solution of λF .λG [λx.λy.F  x =? λx.λy.f (G y x)]. When the 
goal unif λF .λG [λx.λy.F  x =? λx.λy.f (G y x)] λF .λG [λx.λy.F  x =? λx.λy.f (G y x)] S is 
proved, the free logic variable S is instantiated by [λb1.f(U3 b1), λb2.λb1.U3 b1] (U3 is a 
new free logic variable). 

unif λF .λG [λx.λy.F  x =? λx.λy.f (G y x)] λF .λG [λx.λy.F  x =? λx.λy.f (G y x)] S  ↔9,↔9 

unif  [λx.λy.U1 x =? λx.λy.f(U2 y x)] 
         [λx.λy.((λc0.c1) x)β =? λx.λy.f((λc2.λc3.c4) y x)β] S1                           (-conversion) 
where S is instantiated by (U1 :: (U2 :: S1)) (c0, c1, c2, c3, c4 are new arbitrary constants 
(or function symbols) and U1, U2, S1 are new free logic variables) 

unif [λx.λy.U1 x =? λx.λy.f(U2 y x)] [λx.λy.c1 =
? λx.λy.f(c4)] S1                                    ↔2 

unif [] [λx.λy.U1 x, λx.λy.c1 = =? λx.λy.f(U2 y x), λx.λy.f(c4)] []           ↔10, ↔10  
where S1 is instantiated by []. 

unif [] [(U1 b1), c1 = =? f(U2 b2 b1), f(c4)] []          ↔4 
where b1, b2 are new arbitrary function symbols (or constants). 

equal (U1 b1)  f(U2 b2 b1) and unif [] [] []                   (Pruning and Flexible-Rigid step) 

unif [] [] []             ↔6 
where U2 with λb2.λb1.U3 b1 and U1 with λb1.f(U3 b1) are substituted by the proof of 
equal (U1 b1)  f(U2 b2 b1) (U3 is a new free logic variable). 

True. ■  

3.2   Imp le menting Pa tter n Unification by Tra nsformations 

The capital letter A is used in type declarations for higher-order cases. We use the 
function symbol fv of type A   to enclose free logic variables in a unifier for 
convenience that the unifier can contain not only first-order terms but also higher-
order terms. abst is used to represent bound variables. The predicate bv for enclosing 
bound variables is used as an hypothesis during proof searches. some1 and some2 are 
used to represent solution variables of types    and      respectively. We 
use the operator symbol app for bound variables taking one argument. The scope can 
be extended to n-ary operator symbols and n-ary solution variables in a similar way. 

type fv A  . 
type bv   o. 
type abst (  )  . 
type app      . 
type some1  ((  )  list )  list . 
type some2  ((    )  list )  list . 
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We extend cp  and unf clauses (see Section 2.3) to deal with bound variables and 
abstractions. 

cp X X _:- bv X. 
cp (app X Y1)(app X Y2) U:- cp Y1 Y2 U. 
cp (abst X1)(abst Y1) U :- pi c\cp c c _ => cp (X1 c) (Y1 c) U. 

unf (some1 X) (some1 Y) ((fv Z)::S) U :-  
              pi c\(unf (X Z) (Y c1\c) S (c::U)). 
unf (some2 X) (some2 Y) ((fv Z)::S) U :-  
              pi c\(unf (X Z) (Y c1\c2\c) S (c::U)). 
unf nil L nil U :- m_a_r (eqq X X X X) L L1,  
                   bv X, unf nil L1 nil U. 
unf nil L nil U :-  
   m_a_r (eqq (app X Y1) (app X Y2) (app X Y3) (app X Y4)) L L1, 
   unf nil ((eqq Y1 Y2 Y3 Y4)::L1) nil U. 
unf nil L nil U :-  
   m_a_r (eqq (abst X1) (abst X2) (abst X3) (abst X4)) L L1,   
   pi c\bv c =>  
       (unf nil ((eqq (X1 c) (X2 c) (X3 c) (X4 c)) ::L1) nil U). 

3.3   Highe r-Order Equationa l Unification by Tr ansforma tions 

We consider the unification of patterns in the presence of a first-order equational 
theory. 

Definit ion 12 We add the two more to sub  relation given in Definition 6 to deal with 
bound variables and abstractions. 

 sub A B (λc.λx.(D x c) β) A'  B'  (λc.λx.(D' x c) β) iff  
sub (A x) β (B x) β (D x) β (A' x) β (B' x) β (D' x) β 

where x is an arbitrary variable not free in A, B, A' , B', λx.(D x) β, λx.(D' x) β. 

 sub A (op X1…Xn) (λc.(op X1..(D c)β..Xn))  
           A'  (op X1'…Xn'  ) (λc .(op X1' ..(D'  c) β.. Xn'  )) iff sub A Xi D A'  Xi'  D' . 

