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Abstract
Trustworthy policy learning has significant im-
portance in making reliable and harmless treat-
ment decisions for individuals. Previous pol-
icy learning approaches aim at the well-being
of subgroups by maximizing the utility function
(e.g., conditional average causal effects, post-view
click-through&conversion rate in recommenda-
tions), however, individual-level counterfactual
no-harm criterion has rarely been discussed. In
this paper, we first formalize the counterfactual
no-harm criterion for policy learning from a prin-
cipal stratification perspective. Next, we propose
a novel upper bound for the fraction negatively
affected by the policy and show the consistency
and asymptotic normality of the estimator. Based
on the estimators for the policy utility and harm
upper bounds, we further propose a policy learn-
ing approach that satisfies the counterfactual no-
harm criterion, and prove its consistency to the
optimal policy reward for parametric and non-
parametric policy classes, respectively. Extensive
experiments are conducted to show the effective-
ness of the proposed policy learning approach for
satisfying the counterfactual no-harm criterion.

1. Introduction
Policy learning determines the individuals who should be
treated based on their covariates (Murphy, 2003), and it
is important that a decision made by an algorithm can be
trusted by humans (Floridi, 2019; Kaur et al., 2022). Specif-
ically, trustworthy policy learning requires that the learned
policy has beneficence, non-maleficence, autonomy, justice,
and explicability (Thiebes et al., 2021; Floridi, 2019; Kaur
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et al., 2022), and many counterfactual-based metrics are pro-
posed to quantify the policy’s trustworthiness (Kusner et al.,
2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al.,
2019), which makes the algorithm try to understand, for the
individuals, what the outcome would be if an alternative
intervention had been implemented (Pearl, 2009).

Nevertheless, the counterfactual harmlessness of policy
learning is rarely discussed, which would prevent an active
intervention on the individuals from having worse outcomes
than the natural state without the intervention (Richens et al.,
2022). This also serves as the basic principle of the Hippo-
cratic oath (Sokol, 2013) that ”First do no harm”, and sim-
ilar principles can be found from Lin (2006); Mill (1966);
Asimov (2004). Towards this end, previous studies employ
group causal effects to define the utility to learn individual-
ized treatment policies (Bertsimas et al., 2016; Kitagawa &
Tetenov, 2018; Athey & Wager, 2021), however, they can
only maximize the average benefit of subgroups, without
satisfying the counterfactual no-harm for individuals.

In this paper, we formally discuss the cause of counterfactual
harm from a principal stratification perspective (Frangakis
& Rubin, 2002), by dividing the units into groups by the
joint value of the potential outcomes. We then formalize the
utility functions of the conditional average treatment effect
(CATE)-based (Chipman et al., 2010; Johansson et al., 2016;
Shalit et al., 2017; Wager & Athey, 2018; Künzel et al.,
2019; Shi et al., 2019) and the recommendation-based (Ma
et al., 2018; Zhang et al., 2020; Wang et al., 2022) policy
learning and discuss the explicit solutions of the optimal
policy. Unfortunately, neither of them is able to satisfy the
individual counterfactual no-harm, which is summarized
as pursuing only the maximal causal effect gain of the sub-
population is not sufficient to achieve reliable and no-harm
decision making for individuals.

The basic challenge for satisfying the counterfactual no-
harm criterion from subgroups to individuals is that, since
each unit can be only assigned with one treatment, we al-
ways observe the corresponding potential outcome, but not
both, which is also known as the fundamental problem of
causal inference (Holland, 1986; Morgan & Winship, 2015).
We follow Kallus (2022b) to consider the fraction negatively
affected (FNA), and further propose a metric to quantify
the fraction harmed by the policy. Specially, we extend Li
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& Pearl (2019) and Kallus (2022b) to give upper bounds
of the counterfactual harm, which are strictly tighter under
mild assumptions. Notably, the proposed estimators of up-
per bounds are consistent and asymptotically normal under
weaker assumptions compared to Kallus (2022b), and are
convenient for policy learning, especially in optimization.

Next, we turn to the question that how to bridge the CATE
and the cost function with the counterfactual no harm crite-
rion? From a policy learning perspective, we demonstrate
that larger CATE or cost would contribute to counterfactual
harmless, which also has a guiding significance in practice.

To learn the optimal policies satisfying the counterfactual
no-harm criterion, we propose estimators for the policy util-
ity and the upper bound of policy harm, respectively, and
further propose a policy learning approach. Moreover, we
prove the consistency results, when the policies are para-
metric (also known as policy gradient) and nonparametric,
respectively. To the best of our knowledge, this is the first
paper to propose policy learning approaches that satisfy the
counterfactual no-harm criterion and to prove its consistency
to the optimal counterfactual harmless policy reward.

The contributions of this paper are summarized as follows.

• We formally discuss the counterfactual no-harm criterion
for policy learning from a principal stratification perspective
and show that common CATE-based and recommendation-
based policy learning do not satisfy the criterion.
• We propose a metric to quantify the fraction harmed by
the policy, and a novel estimator for its upper bound, and
prove its consistency and asymptotic normality.
• Based on the estimators for the upper bounds and policy
reward, we further propose policy learning approaches that
satisfy the counterfactual no-harm criterion and prove its
consistency to the optimal policy reward for parametric and
non-parametric policy classes, respectively.
• Extensive experiments are conducted to show the effec-
tiveness of the proposed policy learning approaches for
satisfying the counterfactual no-harm criterion.

2. Related Work
Trustworthy Policy Evaluation and Learning. Policy
learning aims to determine the individuals who should be
treated that maximizes the utility function based on their
covariates (Murphy, 2003). Previous studies employ group
causal effects to define the utility to learn individualized
treatment policies, using regression based (Bertsimas et al.,
2016), reweighted based (Kitagawa & Tetenov, 2018), and
doubly robust methods (Athey & Wager, 2021).

In addition to utility maximization, trustworthy policy learn-
ing requires that the learned policy has beneficence, non-
maleficence, autonomy, justice, and explicability (Thiebes

et al., 2021; Floridi, 2019; Kaur et al., 2022), and many
counterfactual-based metrics are proposed to quantify the
policy’s trustworthiness (Kusner et al., 2017; Nabi & Sh-
pitser, 2018; Chiappa, 2019; Ben-Michael et al., 2022). In
this paper, we focus on policy learning under the counter-
factual no-harm criterion, which has rarely been discussed.

