
EasyChair Preprint
№ 15677

(Higher -Order) Equational Unification as Logic
Programming

Murat Si̇nan Aygün

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 6, 2025

(Higher -Order) Equational Unification as Logic
Progr amming

Murat Sinan Aygün1

1 Kültür Sitesi, C Blok, Kat 3, Daire 7,
Kükürtlü, Bursa, Turkey

sinan_aygun@yahoo.com

Abstra ct. T his paper addresses a serious problem in the practical
implementation of (higher-order) equational unification in higher-order logical
frameworks. Naive implementations of (higher-order) equational unification in
which variables to be solved are directly represented by free logic variables
leads to non-decidability. This paper solves this problem and develops a
workable solution set. We propose an implementation of (higher-order)
equational unification in a logic programming style using lambda prolog. We
formally expose the implementation result in an abstract level, which looks
similar to standard (higher-order) equational unification rules. The design of the
formal exposition and the implementation is such that the mapping between
them is transparent. This result gives concrete and uniform framework for
(higher-order) equational unification.

Keywo rds: Logic programming, decidability, (higher-order) equational
unification.

1 Intr oduction

Equational unification algorithms have been developed in [5, 6, 8, 10]. The
technique in these papers is to apply the transformation rules repeatedly until a trivial
solution is reached. Consider solving an equational unification problem as a query
submitted to a logic programming language. In a natural and clear way when we
directly represent variables to be solved by free logic variables, non-decidability
easily occurs. Free logic variables are infinitely instantiated in a loop by the
application of the transformation rules. Consider solving the goal z + 0 =? succ(z) with
the rules {x + 0 → x, x + succ(y) → succ(x + y)} where z is a free logic variable.
Although the goal has no solution values, without any controlling strategy, z is subject
to infinite instantiations, which leads to non-termination. In particular, z is substituted
by the left-hand side values of the rewrite rules. Even worse than this, z is instantiated
during the proof search by recursively defined subterm relation clauses.

In our solution to this problem, we need to check free logic variable occurrences in
goal formulas in order to rule out their infinite instantiations by using encoding terms.
Suppose z1,..,zn are free logic variables in goal formulas and c1,..,cn are new arbitrary
constants not available in the current signature. Assume that φ is a one to one

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

mapping from {z1,..,zn} to {c1,..,cn}, written as {zi → c i} (1 ≤ i ≤ n). For a given term
s , t is the encoding of s if and only if t = s φ, in other words t is the resultant term after
applying φ to s. We apply the transformation rules to s and its encoding t
simultaneously for preserving the mapping at each step as s, t → …→ sn, tn such that
tn is the encoding of sn. Consider the provability of s, t as the goals

z + 0 =? succ(z), c1 + 0 =? succ(c1),
z =? succ(z), c1 =

? succ(c1) (by a paramodulation step with x + 0 → x).

In trying to prove z =? succ(z), c1 =
? succ(c1), z is not instantiated by the left hand

side values of the rewrite rules. Particularly, a paramodulation step is applied to z
together with c1 and c1 fails to match any left hand side values. The step therefore
fails. On the other hand, z is not instantiated during the proof searches by recursively
defined subterm relation clauses. A proof search is applied to z together with c1 and it
fails because c1 fails to match any term in subterm relation clauses. The proof
searches which instantiate free logic variables vacuously are eliminated by using
encoding terms and therefore the goal fails. The constants c1,..,cn are used as decision
parameters to check the occurrences of free logic variables to achieve a decidable
solution set.

By using encoding terms, we organize the search for successful derivations,
especially cutting infinite branches which do not yield solution. Although our
methodology can be applicable to any equational unification strategy, in order to
eliminate high non-determinism, we focus on the narrowing strategy and consider the
paramodulation steps at non-variable positions. Since our transformations simulate
narrowing derivations, properties such as completeness, soundness, decidability of
our transformation system are same as the properties of narrowing. The completeness
and soundness results are given for general case. In order to prove our arguments, we
consider the termination for a special case. Termination of narrowing is guaranteed by
imposing restrictions on rewrite rules [15] in which case our transformations are also
terminating. All these results are given in the Appendix. The system can be uniformly
extended to higher-order equational unification settings. Assuming higher-order
unification1 as a meta-level rule, implementation of higher-order equational
unification is as simple as that of first-order equational unification. We do not give the
proof for higher-order cases. Because referring to the work in [17], it is same with
first-order cases. After a brief introduction to our notation, we consider first-order
equational unification in Section 2. We present unification as a set of transformation
rules. We later extend the strategy with paramodulation step. We propose an
implementation in λProlog. In Section 3, we extend the formulations for higher-order
cases. Experiments are reported in the Appendix.

Given two sets V of variables and F of function symbols, the set of (first-order)
terms T(V, F) is the smallest set containing V such that f(t1,…,tn) is in T(V, F)
whenever f F and each ti T(V, F) for (1 ≤ i ≤ n). Each f F has an arity and f is
called constant if f is a symbol of arity zero. Var (t) denotes the set of variables in t. A
first-order term may be viewed as finite , ordered, labeled tree, the leaves of which are
labeled with variables and constants. A position within a term t may be represented as
a sequence of positive integers describing the path from the root of t to the root of the

1 Restricted version of higher-order unification is considered. See [13] for background.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

subterm at that position, denoted by t|p. A term u has an occurrence in t if u = t|p for
some positions p in t. t[s]p is used to denote the term t with its subterm t|p replaced by
s . A substitution is a mapping written as {x1 → t1,…., xn → tn} where xi ≠ ti for
(1 ≤ i ≤ n). t σ denotes the term obtained after applying the substitution σ.