Definit ion 13 We add one rule to →Dec relation given in Definition 9 to deal with 
abstractions:  

 L U {A, A' ≈ ≈?G, G'} iff L ∂ [(A b) β, (A' b) β ≈ ≈? (G b) β, (G' b) β]. 
where  b is a new arbitrary function symbol (or constant) of a suitable type. 

Definit ion 14  Let lifting be a binary relation. y1.. yn-lifting of a 

variant (R1 →R R2) (R1' →R R2' ) 

is of the forms  

 lifting (λy1..λyn.R1 →R λy1..λyn.R2) (λy1..λyn.R1'  →R λy1..λyn.R2')    (for n  ≥  0) 
    where  = {F  → (F  y1..yn) | F  is any free logic variable  of R1 or R2}, 

 lifting (R1 →R R2) (R1'  →R R2'  )                                                         (for n  = 0) 
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Definit ion 15 We update the transformation step 7 given in Definition 10 to deal with 
bound variables. 

unif [] (L U {A, A' = =? B, B' }) [] iff  
sub D A C D' A' C'  (D, C, D' , C'  are free logic variables) and  
variant R R →Variant

* variant (R1 →R R2) (R1'  →R R2'  ) for a closed rule R and  
lifting (U →R N) (U' →R N' ) is y1.. yn-lifting  of variant (R1 →R R2) (R1'  →R R2'  )   
for D = λy1..λyn.f(s1,…,sm) or λy1..λyn.a  (n  0)  and 
[D, D'  ≈ ≈? U, U' ] →Dec

* L1  and  
sub N H C N' H'  C'   and 
unif [] ((H, H'  = =? B, B' ) :: (L1∂ L)) []. 

3.4   Imp le menting Higher-or der  Equa tional Unifica tion by Tra nsfor mations 

We present the formulation of lifting as the following clauses. 

type lift                      list   o. 
type lift1               list   o.  
type last_and_rest     list   list   o. 
type apply           A    list   o. 

last_and_rest A (A::nil) nil. 
last_and_rest A (B::L1) (B::L2) :- last_and_rest A L1 L2. 

apply A A nil. 
apply A B L1 :- last_and_rest X L1 L2, apply (A X) B L2. 

lift1 (fv X1) X2 U  :- apply X1 X2 U. 
lift1 a a _. 
lift1 (g X1 X2) (g Y1 Y2) U :- lift1 X1 Y1 U,lift1 X2 Y2 U. 
lift1 (h X1) (h X2) U  :- lift1 X1 X2 U. 
lift1 (f X1) (f X2) U  :- lift1 X1 X2 U. 

lift A (rule X1 Y1) (rule X2 Y2)(rule X11 Y11) (rule X2 Y2) U :-  
          (A = a;A = (f _);A = (h _);A = (g _ _)), 
           lift1 X1 X11 U, lift1 Y1 Y11 U. 
lift (abst A) R1 R2 (rule (abst X1)(abst Y1))  
                    (rule (abst X2)(abst Y2)) U :- pi c\( 
lift (A c) R1 R2 (rule (X1 c)(Y1 c))(rule(X2 c)(Y2 c)) (c::U)). 

We extend the sub and dec clauses in accordance with Definition 12 and      
Definition 13. 

sub S1 (app X1 X2) (c\(app X1 (X3 c))) 
  S2 (app Y1 Y2) (c\(app Y1 (Y3 c))) :-sub S1 X2 X3 S2 Y2 Y3. 

sub (abst S1) (abst X1) (c\(abst x\(D1 x c))) 
    (abst S2) (abst X2) (c\(abst x\(D2 x c))) :-  

 pi c\(sub (S1 c) (X1 c) (D1 c) (S2 c) (X2 c) (D2 c)). 

dec (A::L1) L3 U :-  
 m_a_r (eqq (abst X1) (abst X2) (abst X3) (abst X4)) (A::L1) L2,  

pi c\dec ((eqq (X1 c) (X2 c) (X3 c) (X4 c))::L2) L3 U. 
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We update the paramodulation step given in Section 2.3 in accordance with 
Definition 15. 

variant L (rule X1 Y1) (rule X2 Y2) U :-  
  (m_a_r (eqq A1 A2 B1 B2) L L1 ;m_a_r (eqq B1 B2 A1 A2) L L1), 

 sub D1 A1 C1 D2 A2 C2, 
   lift D2 (rule X1 Y1)(rule X2 Y2) 
           (rule XX1 YY1)(rule XX2 YY2) nil,  
   dec ((eqq D1 D2 XX1 XX2) :: nil) L2 U, append L1 L2 L3, 
   sub YY1 AA1 C1 YY2 AA2 C2,   
   unf nil ((eqq AA1 AA2 B1 B2) :: L3) nil U. 
variant L (all X1) (all Y1) U :-  
          pi c\(variant L (X1 (fv Z)) (Y1 c) (c::U)). 