Heterogeneous Treatment Effects and No-Harm Crite-
rion. Heterogeneous treatment effects, also known as the
conditional average treatment effects (CATEs), describe the
average treatment effects on subgroups with specific covari-
ates, which plays a crucial role in such domains as precision
medicine (Jaskowski & Jaroszewicz, 2012) and decision
making (Guelman et al., 2015). Many approaches have been
proposed for the estimation of CATE, such as Bayesian
Additive Regression Trees (BART) (Chipman et al., 2010),
Balancing Neural Network (BNN) (Johansson et al., 2016),
CounterFactual Regression (CFR) (Shalit et al., 2017), Per-
fect Match (PM) (Schwab et al., 2018), Causal Forest (CF)
(Wager & Athey, 2018), X-learner (Künzel et al., 2019), and
DragonNet (Shi et al., 2019).

However, the observation-based utilities and CATE do not
necessarily satisfy the no-harm criterion, especially under
the individual sense. This is intuitively due to that CATE-
based policy learning only seeks to maximize the average
effect under (sub)groups (see Section 4 for the formal dis-
cussions). Towards this end, Richens et al. (2022) propose a
formal definition of harm and benefit using causal models.
Li & Pearl (2019) and Ben-Michael et al. (2022) consider
the utilities depend on unobserved outcomes in binary out-
comes case. Kallus (2022b) propose the sharp bounds on
the fractions that are negatively affected, and Kallus (2022a)
study the conditional value at risk (CVaR) for the continuous
outcomes. In this paper, we extend Li & Pearl (2019) and
Kallus (2022b) to give an upper bound of the counterfactual
harm by the policy, the proposed upper bound is strictly
tighter under mild assumptions, as well as has many desir-
able properties. We also propose estimation methods for
policy learning satisfying the counterfactual no-harm crite-
rion, and show the consistency and asymptotic normality.

3. Preliminaries
3.1. Notation and Setup

In this paper, we consider the case of binary treatment. Sup-
pose a simple random sampling of n units from a super pop-
ulation P, for each unit i, the covariate and the assigned treat-
ment are denoted as Xi ∈ X ⊂ Rm and Ti ∈ T = {0, 1},
respectively, where Ti = 1 means receiving treatment, while
Ti = 0 means not receiving treatment and maintaining a
natural state. Let Yi ∈ Y = {0, 1} be the corresponding
binary outcome. Without loss of generality, we assume that
the larger outcome is preferable. To study the counterfactual
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Table 1. The units are divided into four subgroups from a princi-
pal stratification perspective, according to (Y (0), Y (1)), named
”useless treatment group”, ”useful treatment group”, ”harmful
treatment group”, and ”harmless treatment group”, respectively.

NOTATION GROUP Y (0) Y (1)

Y0,0 USELESS TREATMENT 0 0
Y0,1 USEFUL TREATMENT 0 1
Y1,0 HARMFUL TREATMENT 1 0
Y1,1 HARMLESS TREATMENT 1 1

no-harm criterion for individuals, we adopt the potential
outcome framework (Rubin, 1974; Neyman, 1990) in causal
inference. Specifically, let Yi(0) and Yi(1) be the outcome
of unit i had this unit receive treatment Ti = 0 and Ti = 1,
respectively. Since each unit can be only assigned with one
treatment, we always observe the corresponding outcome
be either Yi(0) or Yi(1), but not both, which is also known
as the fundamental problem of causal inference (Holland,
1986; Morgan & Winship, 2015).

We assume that the observation for unit i is Yi = (1 −
Ti)Yi(0) + TiYi(1). In other words, the observed outcome
is the potential outcome corresponding to the assigned treat-
ment, which also known as the consistency assumption in
the causal literature. We assume that the stable unit treat-
ment value assumption (STUVA) assumption holds, i.e.,
there should not be alternative forms of the treatment and
interference between units. Furthermore, we follow Li &
Pearl (2022) and Kallus (2022b) to assume that the strong
ignorability assumption holds, i.e., (Yi(0), Yi(1)) ⊥⊥ Ti|Xi

and let η < P(Ti = 1|Xi = x) < 1 − η, where η is a
constant between 0 and 1/2.

To evaluate treatment assignments or learned policies, causal
effects are widely adopted. For unit i, the individual treat-
ment effect (ITE) is defined as ITEi = Yi(1)−Yi(0), where
ITEi > 0 indicates that the treatment Ti = 1 is beneficial
for individual i, and vice versa. The conditional average
treatment effect (CATE) is defined as

τ(x) = E[ITEi|Xi = x] = E[Yi(1)− Yi(0)|Xi = x],

that is, the difference in the conditional mean outcomes
between treatments given covariate. For simplification, we
drop the subscript i for a generic unit hereafter.

3.2. Principal Stratification Method

In contrast to dividing units into groups by the observed
characteristics, principal stratification method (Frangakis &
Rubin, 2002) divides units into groups by the joint value of
the potential outcomes from a counterfactual perspective. It
provides more informative description of the individual risk,
and has been widely adopted in survival analysis (Zhang &

Rubin, 2003; Imai, 2008; Ding et al., 2011) and mediation
analysis (Frangakis & Rubin, 1999; Gallop et al., 2009;
Jiang et al., 2016).

Specifically, we follow Ben-Michael et al. (2022) to define
the groups of (Y (0) = 0, Y (1) = 0), (Y (0) = 0, Y (1) =
1), (Y (0) = 1, Y (1) = 0), (Y (0) = 1, Y (1) = 1) as the
useless treatment group, useful treatment group, harmful
treatment group, and harmless treatment group, respectively.
For simplification, we denote the labels of the four groups as
Y0,0, Y0,1, Y1,0, and Y1,1 correspondingly, as shown in Table
1. Let P(Y0,0|X = x), P(Y0,1|X = x), P(Y1,0|X = x) and
P(Y1,1|X = x) be the probability that units with covariate
X = x belong to each group. Then τ(x) is

τ(x) = E(Y (1)− Y (0)|X = x)

= (0− 0)P(Y0,0|X = x) + (1− 0)P(Y0,1|X = x)

+ (0− 1)P(Y1,0|X = x) + (1− 1)P(Y1,1|X = x)

= P(Y0,1|X = x)− P(Y1,0|X = x),

that is, the difference between the probabilities of belonging
to the useful group Y0,1 and harmful group Y1,0 in the sub-
population ofX = x. Whereas the principal stratification in-
terests in the values of P(Y0,1|X = x) and P(Y1,0|X = x).

Remarkably, compared to CATE, the principal stratification
provides a more fine-grained and informative description of
the individuals. However, even with the strong ignorability
assumption, we are still unable to obtain unbiased estimates
of all the P(Y0,0|X = x), P(Y0,1|X = x), P(Y1,0|X = x)
and P(Y1,1|X = x), which poses a serious challenge to
assess the individual risk of a learned policy.