2 Specifying F ir st-Or der Equat ional Unificat ion

2.1 Unification by Tr ansforma tions

Definit ion 1 Let x equal x x be a binary predicate. Given any two terms s and t, the
goal equal s t is solved with a most general unifier of s and t if and only if there exists
a unifier of s and t. Otherwise, the goal fails.

We use new constants that are not in the signature as decision parameters.

Definit ion 2 Let φ be a one to one substitution (mapping) from a set of free logic
variables to a set of new constants (not in the signature). A term t is the encoding of a
term s if and only if t = s φ. We may call t an encoding term and s an encoded term.
We may also call the new constants encoding constants.

E xample 1 Given the function symbols f, g F , the new constants c1, c2, free logic
variables x and y, f(c1, g(c1, c2)) is the encoding of f(x, g(x, y)) where
φ = {x → c1, y → c2}.■

In the following, we use c to denote any encoding constant. The transformation
rules are applied to encoded and encoding terms in the same equality goal.

Definit ion 3 Let = =? be a 4-ary function symbol. It can be written in a notation
s , s' = =? t, t' where t' and s' are the encodings of t and s respectively. s, s' = =? t, t' is
symmetric, in other words s, s' = =? t, t' implies t, t' = =? s, s' .

Definit ion 4 We denote an ordered list by [s1,…,sn]. The symbol [] is used for empty
lists. We give the following operations on lists:

 s1 :: [s2,…,sn, sn+1] = [s1,…, sn+1].
 [s1,…, sn] ∂ [t1,…, tn] = [s1,…, sn, t1,…, tn].
 L1 ∂ (t :: L2) = (L1 ∂ L2) U {t} for any ordered lists L1, L2 possibly empty.

Unification problem can be denoted by λx1…λxn.[s1 =? t1,.., sn =? tn] where s i, ti
(1 ≤ i ≤ n) are first-order terms. Let E be a set of equations. We may call [u1,.., un] a
E-unifier of λx1.λx2…. λxn.[s1 =

? t1,.., sn =
? tn] if si σ = E ti σ for all i (1 ≤ i ≤ n) where

σ = {x1 → u1,…., xn → un}. When E is empty, we may call it a unifier .

Consider that Definition 2 can be extended for unification problems. For example,
λx.[g(x, a) =? g(a , c)] is the encoding of λx.[g(x, a) =? g(a , F)] where φ = {F → c} (c
is an encoding constant and F is a free logic variable). Lists are used in an unordered
fashion by the transformations. We use the notation L U {t} to denote that t is selected

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

arbitrarily. Unification by transformations is given in Definition 5. We use the
following equality: ((λx.s) t)β = s {x → t}.

The transformations in Definition 5 are applied to a 3-ary relation denoted by
unif A1 A2 A3. A1 stands for an original unification problem. A2 stands for its encoding.
A3 stands for a unifier. The symbol ↔ is used to denote an arbitrary transformation.
For a closed unification problem M and a free logic variable S, when the goal
unif M M S is satisfied, S is instantiated with a unifier. In overcoming any notational
confusion in the definitions, it is assumed that predicates are satisfied from left to
right in the expressions of conjunction. For instance, for the transformation step 4 in
Definition 5, equal X Y is satisfied first and the resultant substitution is applied to the
goal automatically by the meta-level system before further any transformation step on
the goal begins.

Definit ion 5 Let M denote any unification problem and M' be the encoding of M. Let
L denote any ordered list and a , f respectively denote any constant and function
symbol. Given that X1, X1' , Y1, Y1' ,.., Xn, Xn' , Yn, Yn' are any terms, unification can be
defined by the following transformations applied to a 3-ary relation unif.

1. unif M M' (Z1 :: Z2) iff unif (M Z1)
β (M' c)β Z2 where Z1, Z2 are new free logic

variables, c is a new arbitrary constant that is not in the signature.

2. unif [X1 =
? Y1,.., Xn =? Yn] [X1' =

? Y1',.., Xn' =
? Yn'] [] iff

unif [] [X1, X1' = =? Y1, Y1' ,.., Xn, Xn' = =? Yn, Yn'] [].

3. unif [] (L U {a , a = =? a , a}) [] iff unif [] L [].

4. unif [] (L U {X1, c = =? Y1, Y1' }) [] iff equal X1 Y1 and unif [] L{c → Y1' } [].

5. unif [] (L U {f(X1,.., Xn), f(X1',.., Xn') = =? f(Y1,.., Yn), f(Y1',.., Yn')}) [] iff
unif [] (L ∂ [X1, X1' = =? Y1, Y1' ,.., Xn, Xn' = =? Yn, Yn']) [].

6. unif [] [] [] iff Tr ue.

E xample 2 Consider solving λx.λy.λz.[f(x, a) =? f(z, y)]. We use N in ↔N to denote the
number of the transformation. When the goal

unif λx.λy.λz.[f(x, a) =? f(z, y)] λx.λy.λz.[f(x, a) =? f(z, y)] S

is satisfied, the free logic variable S is instantiated by [U3, a , U3].

unif λx.λy.λz.[f(x, a) =? f(z, y)] λx.λy.λz.[f(x, a) =? f(z, y)] S ↔1, ↔1, ↔1

unif [f(U1, a) =? f(U3, U2)] [f(c1, a) =? f(c3, c2)] S1 ↔2
where S is instantiated by (U1 :: (U2 :: (U3 :: S1))) (c1, c2, c3 are new constants and U1,
U2, U3 , S1 are new free logic variables)

unif [] [f(U1, a), f(c1, a) = =? f(U3, U2), f(c3, c2)] [] ↔5
where S1 is instantiated by [].

unif [] [(U1, c1 = =? U3, c3), (a , a = =? U2, c2)] [] ↔4

unif [] [(a , a = =? U2, c2)] [] ↔4
where U1 is instantiated by U3.

unif [] [] [] ↔6

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

where U2 is instantiated by a .