4   Conclusion 

Unification problems in the literature have been considered for syntactic  and 
semantic manners. As far as generality is concerned, the both issue should be treated 
in a uniform framework [5, 10]. In this work, we consider a framework unifying the 
two approaches in which the management of semantic and syntactic variables is 
precisely made and propose a practical way for solving (higher-order) equational 
unification problems in higher-order logical frameworks. This eases our 
understanding of (higher-order) equational unification as much as it gives clearance in 
practical issues. Similar approach has been used in [1, 4, 9]. But our wok is generic, 
uniform and easy to understand. Since we tackle the problem directly, it can be 
verified easily and side effects are avoided. Moreover it is easily extended to higher-
order settings in which case pattern unification is considered as a meta-level rule. 
Finally this work enhances functional logic paradigms and illustrates how λ-terms 
embedded in logic programming improve the meta-programming capabilities.    

Acknowledges 

The author thanks to referees for helpful comments on previous drafts. 

Refer ences 

1. S.Antoy, M.Hanus, B.Massey, Frank Steiner. An implementation of narrowing strategies. 
Third International Conference on Principles and Practice of Declarative P rogramming 
PPDP’01, Firenze, Italy, Sept, 2001, pages 207-217. 

2. M.S.Aygün. Implementation of Higher-Order Narrowing in a High-Level Meta-Level 
System, Boğaziçi University, 1998. 

3. M.S.Aygün. A Logic Programming Approach to Implementing Higher-Order Narrowing. 
LFM P roceedings, 1999. 

4. P.H. Cheong and L.Fribourg. Implementation of na rrowing: The Prolog-based approach. In 
K.R. Apt, J.W.de Bakker, and J.J.M.M. Rutten, editors, Logic programming languages: 
constraints, functions, and objects, The MIT Press, 1993, 1-20. 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


5. H.Common, C. Kirchener. Constraint Solving on Terms. H.Common, C.Marche, and 
R.Treinen (Eds.): CCL’99, LNCS 2002, pp.47-103, 2001. 

6. D.J. Dougherty and P.Johann. An Improved General E-Unification Method. In 10th 
International Conference on Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990. 

7. A. Felty. A Logic Programming Approach to Implementing Higher-Order Term Rewriting. 
Proceedings of the 1991 International Workshop on Extensions of Logic Programming, 
Lars-Henrik Eriksson, Lars Hallnas, and Peter Schroeder-Heister, editors, Springer-verlag 
Lecture Notes in Artificial Intelligence, 1992. 

8. J.H.Gallier and W.Snyder. Complete Sets of T ransformations for General E-Unification. In 
TCS 67:2,3, pp.203-260, 1989. 

9. M.Hanus. T he integration of Functions into Logic Programming: From Theory to Practice. 
The J.Logic programming 1994:19,20:583-628. 

10. J.P.Jouannaud and Claude Kirchner. Solving Equations in Abstract Algebras: a Rule-Based 
Survey of Unification. Computational Logic. Essay in honor of Alan Robinson. The MIT 
Press, pages 257-321, Cambridge, 1991. 

11. C. Liang. Free Variables and Subexpressions in Higher-Order Meta Logic. In Theorem 
Proving in Higher Order Logics, 11th International Conference, Springer-Verlag LNCS 
Vol.1479. September 1998. 

12. D.Miller. Unification of Simply Typed Lambda-Terms as Logic Programming. In the 
Proceedings of the 1991 International Conference on Logic Programming, edited by Koichi 
Furukawa, June 1991. 

13. D.Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables, 
and Simple Unification. Journal of Logic and Computation, Vol. 1, No. 4, 1991. 

14. D.Miller. λProlog: An Introduction to the Language and its Logic, 1996. 
15. C. Prehofer. On Modularity in Term Rewriting and Narrowing. P roceedings of the First 

International Conference on Constraints in Computational Logics, volume 845 of Lecture 
Notes in Computer Science, Springer-Verlag, pages 253-268, Berlin, 1994. 