4. Counterfactual No-Harm Criterion and the
Relation to Trustworthy Policy Learning

4.1. Counterfactual No-Harm Criterion

Trustworthy policy learning requires that the learned pol-
icy pursue both beneficence and non-maleficence (Thiebes
et al., 2021). However, many previous studies have been
devoted to maximizing group utility, while have ignored the
counterfactual no-harm requirement on the individual level.

For instance, for seriously ill patients, one can give either an
(active) therapeutic intervention T = 1 or maintain a (con-
servative) natural state T = 0. However, in any case, the
treatment assigned to an individual should not be harmful,
i.e., no active treatment T = 1 should be given to individu-
als with (Y (0) = 1, Y (1) = 0), since these patients could
have had a more favorable outcome under the natural state
T = 0. This also serves as the basic principle of the Hip-
pocratic oath (Sokol, 2013) that ”First do no harm”, and
similar principles can be found from the environmental pol-
icy (Lin, 2006), the foundations of classical liberalism (Mill,
1966), and Asimov’s laws of robotics (Asimov, 2004).
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Given that policy learning based on (conditional) average
causal effects seeks to maximize the average utility of the
(sub)population rather than the individual, we argue that
these approaches may be overly aggressive and thus harm a
large number of individuals. For example, consider a policy
that can be useful for 50% of patients but will harm 30%
of patients, while an alternative policy can only be useful
for 15% of patients but no harm. It is clear that the latter is
more applicable when considering counterfactual no-harm
requirements, whereas those policies only considering to
maximize CATEs would prefer the former.

4.2. Previous CATE-Based Policy Learning Does Not
Meet the Counterfactual No-Harm Criterion

Let π : X → [0, 1] be a policy that maps from the individual
context X = x to the probability of the treatment T = 1
to be assigned. For a general policy learning under the
counterfactual criterion, let U = U(X,T, Y (T ))1 be the
utility function and the policy reward R(π) is

R(π) = E[π(X)U(X, 1, Y (1)) + (1− π(X))U(X, 0, Y (0))].

The policy learning aims to learn an optimal policy π∗ that
maximizes the policy reward π∗ = argmaxπ∈Π R(π).

For the observed outcome-based decision making rule, the
utility function is defined as U(X,T, Y ) = Y . More gen-
erally, given the bounded cost function c(X) of imposing
active treatment T = 1 compared to no treatment T = 0,
the utility function is U(X,T, Y ; c) = Y − Tc(X). Let
the policy reward be R(π; c), and the optimal policy be
π∗(x; c) = argmaxπ∈ΠR(π; c).

By substituting the utility in the policy reward, we have

R(π; c) = E[(Y (1)− c(X))π(X) + Y (0)(1− π(X))]

= E[(Y (1)− Y (0)− c(X))π(X) + Y (0)],

and the optimal policy is

π∗(x; c) =


1, E[Y (1)− Y (0) | X = x] = τ(x) > c(x)

0, E[Y (1)− Y (0) | X = x] = τ(x) < c(x),

d, E[Y (1)− Y (0) | X = x] = τ(x) = c(x)

where d is any value between 0 and 1, and π∗ would al-
ways impose a treatment intervention T = 1 for individuals
whose τ(x) is greater than the cost c(x) and vice versa,
which is same as CATE-based policy learning. From a
principle stratification prospective, that is equivalent to

π∗(x; c) =


1, P(Y0,1|X = x)− P(Y1,0|X = x) > c(x)

0, P(Y0,1|X = x)− P(Y1,0|X = x) < c(x).

d, P(Y0,1|X = x)− P(Y1,0|X = x) = c(x)

1Under the consistency assumption in Section 3.1, we write
U = U(X,T, Y (T )) = U(X,T, Y ) thereafter for simplification.

Therefore, one can conclude that the optimal policies do
not satisfy the counterfactual no-harm criterion. The reason
is that such policies only focus on the difference between
P(Y0,1|X = x) and P(Y1,0|X = x), and fail to control
P(Y1,0|X = x) itself and may assign harmful treatments.
In particular, when both P(Y0,1|X = x) and P(Y1,0|X = x)
are large, the optimal policy might still prefer to assign the
active treatment T = 1, which results in a harmful decision
making for the individuals.

4.3. Previous Recommendation Policy Learning Does
Not Meet the Counterfactual No-Harm Criterion

In contrast to CATE-based policy learning, an alternative
branch is personalized recommendation, which plays an
crucial role in practice. For advertising agencies, they gain
profit only when the ad is being recommended to the user
T = 1 and converts Y = 1 (Ma et al., 2018; Zhang et al.,
2020; Wang et al., 2022). Formally, the utility function is
U(X,T, Y ) = TY − Tc(X), where c(X) is the cost of
placing an advertisement T = 1. Then we have

R(π; c) = E[(Y (1)− c(X))π(X)],

and the optimal policy π∗(x; c) = argmaxπ∈ΠR(π; c) is

π∗(x; c) =


1, P(Y0,1|X = x) + P(Y1,1|X = x) > c(x)

0, P(Y0,1|X = x) + P(Y1,1|X = x) < c(x).

d, P(Y0,1|X = x) + P(Y1,1|X = x) = c(x)

One can see that this would lead to a more serious violation
of the counterfactual no-harm criterion compared to the
polices learned in Section 4.2, which is also empirically
verified in Section 7. In fact, the optimal policies only
care about the sum of P(Y0,1|X = x) and P(Y1,1|X = x),
i.e., the users for whom conversion Y (1) = 1 would occur
under the active recommendation T = 1. Such policies
never take into account the harmful treatment population
P(Y1,0|X = x), which would lead to a more aggressive
recommendation policy and cause potential user churn.

5. Proposed Sharp Bounds of the
Counterfactual No-Harm Criterion

In the previous section, we found that both CATE-based
and recommendation-based policy learning fail to satisfy
the counterfactual no-harm criterion, since they do not care
how many individuals will be negatively affected by the
learned policy. However, we cannot explicitly identify the
individuals who are negatively affected by the treatment
intervention, because of the fundamental problem of causal
inference – that we never observe the two potential outcomes
(Y (0), Y (1)) at the same time. We follow Kallus (2022b) to
consider the fraction negatively affected (FNA), i.e., FNA =
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P(Y (0) = 1, Y (1) = 0) = P(Y1,0), and let FNA(x) be the
FNA with given covariates X = x that

FNA(x) = P(Y (0) = 1, Y (1) = 0|X = x).

Given a policy π ∈ Π, we further propose FNA(π) as the
fraction harmed by the policy π that

FNA(π) = E(P(Y (0) = 1, Y (1) = 0|X)π(X)).

In Proposition 5.1, we discuss a general upper bound for
FNA(x) and FNA(π), respectively.