True. ■

In the definitions, constant and function symbols are treated differently for
syntactic manners. In the following, the symbols a , f are used to denote any constant
and function symbol respectively. The correctness and completeness of the
transformations are given in the Appendix.

2.2 Equational Unifica tion by Tra nsfor mations

We focus on paramodulation steps at non-variable positions. By applying the
inductive method in Definition 6, we can compute subterms at non-variable positions.

Given a term T1 and its encoding T1' , for any non variable position p in T1, the goal
sub S T1 C S' T1' C' (S, C, S' , C' are free logic variables) is satisfied where S, C, S' , C'
are respectively instantiated with T1|p, λu .T1[u]p, T1' |p and λu.T1'[u]p and u has no
occurrence in T1 and T1'.

Definit ion 6 Let sub be a 6-ary relation. It is inductively defined on all terms A, A' ,
X1… Xn, X1'…Xn' , D, D' as follows:

 sub a a (λu.u) a a (λu.u).

 sub (f X1…Xi…Xn) (f X1…Xi…Xn) (λu.u) (f X1'…Xi'…Xn') (f X1'…Xi' . …Xn') (λu.u).

 sub A (f X1...Xi..Xn) (λu.(f X1..(D u) β..Xn)) A' (f X1' .. Xi' ...Xn') (λu.(f X1'..(D' u) β..Xn'))
iff sub A Xi D A' Xi' D' .

Lemma 1 Let T1 be a first order term and T1' be the encoding of T1. For any non
variable position p in T1, the goal sub S T1 C S' T1' C' (S, C, S' , C' are free logic
variables) is satisfied where S, C, S', C' are respectively instantiated with T1|p,
λu.T1[u]p, T1' |p and λu.T1'[u]p and u has no occurrence in T1 and T1' (By using a trivial
induction on the length of term tree, the proof can be done).

Definit ion 7 A rewrite rule is denoted by λx1…λxn(s →R t) where s , t are first-order
terms.

In paramodulation steps, fresh variables of an equation (or rule) are used. For
computing fresh variables, we apply the transformation below denoted by →Variant to a
closed rewrite rule for replacing all bound variables with new free logic variables. For
its encoding, we replace all bound variables with new constants. →Variant

* stands for
iterative applications of the transformation →Variant until none is applicable.

Definit ion 8 Let R denote any rewrite rule and R' be the encoding of R. Let var ia nt be
a binary relation and its inductive definition is as follows:

 variant (R1 →R R2) (R1' →R R2') where R1' →R R2' is the encoding of R1 →R R2.

 variant R R' iff va riant (R Z)β (R' c)β where Z is a new free logic variable, c is a
new arbitrary constant that is not in the signature.

We can adopt the narrowing strategy in which the witness pair unifies. For the
witness pair list, we can use the equality form ≈ ≈? only the unification by

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

transformation steps is applicable. In Definition 9, term decomposition step is applied
to the witness pair list as many as until none is applicable. We thereafter apply the
variable elimination method given by the transformation step 8 in Definition 10:

Definit ion 9 Let ≈ ≈? be a 4-ary function symbol. It can be written in a notation
s , s' ≈ ≈? t, t' where t' and s' are the encodings of t and s respectively. s, s' ≈ ≈? t, t' is
symmetric, in other words s , s' ≈ ≈? t, t' implies t, t' ≈ ≈? s , s' . The symbol →Dec is
used for the following transformations:

 L U {a , a ≈ ≈? a , a} iff L.

 L U {f(X1,..,Xn), f(X1' ,.., Xn') ≈ ≈? f(Y1,.., Yn), f(Y1' ,.., Yn')} iff
L ∂ [X1, X1' ≈ ≈? Y1, Y1' ,.., Xn, Xn' ≈ ≈? Yn, Yn'].

→Dec
* stands for iterative applications of the transformation →Dec until none is

applicable.

Definit ion 10 Equationa l unification can be defined by adding the two more to the
transformations in Definition 5:

7. unif [] (L U {A, A' = =? B, B'}) [] iff
sub D A C D' A' C' (D, C, D' , C' are free logic variables) and
variant R R →Variant

* variant (U →R N) (U' →R N') for a closed rewrite rule R and
[D, D' ≈ ≈? U, U'] →Dec

* L1 and
unif [] (((C N)β, (C' N')β = =? B, B') :: (L1∂ L)) [].

8. unif [] (L U {X1, c ≈ ≈? Y1, Y1' }) [] iff equal X1 Y1 and unif [] L{c → Y1'} [].

E xample 3 Given E = {λx(f(x) →R g(x))} , when the goal

unif λy.λx.[f(y) =? g(x)] λy.λx.[f(y) =? g(x)] S

is satisfied, the free logic variable S is instantiated by [U2, U2].

unif λy.λx.[f(y) =? g(x)] λy.λx.[f(y) =? g(x)] S ↔1, ↔1

unif [f(U1) =
? g(U2)] [f(c1) =

? g(c2)] S1 ↔2
where the free logic variable S is instantiated by (U1 :: (U2 :: S1)) (c1, c2 are new
constants and U1, U2, S1 are new free logic variables)

unif [] [f(U1), f(c1) = =? g(U2), g(c2)] [] ↔7
where S1 is instantiated by [].

unif [] [(U1, c1 ≈ ≈? U3, c3), (g(U3), g(c3) = =? g(U2), g(c2))] [] ↔8
where variant (f(U3) →R g(U3)) (f(c3) →R g(c3)) holds for c3 being a new constant and
U3 being a new free logic variable.

equal U1 U3 and unif [] [g(U3), g(c3) = =? g(U2), g(c2)] {c1 → c3} []

unif [] [g(U3), g(c3) = =? g(U2), g(c2)] [] ↔5
where U1 is instantiated by U3 by the proof of equa l U1 U3.

unif [] [U3, c3 = =? U2, c2] [] ↔4

unif [] [] [] ↔6

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

where U3 is instantiated by U2.