16. C. P rehofer. Higher-Order Narrowing. Proceedings of the ninth Annual IEEE Symposium 
on Logic in Computer Science, pp.507-516. 

17. Z.Qian. Higher-Order Equational Logic Programming. Appeared in the Proceedings of the 
21 st Annual ACM SIGPLAN-SIGACT  Symposium on Principles of P rogramming 
Languages. 

18. N.Tobias, Z.Qian. Modular Higher-Order E-unification. Proceedings of the 4 th International 
Conference, RT A-91, pp.200-214, Springer-Verlag. 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


A Appendix: Exper imental Repor ts 

E xample  5  When the query  

unf (some z\some x\some y\eq (g x (g z x)) (g a y)::nil) 
                                  (some z\some x\some y\eq (g x (g z x)) (g a  y)::nil) L nil  

is solved, the free logic variable L is substituted by the list Z :: a :: g Z a :: nil (Z is 
a new free logic variable). 

E xample  6  When the query 

unf (some x\some y\(eq  (g a  (f x)) (g a  (h y)))::nil) 
                                     (some  x\some y\(eq (g a  (f x)) (g  a  (h y)))::nil) L nil 

is solved, L is substituted by the list Z :: Z :: nil (Z is a new free logic variable). E 
contains the rule rwt (all x\rule (f x) (h x)). 

E xample  7  The goal in Example 4 can be given by the query  

unf (some1 x\some2 y\eq (abst b\(abst a \(x b))) (abst b\(abst a \f(y a  b)))::nil) 
  (some1  x\some2 y\eq (abst b\(abst a \(x b))) (abst b\(abst a \f(y a  b)))::nil) L nil. 

When the query is solved, L is substituted by the list 

(fv c1\ f (S c1)) :: (fv c2\ c3\ S c3) :: nil  

where S is a new free logic variable. 

E xample  8  When the query  

unf (some2 x\some2 y\eq (abst b\(app  b  (abst a\(f (x b  a ))))) 
                                           (abst b\(app b (abst a \(h  (y a  b)))))::nil) 
       (some2  x\some2 y\eq  (abst b\(app b (abst a \(f (x b a)))))  
                                           (abst b\(app b (abst a \(h  (y a  b)))))::nil) L nil. 

is solved, L is substituted by the list 

(fv c1\ c2\ S c2 c1) :: (fv c1\ c2\ S c1 c2) :: nil 

where S is a new free logic variable. E contains the rule 

rwt (all x\rule (f x) (h x)). 
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B Appendix: Completeness, Soundness and Ter minat ion Results of 
the Equa tional Unification Tr ansfor mation  for  Fir st-Or der  
Unification Pr oblems 

T heore m 1 (Soundness) Let E be an empty set. For a closed unification problem M 
and a free logic variable S, when the goal unif M M S is satisfied where S is 
instantiated by a list L, then L is a unifier of M. 

P roof:  
The transformations in Definition 5 are same as the transformations presented for the 
standard unification transformations in [8]. So it can be trivially shown that a list 
returned by the query is a unifier. ■  

T heore m 2 (Completeness) Let E be an empty set. If L'  is a unifier of a closed 
unification problem M, then the goal unif M M S is satisfied where S is instantiated by 
a list L and L σ = L'  for some substitution σ. 

P roof:  
The proof can be trivially made since each transformation step 4 in Definition 5 
produces a solved form3. ■ 

T heore m 3  (Soundness) Let E be a set of equations. For a closed unification problem 
M and a free logic variable S, when the goal unif M M S is satisfied where S is 
instantiated by a list L, then L is a E-unifier of M. 

P roof:  
Based on the results in [8], the proof can be done trivially. ■ 

T heore m 4 (Completeness) Let E be a set of equations so that →E is confluent and 
terminating. If L' is a unifier of a closed unification problem M, then the goal          
unif M M S is satisfied where S is instantiated by a list L and L σ =E L'  for some 
substitution σ . 

P roof:  
Following the completeness of narrowing in [9], the proof can be done trivially 
because the equational unification transformations mimic narrowing derivations. ■ 

T heore m 5  Let R be a convergent rewrite system in which every left hand side is of 
the form f(t1,…,tn) such that each ti is either a variable or ground term. The equational 
unification transformations are terminating. 

P roof:  
The proof can be done trivially because the equational unification transformations 
mimic rewriting derivations under this case. ■ 

 

                                                             
3 See [8] for the definition of solved form. 
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