Proposition 5.1 (Tight upper bounds). (a) The tight upper
bound of FNA(x), named wFNA(x), is

min{P(Y = 1|T = 0, X = x),P(Y = 0|T = 1, X = x)};

(b) Given a policy π ∈ Π, the tight upper bound of the
FNA(π) is E[wFNA(X)π(X)].

The upper bounds wFNA(x) and E[wFNA(X)π(X)] in
Proposition 5.1 are tight, that is, the best we could infer
given infinite data, and they are reached when P(Y = 1|T =
0, X = x) = P(Y = 0|T = 1, X = x) = 1. Besides, it
does not require any additional assumptions, which can be
regarded as a special case in Li & Pearl (2022) and Kallus
(2022b). However, this bound is wide and inconvenient for
our policy learning (see the discussions after Theorem 5.2).
By further assuming that Y (0) and Y (1) are non-negatively
correlated given X = x, we give narrower bounds in The-
orem 5.2, and discuss the convenience as well as the theo-
retical results in the following. Note that the assumption is
empirically reasonable as well as easily satisfied. For exam-
ple, in medical scenarios where T = 1 indicates receiving
active treatment, a patient’s health status affects both Y (0)
and Y (1) (Efron & Feldman, 1991); for a teacher-incentive
program where T = 1 indicates receiving financial incen-
tives, a teacher’s knowledge level and intend to teach affects
both Y (0) and Y (1) (Duflo et al., 2012).

Theorem 5.2 (Main result 1). (a) If Y (0) and Y (1) are
non-negatively correlated given X = x, the tight upper
bound of the FNA(x), named uFNA(x), is

P(Y = 1|T = 0, X = x)P(Y = 0|T = 1, X = x);

(b) Given a policy π ∈ Π, the tight upper bound of the
FNA(π) is E[uFNA(X)π(X)].

Notably, the conclusion in Theorem 5.2 gives the tightest-
possible upper bounds (see Remark 5.3) and are narrower
than the upper bounds in Proposition 5.1 (see Remark 5.4).
Remark 5.3 (Tightest-Possible (i.e., Sharp) Bounds). The
upper bounds uFNA(x) are tight, and are reached when
Y (0) and Y (1) are conditional independent for x ∈ X .

Remark 5.4 (Tighter Bounds). The upper bounds uFNA(x)
are tighter than that of wFNA(x) for x ∈ X , and
E[uFNA(X)π(X)] ≤ E[wFNA(X)π(X)] for π ∈ Π.

Moreover, the upper bounds in Theorem 5.2 require only
mild assumptions to guarantee the asymptotic normality of
the estimates, while the upper bounds in Proposition 5.1
require stronger assumptions, namely the sharpness margin
condition in Kallus (2022b). We further claim that the upper
bounds in Theorem 5.2 are convenient for policy learning,
especially for optimization, with better smoothness and dif-
ferentiability, compared to the upper bounds in Proposition
5.1 where minimization operators exist.

In the end of this section, we formally discuss the relation
between the CATEs τ(x) and the upper bounds of FNA(x)
in Theorem 5.5. Given that CATEs are the finest magnitudes
that can be identified via a data-driven way, Theorem 5.5
has important implications for guiding the policy learning
that satisfies the counterfactual no-harm criterion.

Theorem 5.5 (Relation between CATEs and upper bounds).
For the upper bounds wFNA(x) in Proposition 5.1 and
uFNA(x) in Theorem 5.2, for all x ∈ X , we have

wFNA(x) ≤
1− τ(x)

2
, and uFNA(x) ≤

(1− τ(x))2

4
.

Theorem 5.5 states that, for units whose CATE τ(x) tends
to be 1, the probability that they are negatively affected
by the treatment T = 1 tends to be 0, i.e., the treatment
is no-harm and safe. In fact, in real medical scenarios,
physicians treat patients if they are confident that τ(x)
is sufficiently large, and both wFNA(x) and uFNA(x) are
small from Theorem 5.5. An alternative observation is that
physicians treat patients who would die if untreated, i.e.,
P(Y = 1|T = 0, X = x) is small, which would also lead
to small wFNA(x) and uFNA(x) from the formulas.

In Corollary 5.6, we further discuss the relation between
the cost function c(x) and the counterfactual harm upper
bounds of the optimal policies π∗ in Section 4.2.

Corollary 5.6 (Relation to the cost). For the upper bound
wFNA(π) in Proposition 5.1 and uFNA(π) in Theorem 5.2,
the optimal policies π∗ in Section 4.2 satisfy

wFNA(π
∗) ≤ E

[1− c(X)

2
π∗(X)

]
, and

uFNA(π
∗) ≤ E

[ (1− c(X))2

4
π∗(X)

]
.

Corollary 5.6 shows that increasing the cost function c(x)
reduces the counterfactual harm of the optimal policies π∗

in Section 4.2. This is because the optimal policies π∗ tend
to be more conservative as c(x) increases, and thus fewer
units are being actively treated with T = 1. Notably, given
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CATE τ(x) and the cost function c(x), the uFNA(x) and
uFNA(π

∗) always lead to tighter counterfactual harm upper
bounds than wFNA(x) and wFNA(π

∗) in the right hand side
(RHS) of Theorem 5.5 and Corollary 5.6.

6. Trustworthy No-Harm Policy Learning
Denote π∗ as the optimal target policy satisfying the coun-
terfactual no-harm criterion

maxπ∈Π R(π; c, ρ)
subject to uFNA(π) ≤ λ,

(1)

where λ is a pre-specified level of allowed harm, and

R(π; c, ρ) = E[π(X){Y (1)−c(X)}+ρY (0){1−π(X)}]

for ρ ∈ [0, 1], which is a general form of policy reward for
different utility functions given in Sections 4.2 and 4.3. For
example,R(π; c, 1) = R(π) forU(X,T, Y ) = Y −Tc(X),
and R(π; c, 0) = R(π) for U(X,T, Y ) = TY − Tc(X).

Let π̂∗ be the learned policy of π∗, derived by optimizing
the empirical form of Eq. (1),

maxπ∈Π R̂(π; c, ρ)
subject to ûFNA(π) ≤ λ,

(2)

where R̂(π; c, ρ) and ûFNA(π) are the corresponding esti-
mators of R(π; c, ρ) and uFNA(π), obtained as follows.

Let e(x) := P(T = 1|X = x), µt(x) := E[Y |T = t,X =
x] for t = 0, 1, and

φπ(Z; e, µ0, µ1) =

(
T (Y − µ1(X))

e(X)
+ µ1(X)− c(X)

)
π(X)

+ρ

(
(1− T )(Y − µ0(X))

1− e(X)
+ µ0(X)

)
(1− π(X)),

ψπ(Z; e, µ0, µ1) =

(
(1− T )(Y − µ0(X))

1− e(X)
+ µ0(X)

)
π(X)

−
(
T (Y − µ1(X))

e(X)
+ µ1(X)

)
µ0(X)π(X),

where Z = (T,X, Y ), then R(π; c, ρ) and uFNA(π) can be
unbiasedly estimated by φπ and ψπ from Lemma 6.1.
Lemma 6.1. ∀π ∈ Π, R(π; c, ρ) = E[φπ(Z; e, µ0, µ1)]
and uFNA(π) = E[ψπ(Z; e, µ0, µ1)].