True. ■

The correctness, completeness and termination results of the equational unification
transformations are given in the Appendix.

2.3 Imp le mentation

We present the concrete implementation of the equational unification in λProlog
[14]. Before our formulation, we give a brief introduction to the language. In addition
to the logical connectives , , in goal formulas as used in classical logic
programming, implicational and universal goals are also supported. To prove an
implication B C, assume B as an hypothesis and attempt to prove C. Similarly, to
prove a universal quantifier x.B prove a generic instance B{x → c} where c is a
constant that is not in the current signature. The comma (,), semicolon (;), and arrow
() represent conjunction, disjunction and implication respectively while :- denotes
the converse of implication. λx.e is written as x \ e. The symbol pi represents
universal quantification. The symbols nil and :: denote the empty list and the list
constructor respectively. Types are assigned to terms. The expression type s denotes
that s is a term of type . A list whose elements are of type is given the type list .
An atomic formula is a term of type o . λProlog makes use of curr ied syntax: A term
of the form f(t, s) can be written as (f t s). We assume universal closure over all
variables written as tokens with an upper case initial letter.

Impleme nting Unifica tion by Tra nsfor mations

type some (list) list .
type all () .
type eq .
type eqq .
type eqq_ .
type rule .

type m_a_r list list o.
type append list list list o.
type eqtoeqq list list list o.

m_a_r X (X :: L) L.
m_a_r X (Y :: K) (Y :: L) :- m_a_r X K L.

eqtoeqq nil nil nil.
eqtoeqq ((eq X1 Y1) :: L1) ((eq X2 Y2) :: L2)
 ((eqq X1 X2 Y1 Y2)::L3) :- eqtoeqq L1 L2 L3.

append nil K K.
append (X :: XS) YS (X :: ZS) :- append XS YS ZS.

some and all are used to represent the outmost λ-bound variables in unification
problems and rewrite rules respectively. We have eq , eqq, eqq_ and rule in places of

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

=?, = =?, ≈ ≈? and →R respectively. We may select an element t form a list as L U {t}
(see Definition 4) by executing m_a_r in a non-deterministic way. eqtoeqq clause is
used for the transformation step 2 in Definition 5 and append for list concatenation.
We execute the object-level substitution L {c → Y1'} (see the transformation step 4 in
Definition 5) by using cp and subst clauses.

type a .
type f, h .
type g .
type cp list o.
type subst list list list o.

cp X X U :- m_a_r X U _.
cp a a _.
cp (f X1)(f Y1) U :- cp X1 Y1 U.
cp (h X1)(h Y1) U :- cp X1 Y1 U.
cp (g X1 X2) (g Y1 Y2) U :- cp X1 Y1 U, cp X2 Y2 U.

subst nil nil _.
subst ((eqq X1 X2 X3 X4) :: L1)((eqq X1 Y2 X3 Y4) :: L2) U :-
 cp X2 Y2 U, cp X4 Y4 U, subst L1 L2 U.

The notation _ is used in λProlog for logic variables appearing once in formulas.
Function symbols a , h, f, g are used as a represents constants, f and h represent 1-ary
functions, g represents 2-ary functions. The scope can be extended to n-ary functions
in a similar way.

type unf list list list list o.

unf (some X) (some Y) (Z::S) U :-
 pi c\(unf (X Z) (Y c) S (c::U)).
unf (X1::L1) (X2::L2) nil U :-
 eqtoeqq (X1::L1) (X2::L2) L3, unf nil L3 nil U.
unf nil L nil U :- m_a_r (eqq a a a a) L L1, unf nil L1 nil U.
unf nil L nil U :- m_a_r (eqq (f X1) (f X2) (f X3) (f X4)) L L1,

 unf nil ((eqq X1 X2 X3 X4)::L1) nil U.
unf nil L nil U :- m_a_r (eqq (h X1) (h X2) (h X3) (h X4)) L L1,

 unf nil ((eqq X1 X2 X3 X4)::L1) nil U.
unf nil L nil U :-
m_a_r (eqq (g X11 X12) (g X21 X22)
 (g X31 X32) (g X41 X42)) L L1,
unf nil ((eqq X11 X21 X31 X41)::
 (eqq X12 X22 X32 X42)::L1) nil U.
unf nil L nil U :- (m_a_r (eqq X X1 X Y1) L L1;
 m_a_r (eqq X Y1 X X1) L L1), m_a_r X1 U U1,
((cp X1 Y1 _) => subst L1 L2 U1), unf nil L2 nil U.

unf nil nil nil _.

Referring to Definition 5, unify relation is given as a 3-ary symbol. The first
argument is used for an original unification problem. The second argument is used for
its encoding. The third is used for a unifier. Technically, we need to check
occurrences of encoding constants (see Definition 2) in order to apply the variable
elimination method (see the transformation step 4 in Definition 5). As the fourth

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

argument in unf clause (unf stands for unify), a list whose elements are encoding
constants is used. We can check any encoding term if i t is an encoding constant by
checking if it is in the list. Referring to the transformation step 4 in Definition 5, we
can apply the substitution L {c → Y1'} by the goal (cp c Y1' _) subst L L' U such
that when it is proved, the free logic variable L' is instantiated by L {c → Y1'} given
that U is a list of encoding constants not including c. The clause cp X X U :- m_a_r X
U _ is used for copying encoding constants other than c .