Denote ê(x) and µ̂t(x) for t = 0, 1 as the estimators of e(x)
and µt(x), respectively, using the sample-splitting (Wager
& Athey, 2018; Chernozhukov et al., 2018) technique (See
appendix for details). From Lemma 6.1, it is natural to
define the estimators of R(π; c, ρ) and uFNA(π) as

R̂(π; c, ρ) =
1

n

n∑
i=1

φπ(Zi; ê, µ̂0, µ̂1),

ûFNA(π) =
1

n

n∑
i=1

ψπ(Zi; ê, µ̂0, µ̂1),

which are augmented inverse probability weighting (AIPW)-
like estimators (Robins et al., 1994; 1995).
Theorem 6.2. Suppose that ||ê(x) − e(x)||2 · ||µ̂t(x) −
µt(x)||2 = oP(n

−1/2) for all x ∈ X and t ∈ {0, 1},

(a) R̂(π, c; ρ) is consistent and asymptotically normal
√
n{R̂(π, c; ρ)−R(π, c; ρ)} −→ N(0, σ2

1),

where σ2
1 = V[φπ(Z; e, µ0, µ1)];

(b) if µ0(x) = µ0(x;ϕ) is a parametric model, ûFNA(π) is
consistent and asymptotically normal

√
n{ûFNA(π)− uFNA(π)} −→ N(0, σ2

2),

where

σ2
2 = V

[
ψπ(Z; e, µ0, µ1)− s(X)E

{∂µ0(X;ϕ)

∂ϕ
µ1(X)π(X)

}]
,

and s(X) is the influence function of estimator of ϕ.

Theorem 6.2 shows the consistency and asymptotically
normality of R̂(π; c, ρ) and ûFNA(π) under mild assump-
tions. Based on it, we can derive the convergence rates
of R(π∗; c, ρ)−R(π̂∗; c, ρ) and R(π∗; c, ρ)− R̂(π̂∗; c, ρ),
which are the regret of the learned policy, and error of the
estimated reward of learned policy, respectively.
Theorem 6.3 (Main result 2). Suppose that for all π ∈ Π,
π(x) = π(x; θ) is a continuously differentiable and convex
function with respect to θ, where θ ∈ Θ is a compact set,
under the assumptions in Theorem 6.2, then we have

(a) The expected reward of the learned policy is consistent,
and R(π̂∗; c, ρ)−R(π∗; c, ρ) = OP(1/

√
n);

(b) The estimated reward of the learned policy is consistent,
and R̂(π̂∗; c, ρ)−R(π∗; c, ρ) = OP(1/

√
n).

Theorem 6.3(a) shows that the regret of the learned pol-
icy has a convergence rate of order 1/

√
n, and Theorem

6.3(b) shows that the estimated reward of learned policy
R̂(π̂∗) is a

√
n-consistent estimator of the optimal harmless

policy reward R(π∗) for parametric policy classes under
mild assumptions, which are widely widely adopted in prac-
tice (Puterman, 2014; Sutton & Barto, 2018).
Theorem 6.4 (Main result 3). Suppose that Π is a P-G-C
class, µ̂t(x) and ê(x) are uniformly consistent estimators of
µt(x) and e(x) for t = 0, 1, respectively, and aπ ∈ Π for
any π ∈ Π and 0 < a < 1, then we have (a) R(π̂∗; c, ρ)−
R(π∗; c, ρ)

P→ 0; and (b) R̂(π̂∗; c, ρ)−R(π∗; c, ρ)
P→ 0.

In contrast to policy gradient learning, if we relax the para-
metric restriction on the policy class and extend it to the
P-Glivenko-Cantelli (P-G-C) class (van der Vaart & Wellner,
1996), then both R(π̂∗; c, ρ) and R̂(π̂∗; c, ρ) remain consis-
tent estimators of R(π∗; c, ρ) under mild assumptions, as
concluded in Theorem 6.4 (see appendix for proofs).
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Table 2. Comparison of the Naive method (maximizing estimated rewards), the proposed No-Harm (u) and No-Harm (w) methods in
terms of the true reward, welfare change, and true harm on IHDP and JOBS. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functions c(x) = 0, 0.05, 0.10), respectively, where the expected reward and counterfactual harm
upper bound are estimated using augmented inverse probability weighting (AIPW) estimators in Section 6.

IHDP: TRUE HARM ≤ 13 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 570.96 ± 3.28 ↑ 157.78 ± 4.11 ↑ 19.12 ± 2.29 ↑ 549.14 ± 1.61 ↑ 139.16 ± 1.43 ↑ 64.36 ± 0.87 ↑
NO-HARM (u) 496.93 ± 11.39 83.80 ± 10.42 10.34 ± 2.54 100.90 ± 15.11 43.82 ± 10.37 9.60 ± 2.52
NO-HARM (w) 459.80 ± 6.86 48.56 ± 6.82 5.98 ± 1.95 73.76 ± 15.62 31.82 ± 7.16 5.42 ± 2.26

c = 0.05
NAIVE 551.62 ± 4.15 ↑ 154.40 ± 4.39 ↑ 16.76 ± 2.21 ↑ 515.30 ± 2.29 ↑ 139.48 ± 1.38 ↑ 64.16 ± 0.70 ↑
NO-HARM (u) 491.33 ± 13.44 84.34 ± 13.91 9.32 ± 2.83 101.42 ± 12.16 47.82 ± 9.10 9.88 ± 2.61
NO-HARM (w) 456.17 ± 6.88 50.50 ± 6.40 6.02 ± 2.01 67.59 ± 13.56 31.46 ± 7.74 5.98 ± 2.94

c = 0.10
NAIVE 534.27 ± 4.21 ↑ 148.74 ± 4.10 ↑ 14.86 ± 2.21 ↑ 480.98 ± 2.63 ↑ 139.50 ± 1.96 ↑ 63.90 ± 0.96 ↑
NO-HARM (u) 482.14 ± 12.73 81.68 ± 15.00 8.60 ± 3.46 92.42 ± 15.17 47.34 ± 8.52 8.90 ± 2.84
NO-HARM (w) 452.29 ± 5.76 49.00 ± 7.03 5.42 ± 1.92 63.33 ± 12.54 31.82 ± 8.05 5.58 ± 2.17

JOBS: TRUE HARM ≤ 50 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 1798.60 ± 7.63 ↑ 583.96 ± 10.54 ↑ 113.73 ± 4.47 ↑ 1965.33 ± 1.44 ↑ 758.50 ± 1.52 ↑ 251.30 ± 0.69 ↑
NO-HARM (u) 1453.00 ± 21.96 237.36 ± 29.81 43.23 ± 8.06 528.00 ± 22.16 195.73 ± 13.80 41.40 ± 4.85
NO-HARM (w) 1325.00 ± 48.62 113.74 ± 60.39 16.80 ± 8.41 197.46 ± 138.66 66.26 ± 52.88 17.16 ± 12.60

c = 0.05
NAIVE 1701.13 ± 10.41 ↑ 566.23 ± 11.23 ↑ 93.93 ± 4.68 ↑ 1760.50 ± 11.30 ↑ 705.26 ± 8.62 ↑ 238.23 ± 3.68 ↑
NO-HARM (u) 1408.72 ± 27.01 242.66 ± 44.18 41.13 ± 9.31 504.18 ± 25.78 195.80 ± 18.89 42.86 ± 5.32
NO-HARM (w) 1325.56 ± 32.28 118.83 ± 55.50 19.76 ± 9.13 220.94 ± 113.36 77.30 ± 43.96 18.93 ± 8.92

c = 0.10
NAIVE 1612.20 ± 9.07 ↑ 527.06 ± 52.29 ↑ 72.66 ± 7.65 ↑ 1529.96 ± 49.49 ↑ 630.86 ± 34.30 ↑ 212.93 ± 11.51 ↑
NO-HARM (u) 1362.20 ± 22.95 232.63 ± 51.70 36.26 ± 8.04 475.10 ± 20.52 193.83 ± 16.48 44.30 ± 5.84
NO-HARM (w) 1257.19 ± 39.17 67.83 ± 59.52 11.63 ± 8.91 214.76 ± 179.24 85.33 ± 82.95 22.93 ± 23.32

7. Experiments
7.1. Experimental Setup

Dataset and Prepossessing. Following previous stud-
ies (Shalit et al., 2017; Louizos et al., 2017; Yoon et al.,
2018; Yao et al., 2018), we conduct extensive experiments
on one semi-synthetic dataset, IHDP, and one real-world
dataset, JOBS. The IHDP dataset (Hill, 2011) is based on
the Infant Health and Development Program (IHDP), and
examines the effects of specialist home visits on future cog-
nitive test scores. The dataset comprises 672 units (123
treated, 549 control) and 25 covariates measuring aspects
of children and their mothers. The JOBS dataset (LaLonde,
1986) is based on the National Supported Work program,
and examines the effects of job training on income and em-
ployment status after training. The dataset comprises 2,570
units (237 treated, 2,333 control) and 17 covariates from
non-randomized observational studies.

Different from estimating causal effects, even for data col-
lected from randomized controlled trials, we are unable
to identify whether individuals are in the ”harmful treat-
ment” strata, i.e., Y (0) = 1 and Y (1) = 0. Thus, we
simulate potential outcomes based on the covariates as
follows: Yi(0) ∼ Bern(σ(w0xi + ϵ0,i)), and Yi(1) ∼
Bern(σ(w1xi + ϵ1,i)), where σ(·) is the sigmoid function,
w0 ∼ N[−1,1](0, 1) follows a truncated normal distribu-
tion, w1 ∼ Unif(−1, 1) follows a uniform distribution,

ϵ0,i ∼ N (α0, 1), and ϵ1,i ∼ N (α1, 1). We set the noise
parameters α0 = 1 and α1 = 3 for IHDP and α0 = 0 and
α1 = 2 for JOBS.

Experimental Details. The goal of our policy learning is
to maximize the reward and the resulting change in wel-
fare while satisfying the counterfactual no-harm criterion.
Given that the simulated potential outcomes demonstrate 65
and 252 units in the ”harmful treatment” strata on IHDP
and JOBS, respectively, we define the counterfactual no-
harm criterion as harming less than 20% of them by the
learned policy, i.e., 13 units for IHDP and 50 units for
JOBS. Formally, the reward for the learned policy π(x)
is
∑n

i=1(Yi(1) − c)π(xi) + Yi(0)(1 − π(xi)) for CATE-
based and

∑n
i=1(Yi(1) − c)π(xi) for recommendation-

based policy learning, respectively. Following (Kitagawa
& Tetenov, 2018), the change in welfare is defined as
∆W (π) =

∑n
i=1[Yi(1) · π(xi) + Yi(0) · (1 − π(xi))] −∑n

i=1 Yi(0) =
∑n

i=1[(Yi(1) − Yi(0)) · π(xi)]. The true
harm is

∑n
i=1 1{Yi(0) = 1, Yi(1) = 0} · π(xi).

We learn policies satisfying the counterfactual no-harm cri-
terion based on the estimation of the upper bound wFNA(x)
in Proposition 5.1 and the estimation of the upper bound
uFNA(x) in Theorem 5.2, named ”No-Harm (w)” and ”No-
Harm (u)” respectively, and compare them to the baseline
method that directly maximizes the estimated reward. We
tune the costs c(x) = 0, 0.025, 0.05, 0.075, 0.10 and use
OR, IPW, AIPW estimators (see appendix for details).
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(a) Real harm in CATE case. (b) ∆Welfare in CATE case. (c) Real harm in recommendation. (d) ∆Welfare in recommendation.

Figure 1. Comparison of Naive, No-Harm (u), and No-Harm (w) methods by OR, IPW, and AIPW estimators on IHDP.

(a) Real harm in CATE case. (b) ∆Welfare in CATE case. (c) Real harm in recommendation. (d) ∆Welfare in recommendation.

Figure 2. Comparison of Naive, No-Harm (u), and No-Harm (w) methods by OR, IPW, and AIPW estimators on JOBS.

7.2. Experimental Results

CATE and Recommendation-Based Policy Learning. We
average over 100 realizations of policy learning in IHDP
and JOBS, and the results are shown in Table 2. First, the
Naive approach provides the largest reward and welfare
change, however, it comes at the expense of individual harm
and fails to satisfy the counterfactual no-harm criterion in
all scenarios. Importantly, compared with the CATE-based
policy learning, the recommendation-based policy learning
has significantly greater true harm, which empirically val-
idates the conclusions in Section 4.3. Meanwhile, it has
a larger reward-to-welfare-change ratio, where the reward
is interpreted as the total revenue gained by the ad agency
through successful ad placements (expressed as purchases),
the welfare change is the number of ad placements with a
positive causal effect, and the true harm is related to the
customer churn due to (aggressive) ad placements. Second,
the proposed No-Harm (u) and No-Harm (w) satisfy the
counterfactual no-harm criterion in all scenarios, with the
former can result in pursuing higher reward and welfare
changes while satisfying no-harm criterion due to the tighter
upper bound uFNA(x) ≤ wFNA(x).