Impleme nting Equa tiona l Unification by Tra nsfor mations

For function symbols a , h, f, g , sub relation in Definition 6 can be given as follows:

type sub () () o.

sub a a (c\c) a a (c\c).
sub (f X1) (f X1) (c\c) (f X2) (f X2) (c\c).
sub (h X1) (h X1) (c\c) (h X2) (h X2) (c\c).
sub (g X1 X2) (g X1 X2) (c\c) (g Y1 Y2) (g Y1 Y2) (c\c).
sub S1 (f X1) (c\(f (X2 c))) S2 (f Y1) (c\(f (Y2 c))) :-
 sub S1 X1 X2 S2 Y1 Y2.
sub S1 (h X1) (c\(h (X2 c))) S2 (h Y1) (c\(h (Y2 c))) :-
 sub S1 X1 X2 S2 Y1 Y2.
sub S1 (g X1 X2) (c\(g (X3 c) X2))
 S2 (g Y1 Y2) (c\(g (Y3 c) Y2)) :- sub S1 X1 X3 S2 Y1 Y3.
sub S1 (g X1 X2) (c\(g X1 (X3 c)))
 S2 (g Y1 Y2) (c\(g Y1 (Y3 c))) :- sub S1 X2 X3 S2 Y2 Y3.

r wt is used to represent rewrite rules. E contains only the rule λx f(x) →R h(x).

type rwt o.
rwt (all x\rule (f x) (h x)).

type dec list list list o.

dec (A::L1) L3 U :- m_a_r (eqq a a a a) (A::L1) L2, dec L2 L3 U.
dec (A::L1) L3 U :-
 m_a_r (eqq (f X1) (f X2) (f X3) (f X4)) (A::L1) L2,
 dec ((eqq X1 X2 X3 X4)::L2) L3 U.
dec (A::L1) L3 U :-
 m_a_r (eqq (h X1) (h X2) (h X3) (h X4)) (A::L1) L2,
 dec ((eqq X1 X2 X3 X4)::L2) L3 U.
dec (A::L1) L3 U:-
 m_a_r (eqq (g X11 X12) (g X21 X22)
 (g X31 X32) (g X41 X42)) (A::L1) L2,
 dec ((eqq X11 X21 X31 X41)::(eqq X12 X22 X32 X42)::L2) L3 U.
dec ((eqq X1 X2 Y1 Y2)::L1) ((eqq_ X1 X2 Y1 Y2)::L2) U :-
 (m_a_r X2 U _ ; m_a_r Y2 U _), dec L1 L2 U.
dec nil nil _.

We apply the term decomposition relation →Dec
* in paramodulation steps by

executing dec. We apply as many decomposition transformations as possible. As the
third argument, we use a list of encoding constants to check their occurrences in

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

equalities by using m_a_r clause. After we extend the subst clause to deal with the
equalities eqq_ in object-level substitutions, we give the paramodulation step.

subst ((eqq_ X1 X2 X3 X4) :: L1)((eqq_ X1 Y2 X3 Y4):: L2) U :-
 cp X2 Y2 U, cp X4 Y4 U, subst L1 L2 U.

type variant list list o.

variant L (rule X1 Y1) (rule X2 Y2) U :-
(m_a_r (eqq A1 A2 B1 B2) L L1 ; m_a_r (eqq B1 B2 A1 A2) L L1),

sub D1 A1 C1 D2 A2 C2,
dec ((eqq D1 D2 X1 X2) :: nil) L2 U,
append L1 L2 L3,
unf nil ((eqq (C1 Y1) (C2 Y2) B1 B2) :: L3) nil U.

variant L (all X1) (all Y1) U :-
 pi c\(variant L (X1 Z) (Y1 c) (c::U)).

unf nil L nil U :- rwt R, variant L R R U.
unf nil L nil U :-
 (m_a_r (eqq_ X X1 X Y1) L L1; m_a_r (eqq_ X Y1 X X1) L L1),
 m_a_r X1 U U1, ((cp X1 Y1 _) => subst L1 L2 U1),
 unf nil L2 nil U.

3 Specifying Higher-Or der Equational Unification

3.1 Patter n Unifica tion by Tra nsfor mations

Unification problem is denoted by λx1…λxn.[s1 =
? t1,.., sn =? tn] where each s i, ti

(1 ≤ i ≤ n) are patterns2.

Definit ion 11 Patter n unification can be defined by adding the four more to the
transformations in Definition 5.

9. unif M M' (Z1 :: Z2) iff unif (M Z1)
β (M' (λc0... λcn-1.cn))β Z2

where Z1, Z2 are new free logic variables of a suitable type, for M' of the type
(0 → …→ n) → (1 ≤ n), c0, c1..., cn are new arbitrary constants not in the
signature, and ci of the type i, i {0, 1,..,n}.

10. unif [] (L U {N, N' = =? K, K' }) [] iff
unif [] (((N b)β, (N' b) β = =? (K b)β, (K' b) β) :: L) []

where b is a new arbitrary function (or constant) of a suitable type.

11.unif [] (L U {op X1…Xn, op X1'…Xn' = =? op Y1…Yn, op Y1'…Yn'}) [] iff
unif [] L ∂ [X1, X1' = =? Y1, Y1' ,.., Xn, Xn' = =? Yn, Yn'] [].

12.unif [] (L U {b , b = =? b, b}) [] iff unif [] L [].

2 See [13] for the definiton and unification of patterns.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

For pattern unification, we extend the transformation system given in Definition 5.
The transformations that are given in Definition 11 are used for dealing with bound
variables. We use any n-ary operator symbol op (including application) for bound
variables. E β represents the -normal form of E.