Effects of Varying Cost. We further study the effects of
varying costs c(x) (see appendix for more results). From Ta-
ble 2, an increase in cost would decrease the total number of
individuals with respect to reward, welfare change, and true
harm, which empirically demonstrates the trade-off between
group welfare and individual no-harm, validating the find-
ings in Corollary 5.6. Nevertheless, even with c(x) = 0.10,
the Naive approach still fails to satisfy the counterfactual no-
harm criterion in all scenarios. Furthermore, compared with
the Naive method, the proposed policy learning approaches

have a more conservative treatment assignment due to the
fact that they are constrained by the counterfactual harm up-
per bound. Thus, increasing costs may not have a significant
impact on welfare changes.

Effects of OR, IPW, and AIPW Estimators. In addition to
using the AIPW estimator to estimate the policy reward and
counterfactual harm upper bound in Section 6, we further
explore the use of outcome regression (OR), inverse proba-
bility weighting (IPW) as alternative estimators for policy
learning, and the results on IHDP and JOBS are shown in
Figures 1 and 2, respectively (see appendix for more re-
sults). Similar findings hold that our methods satisfy the
counterfactual no-harm criterion in all scenarios, while the
Naive method exhibits significantly violation of individual
harm in the recommendation scenario. Moreover, the AIPW
estimator on IHDP and the OR estimator on JOBS show
the highest welfare increase for our proposal, respectively,
which is interpreted as the effect from estimation error.

8. Conclusion
This paper formally discusses the counterfactual no-harm
criterion for policy learning, with its theoretical upper
bounds and estimation methods, and proves the consistency
and asymptotic normality. We further propose a policy
learning approach that satisfies the counterfactual no-harm
criterion. One possible limitation of this study is that the
optimal ”no-harm” policy may harm other related outcomes,
and the proposed method cannot lead to a strict counterfac-
tual no-harm policy (with FNA equals to zero), instead we
attempt to make counterfactual harm to be ”controllable”.
Another limitation is how to specify the allowed harm more
reasonably in practice, which we leave for future research.
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A. Proofs in Section 5
Proposition 5.1 (Tight upper bounds). (a) The tight upper bound of FNA(x), named wFNA(x), is

min(P(Y = 1|T = 0, X = x),P(Y = 0|T = 1, X = x));

(b) Given a policy π ∈ Π, the tight upper bound of the FNA(π) is E[wFNA(X)π(X)].

Proof of Proposition 5.1. (a) It suffices to show that

FNA(x) ≤ min(P(Y = 1|T = 0, X = x),P(Y = 0|T = 1, X = x)).

This follows immediately from the truth that

FNA(x) = P(Y (0) = 1, Y (1) = 0|X = x) ≤ min(P(Y (0) = 1|X = x),P(Y (1) = 0|X = x))

= min(P(Y = 1|T = 0, X = x),P(Y = 0|T = 1, X = x))

(b) Given a policy π ∈ Π, the fraction harmed by the policy π is

FNA(π) = E[P(Y (0) = 1, Y (1) = 0|X)π(X)] ≤ E[min(P(Y = 1|T = 0, X = x),P(Y = 0|T = 1, X = x)π(X)].

Theorem 5.2 (Main result 1). (a) If Y (0) and Y (1) are non-negatively correlated given X = x, the tight upper bound of
the FNA(x), named uFNA(x), is

P(Y = 1|T = 0, X = x)P(Y = 0|T = 1, X = x);

(b) Given a policy π ∈ Π, the tight upper bound of the FNA(π) is E[uFNA(X)π(X)].

Proof of Theorem 5.2. (a) The non-negative conditional correlation condition is equivalent to

P(Y (0) = 0, Y (1) = 0 | X = x)(0− P(Y1,0 | X = x)− P(Y1,1 | X = x))(0− P(Y0,1 | X = x)− P(Y1,1 | X = x))

+P(Y (0) = 0, Y (1) = 1 | X = x)(0− P(Y1,0 | X = x)− P(Y1,1 | X = x))(1− P(Y0,1 | X = x)− P(Y1,1 | X = x))

+P(Y (0) = 1, Y (1) = 0 | X = x)(1− P(Y1,0 | X = x)− P(Y1,1 | X = x))(0− P(Y0,1 | X = x)− P(Y1,1 | X = x))

+P(Y (0) = 1, Y (1) = 1 | X = x)(1− P(Y1,0 | X = x)− P(Y1,1 | X = x))(1− P(Y0,1 | X = x)− P(Y1,1 | X = x)) ≥ 0.

For simplicity, we denote P(Y = 1 | T = 0, X = x) = P(Y1,0 | X = x) + P(Y1,1 | X = x) as µ0(x), and denote
P(Y = 1 | T = 1, X = x) = P(Y0,1 | X = x) + P(Y1,1 | X = x) as µ1(x), then we have

(1− µ1(x)) (1− µ0(x)) (µ0(x)− P(Y1,0 | X = x)) + µ1(x)µ0(x) (1− µ1(x)− P(Y1,0 | X = x))

− (1− µ1(x))µ0(x) {µ1(x)− (µ0(x)− P(Y1,0 | X = x))} − µ1(x) (1− µ0(x))P(Y1,0 | X = x) ≥ 0,

which is equivalent to

(1− µ1(x)) (1− µ0(x))µ1(x) + µ1(x)µ0(x) (1− µ0(x)) + (1− µ0(x))µ1(x) (µ1(x)− µ0(x))

≥ P(Y0,1 | X = x) {(1− µ1(x)) (1− µ0(x)) + µ1(x)µ0(x) + (1− µ1(x))µ0(x) + µ1(x) (1− µ0(x))} .

Note that

P(Y (0) = 0, Y (1) = 0 | X = x) + P(Y (0) = 0, Y (1) = 1 | X = x)

+P(Y (0) = 1, Y (1) = 0 | X = x) + P(Y (0) = 1, Y (1) = 1 | X = x) = 1,

which leads to

P(Y0,1 | X = x) ≤ µ1(x) (1− µ0(x))

= (P(Y0,1 | X = x) + P(Y1,1 | X = x))(P(Y0,1 | X = x) + P(Y0,0 | X = x))

= P(Y (0) = 1|X = x)P(Y (1) = 0|X = x),
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which implies FNA(x) ≤ P(Y (0) = 1|X = x)P(Y (1) = 0|X = x).