E xample 4 Consider the solution of λF .λG [λx.λy.F x =? λx.λy.f (G y x)]. When the
goal unif λF .λG [λx.λy.F x =? λx.λy.f (G y x)] λF .λG [λx.λy.F x =? λx.λy.f (G y x)] S is
proved, the free logic variable S is instantiated by [λb1.f(U3 b1), λb2.λb1.U3 b1] (U3 is a
new free logic variable).

unif λF .λG [λx.λy.F x =? λx.λy.f (G y x)] λF .λG [λx.λy.F x =? λx.λy.f (G y x)] S ↔9,↔9

unif [λx.λy.U1 x =? λx.λy.f(U2 y x)]
 [λx.λy.((λc0.c1) x)β =? λx.λy.f((λc2.λc3.c4) y x)β] S1 (-conversion)
where S is instantiated by (U1 :: (U2 :: S1)) (c0, c1, c2, c3, c4 are new arbitrary constants
(or function symbols) and U1, U2, S1 are new free logic variables)

unif [λx.λy.U1 x =? λx.λy.f(U2 y x)] [λx.λy.c1 =
? λx.λy.f(c4)] S1 ↔2

unif [] [λx.λy.U1 x, λx.λy.c1 = =? λx.λy.f(U2 y x), λx.λy.f(c4)] [] ↔10, ↔10
where S1 is instantiated by [].

unif [] [(U1 b1), c1 = =? f(U2 b2 b1), f(c4)] [] ↔4
where b1, b2 are new arbitrary function symbols (or constants).

equal (U1 b1) f(U2 b2 b1) and unif [] [] [] (Pruning and Flexible-Rigid step)

unif [] [] [] ↔6
where U2 with λb2.λb1.U3 b1 and U1 with λb1.f(U3 b1) are substituted by the proof of
equal (U1 b1) f(U2 b2 b1) (U3 is a new free logic variable).

True. ■

3.2 Imp le menting Pa tter n Unification by Tra nsformations

The capital letter A is used in type declarations for higher-order cases. We use the
function symbol fv of type A to enclose free logic variables in a unifier for
convenience that the unifier can contain not only first-order terms but also higher-
order terms. abst is used to represent bound variables. The predicate bv for enclosing
bound variables is used as an hypothesis during proof searches. some1 and some2 are
used to represent solution variables of types and respectively. We
use the operator symbol app for bound variables taking one argument. The scope can
be extended to n-ary operator symbols and n-ary solution variables in a similar way.

type fv A .
type bv o.
type abst () .
type app .
type some1 (() list) list .
type some2 (() list) list .

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

We extend cp and unf clauses (see Section 2.3) to deal with bound variables and
abstractions.

cp X X _:- bv X.
cp (app X Y1)(app X Y2) U:- cp Y1 Y2 U.
cp (abst X1)(abst Y1) U :- pi c\cp c c _ => cp (X1 c) (Y1 c) U.

unf (some1 X) (some1 Y) ((fv Z)::S) U :-
 pi c\(unf (X Z) (Y c1\c) S (c::U)).
unf (some2 X) (some2 Y) ((fv Z)::S) U :-
 pi c\(unf (X Z) (Y c1\c2\c) S (c::U)).
unf nil L nil U :- m_a_r (eqq X X X X) L L1,
 bv X, unf nil L1 nil U.
unf nil L nil U :-
 m_a_r (eqq (app X Y1) (app X Y2) (app X Y3) (app X Y4)) L L1,
 unf nil ((eqq Y1 Y2 Y3 Y4)::L1) nil U.
unf nil L nil U :-
 m_a_r (eqq (abst X1) (abst X2) (abst X3) (abst X4)) L L1,
 pi c\bv c =>
 (unf nil ((eqq (X1 c) (X2 c) (X3 c) (X4 c)) ::L1) nil U).

3.3 Highe r-Order Equationa l Unification by Tr ansforma tions

We consider the unification of patterns in the presence of a first-order equational
theory.

Definit ion 12 We add the two more to sub relation given in Definition 6 to deal with
bound variables and abstractions.

 sub A B (λc.λx.(D x c) β) A' B' (λc.λx.(D' x c) β) iff
sub (A x) β (B x) β (D x) β (A' x) β (B' x) β (D' x) β

where x is an arbitrary variable not free in A, B, A' , B', λx.(D x) β, λx.(D' x) β.

 sub A (op X1…Xn) (λc.(op X1..(D c)β..Xn))
 A' (op X1'…Xn') (λc .(op X1' ..(D' c) β.. Xn')) iff sub A Xi D A' Xi' D' .

Definit ion 13 We add one rule to →Dec relation given in Definition 9 to deal with
abstractions:

 L U {A, A' ≈ ≈?G, G'} iff L ∂ [(A b) β, (A' b) β ≈ ≈? (G b) β, (G' b) β].
where b is a new arbitrary function symbol (or constant) of a suitable type.

Definit ion 14 Let lifting be a binary relation. y1.. yn-lifting of a

variant (R1 →R R2) (R1' →R R2')

is of the forms

 lifting (λy1..λyn.R1 →R λy1..λyn.R2) (λy1..λyn.R1' →R λy1..λyn.R2') (for n ≥ 0)
 where = {F → (F y1..yn) | F is any free logic variable of R1 or R2},

 lifting (R1 →R R2) (R1' →R R2') (for n = 0)

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Definit ion 15 We update the transformation step 7 given in Definition 10 to deal with
bound variables.

unif [] (L U {A, A' = =? B, B' }) [] iff
sub D A C D' A' C' (D, C, D' , C' are free logic variables) and
variant R R →Variant

* variant (R1 →R R2) (R1' →R R2') for a closed rule R and
lifting (U →R N) (U' →R N') is y1.. yn-lifting of variant (R1 →R R2) (R1' →R R2')
for D = λy1..λyn.f(s1,…,sm) or λy1..λyn.a (n 0) and
[D, D' ≈ ≈? U, U'] →Dec

* L1 and
sub N H C N' H' C' and
unif [] ((H, H' = =? B, B') :: (L1∂ L)) [].

3.4 Imp le menting Higher-or der Equa tional Unifica tion by Tra nsfor mations

We present the formulation of lifting as the following clauses.

type lift list o.
type lift1 list o.
type last_and_rest list list o.
type apply A list o.

last_and_rest A (A::nil) nil.
last_and_rest A (B::L1) (B::L2) :- last_and_rest A L1 L2.

apply A A nil.
apply A B L1 :- last_and_rest X L1 L2, apply (A X) B L2.

lift1 (fv X1) X2 U :- apply X1 X2 U.
lift1 a a _.
lift1 (g X1 X2) (g Y1 Y2) U :- lift1 X1 Y1 U,lift1 X2 Y2 U.
lift1 (h X1) (h X2) U :- lift1 X1 X2 U.
lift1 (f X1) (f X2) U :- lift1 X1 X2 U.

lift A (rule X1 Y1) (rule X2 Y2)(rule X11 Y11) (rule X2 Y2) U :-
 (A = a;A = (f _);A = (h _);A = (g _ _)),
 lift1 X1 X11 U, lift1 Y1 Y11 U.
lift (abst A) R1 R2 (rule (abst X1)(abst Y1))
 (rule (abst X2)(abst Y2)) U :- pi c\(
lift (A c) R1 R2 (rule (X1 c)(Y1 c))(rule(X2 c)(Y2 c)) (c::U)).

We extend the sub and dec clauses in accordance with Definition 12 and
Definition 13.

sub S1 (app X1 X2) (c\(app X1 (X3 c)))
 S2 (app Y1 Y2) (c\(app Y1 (Y3 c))) :-sub S1 X2 X3 S2 Y2 Y3.

sub (abst S1) (abst X1) (c\(abst x\(D1 x c)))
 (abst S2) (abst X2) (c\(abst x\(D2 x c))) :-

 pi c\(sub (S1 c) (X1 c) (D1 c) (S2 c) (X2 c) (D2 c)).

dec (A::L1) L3 U :-
 m_a_r (eqq (abst X1) (abst X2) (abst X3) (abst X4)) (A::L1) L2,

pi c\dec ((eqq (X1 c) (X2 c) (X3 c) (X4 c))::L2) L3 U.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

We update the paramodulation step given in Section 2.3 in accordance with
Definition 15.

variant L (rule X1 Y1) (rule X2 Y2) U :-
 (m_a_r (eqq A1 A2 B1 B2) L L1 ;m_a_r (eqq B1 B2 A1 A2) L L1),

 sub D1 A1 C1 D2 A2 C2,
 lift D2 (rule X1 Y1)(rule X2 Y2)
 (rule XX1 YY1)(rule XX2 YY2) nil,
 dec ((eqq D1 D2 XX1 XX2) :: nil) L2 U, append L1 L2 L3,
 sub YY1 AA1 C1 YY2 AA2 C2,
 unf nil ((eqq AA1 AA2 B1 B2) :: L3) nil U.
variant L (all X1) (all Y1) U :-
 pi c\(variant L (X1 (fv Z)) (Y1 c) (c::U)).

4 Conclusion

Unification problems in the literature have been considered for syntactic and
semantic manners. As far as generality is concerned, the both issue should be treated
in a uniform framework [5, 10]. In this work, we consider a framework unifying the
two approaches in which the management of semantic and syntactic variables is
precisely made and propose a practical way for solving (higher-order) equational
unification problems in higher-order logical frameworks. This eases our
understanding of (higher-order) equational unification as much as it gives clearance in
practical issues. Similar approach has been used in [1, 4, 9]. But our wok is generic,
uniform and easy to understand. Since we tackle the problem directly, it can be
verified easily and side effects are avoided. Moreover it is easily extended to higher-
order settings in which case pattern unification is considered as a meta-level rule.
Finally this work enhances functional logic paradigms and illustrates how λ-terms
embedded in logic programming improve the meta-programming capabilities.

Acknowledges

The author thanks to referees for helpful comments on previous drafts.

Refer ences

1. S.Antoy, M.Hanus, B.Massey, Frank Steiner. An implementation of narrowing strategies.
Third International Conference on Principles and Practice of Declarative P rogramming
PPDP’01, Firenze, Italy, Sept, 2001, pages 207-217.

2. M.S.Aygün. Implementation of Higher-Order Narrowing in a High-Level Meta-Level
System, Boğaziçi University, 1998.

3. M.S.Aygün. A Logic Programming Approach to Implementing Higher-Order Narrowing.
LFM P roceedings, 1999.

4. P.H. Cheong and L.Fribourg. Implementation of na rrowing: The Prolog-based approach. In
K.R. Apt, J.W.de Bakker, and J.J.M.M. Rutten, editors, Logic programming languages:
constraints, functions, and objects, The MIT Press, 1993, 1-20.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

5. H.Common, C. Kirchener. Constraint Solving on Terms. H.Common, C.Marche, and
R.Treinen (Eds.): CCL’99, LNCS 2002, pp.47-103, 2001.

6. D.J. Dougherty and P.Johann. An Improved General E-Unification Method. In 10th
International Conference on Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990.

7. A. Felty. A Logic Programming Approach to Implementing Higher-Order Term Rewriting.
Proceedings of the 1991 International Workshop on Extensions of Logic Programming,
Lars-Henrik Eriksson, Lars Hallnas, and Peter Schroeder-Heister, editors, Springer-verlag
Lecture Notes in Artificial Intelligence, 1992.

8. J.H.Gallier and W.Snyder. Complete Sets of T ransformations for General E-Unification. In
TCS 67:2,3, pp.203-260, 1989.

9. M.Hanus. T he integration of Functions into Logic Programming: From Theory to Practice.
The J.Logic programming 1994:19,20:583-628.

10. J.P.Jouannaud and Claude Kirchner. Solving Equations in Abstract Algebras: a Rule-Based
Survey of Unification. Computational Logic. Essay in honor of Alan Robinson. The MIT
Press, pages 257-321, Cambridge, 1991.

11. C. Liang. Free Variables and Subexpressions in Higher-Order Meta Logic. In Theorem
Proving in Higher Order Logics, 11th International Conference, Springer-Verlag LNCS
Vol.1479. September 1998.

12. D.Miller. Unification of Simply Typed Lambda-Terms as Logic Programming. In the
Proceedings of the 1991 International Conference on Logic Programming, edited by Koichi
Furukawa, June 1991.

13. D.Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables,
and Simple Unification. Journal of Logic and Computation, Vol. 1, No. 4, 1991.

14. D.Miller. λProlog: An Introduction to the Language and its Logic, 1996.
15. C. Prehofer. On Modularity in Term Rewriting and Narrowing. P roceedings of the First

International Conference on Constraints in Computational Logics, volume 845 of Lecture
Notes in Computer Science, Springer-Verlag, pages 253-268, Berlin, 1994.

16. C. P rehofer. Higher-Order Narrowing. Proceedings of the ninth Annual IEEE Symposium
on Logic in Computer Science, pp.507-516.

17. Z.Qian. Higher-Order Equational Logic Programming. Appeared in the Proceedings of the
21 st Annual ACM SIGPLAN-SIGACT Symposium on Principles of P rogramming
Languages.

18. N.Tobias, Z.Qian. Modular Higher-Order E-unification. Proceedings of the 4 th International
Conference, RT A-91, pp.200-214, Springer-Verlag.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

A Appendix: Exper imental Repor ts

E xample 5 When the query

unf (some z\some x\some y\eq (g x (g z x)) (g a y)::nil)
 (some z\some x\some y\eq (g x (g z x)) (g a y)::nil) L nil

is solved, the free logic variable L is substituted by the list Z :: a :: g Z a :: nil (Z is
a new free logic variable).

E xample 6 When the query

unf (some x\some y\(eq (g a (f x)) (g a (h y)))::nil)
 (some x\some y\(eq (g a (f x)) (g a (h y)))::nil) L nil

is solved, L is substituted by the list Z :: Z :: nil (Z is a new free logic variable). E
contains the rule rwt (all x\rule (f x) (h x)).

E xample 7 The goal in Example 4 can be given by the query

unf (some1 x\some2 y\eq (abst b\(abst a \(x b))) (abst b\(abst a \f(y a b)))::nil)
 (some1 x\some2 y\eq (abst b\(abst a \(x b))) (abst b\(abst a \f(y a b)))::nil) L nil.

When the query is solved, L is substituted by the list

(fv c1\ f (S c1)) :: (fv c2\ c3\ S c3) :: nil

where S is a new free logic variable.

E xample 8 When the query

unf (some2 x\some2 y\eq (abst b\(app b (abst a\(f (x b a)))))
 (abst b\(app b (abst a \(h (y a b)))))::nil)
 (some2 x\some2 y\eq (abst b\(app b (abst a \(f (x b a)))))
 (abst b\(app b (abst a \(h (y a b)))))::nil) L nil.

is solved, L is substituted by the list

(fv c1\ c2\ S c2 c1) :: (fv c1\ c2\ S c1 c2) :: nil

where S is a new free logic variable. E contains the rule

rwt (all x\rule (f x) (h x)).

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

B Appendix: Completeness, Soundness and Ter minat ion Results of
the Equa tional Unification Tr ansfor mation for Fir st-Or der
Unification Pr oblems

T heore m 1 (Soundness) Let E be an empty set. For a closed unification problem M
and a free logic variable S, when the goal unif M M S is satisfied where S is
instantiated by a list L, then L is a unifier of M.

P roof:
The transformations in Definition 5 are same as the transformations presented for the
standard unification transformations in [8]. So it can be trivially shown that a list
returned by the query is a unifier. ■

T heore m 2 (Completeness) Let E be an empty set. If L' is a unifier of a closed
unification problem M, then the goal unif M M S is satisfied where S is instantiated by
a list L and L σ = L' for some substitution σ.

P roof:
The proof can be trivially made since each transformation step 4 in Definition 5
produces a solved form3. ■

T heore m 3 (Soundness) Let E be a set of equations. For a closed unification problem
M and a free logic variable S, when the goal unif M M S is satisfied where S is
instantiated by a list L, then L is a E-unifier of M.

P roof:
Based on the results in [8], the proof can be done trivially. ■

T heore m 4 (Completeness) Let E be a set of equations so that →E is confluent and
terminating. If L' is a unifier of a closed unification problem M, then the goal
unif M M S is satisfied where S is instantiated by a list L and L σ =E L' for some
substitution σ .

P roof:
Following the completeness of narrowing in [9], the proof can be done trivially
because the equational unification transformations mimic narrowing derivations. ■

T heore m 5 Let R be a convergent rewrite system in which every left hand side is of
the form f(t1,…,tn) such that each ti is either a variable or ground term. The equational
unification transformations are terminating.

P roof:
The proof can be done trivially because the equational unification transformations
mimic rewriting derivations under this case. ■

3 See [8] for the definition of solved form.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