(b) Given a policy π ∈ Π, the fraction harmed by the policy π is

FNA(π) = E[P(Y (0) = 1, Y (1) = 0|X)π(X)] ≤ E[P(Y (0) = 1|X = x)P(Y (1) = 0|X = x)π(X)].

Theorem 5.5 (Relation between CATEs and upper bounds). For the upper bounds wFNA(x) in Proposition 5.1 and uFNA(x)
in Theorem 5.2, for all x ∈ X , we have

wFNA(x) ≤
1− τ(x)

2
, and uFNA(x) ≤

(1− τ(x))2

4
.

Proof of Theorem 5.5. By min(a, b) ≤ (a+ b)/2, and let a = P(Y = 1|X = x, T = 0) and b = P(Y = 0|X = x, T = 1),
we have

wFNA(x) = min{P(Y = 1|X = x, T = 0),P(Y = 0|X = x, T = 1)} ≤ 1− τ(x)

2
.

We then show that the conditional average treatment effects (CATEs) τ(x) can be written as

τ(x) = P(Y (1)− Y (0)|X = x) = P(Y (1) = 1|X = x)− P(Y (0) = 1|X = x)

= P(Y = 1|X = x, T = 1)− P(Y = 1|X = x, T = 0),

which leads to
P(Y = 1|X = x, T = 0) + P(Y = 0|X = x, T = 1) = 1− τ(x).

By the inequality of arithmetic and geometric means that ab ≤ (a+ b)2/4, and let a = P(Y = 1|X = x, T = 0) and
b = P(Y = 0|X = x, T = 1), we have

uFNA(x) = P(Y = 1|X = x, T = 0)P(Y = 0|X = x, T = 1) ≤ (1− τ(x))2

4
.

Corollary 5.6 (Relation to the cost). For the upper bound wFNA(π) in Proposition 5.1 and uFNA(π) in Theorem 5.2, the
optimal policies π∗ in Section 4.2 satisfy

wFNA(π
∗) ≤ E

[1− c(X)

2
π∗(X)

]
, and uFNA(π

∗) ≤ E
[ (1− c(X))2

4
π∗(X)

]
.

Proof of Corollary 5.6. Recall the optimal policies π∗ in Section 4.2 is

π∗(x; c) =


1, E[Y (1)− Y (0) | X = x] = τ(x) > c(x)

0, E[Y (1)− Y (0) | X = x] = τ(x) < c(x),

d, E[Y (1)− Y (0) | X = x] = τ(x) = c(x)

where d is any value between 0 and 1, and π∗ would always impose a treatment intervention T = 1 for individuals whose
τ(x) is greater than the cost c(x). It follows directly that

wFNA(π
∗) ≤ E

[1− τ(X)

2
π∗(X)

]
≤ E

[1− c(X)

2
π∗(X)

]
, and

uFNA(π
∗) ≤ E

[ (1− τ(X))2

4
π∗(X)

]
≤ E

[ (1− c(X))2

4
π∗(X)

]
.

13



Trustworthy Policy Learning under the Counterfactual No-Harm Criterion

B. Proofs in Section 6
B.1. Proofs of Lemma 6.1 and Theorem 6.2

Lemma 6.1. For all π ∈ Π,

R(π; c, ρ) = E[φπ(T,X, Y ; e, µ0, µ1)], uFNA(π) = E[ψπ(T,X, Y ; e, µ0, µ1)].

Proof of Lemma 6.1. Under strong ignorability assumption, the upper bound of FNA(x) can be reformulated as

uFNA(x) = E(Y (0)|X = x) · [1− E(Y (1)|X = x)]

= µ0(x) · {1− µ1(x)}

= E
{
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

∣∣∣X = x

}
·
[
1− E

{
T{Y − µ1(X)}

e(X)
+ µ1(X)

∣∣∣X = x

}]
,

which implies that

uFNA(π) = E[uFNA(X) · π(X)}]

= E
[
E
(
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

∣∣∣X) ·
{
1− E

(
T{Y − µ1(X)}

e(X)
+ µ1(X)

∣∣∣X)} · π(X)

]
= E

[
E
(
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

∣∣∣X) · π(X)

]
− E

[
E
(
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

∣∣∣X) · E
(
T{Y − µ1(X)}

e(X)
+ µ1(X)

∣∣∣X) · π(X)

]
= E

[(
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

)
· π(X)

]
− E

[
µ0(X) · E

(
T{Y − µ1(X)}

e(X)
+ µ1(X)

∣∣∣X) · π(X)

]
= E

[(
(1− T ){Y − µ0(X)}

1− e(X)
+ µ0(X)

)
· π(X)

]
− E

[
µ0(X) ·

(
T{Y − µ1(X)}

e(X)
+ µ1(X)

)
· π(X)

]
,

which implies uFNA(π) = E[ψπ(T,X, Y ; e, µ0, µ1)]. Similarly, one can get R(π; c, ρ) = E[φπ(T,X, Y ; e, µ0, µ1)]. This
finishes the proof.

Theorem 6.2. Suppose that ||ê(x)− e(x)||2 · ||µ̂t(x)− µt(x)||2 = oP(n
−1/2) for all x ∈ X and t ∈ {0, 1},

(a) R̂(π, c; ρ) is consistent and asymptotically normal
√
n{R̂(π, c; ρ)−R(π, c; ρ)} −→ N(0, σ2

1),

where σ2
1 = V[φπ(T,X, Y ; e, µ0, µ1)].

(b) if µ0(x) = µ0(x;ϕ) is a parametric model, ûFNA(π) is consistent and asymptotically normal
√
n{ûFNA(π)− uFNA(π)} −→ N(0, σ2

2),

where

σ2
2 = V

[
ψπ(T,X, Y ; e, µ0, µ1)− s(X)E

{∂µ0(X;ϕ)

∂ϕ
µ1(X)π(X)

}]
,

and s(X) is the influence function of estimator of ϕ.

Proof of Theorem 6.2. We first prove Theorem 6.2(b), and Theorem 6.2(a) can be derived analogously. Recall that

ψπ(T,X, Y ; ê, µ̂0, µ̂1) =

(
(1− T ){Y − µ̂0(X)}

1− ê(X)
+ µ̂0(X)

)
π(X)−

(
T{Y − µ̂1(X)}

ê(X)
+ µ̂1(X)

)
µ̂0(X)π(X)
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and define

ψ̃π(T,X, Y ; ê, µ̂0, µ̂1) =

(
(1− T ){Y − µ̂0(X)}

1− ê(X)
+ µ̂0(X)

)
π(X)−

(
T{Y − µ̂1(X)}

ê(X)
+ µ̂1(X)

)
µ0(X)π(X).

The estimator ûFNA(π) can be decomposed as

ûFNA(π)− uFNA(π) = A1n +A2n +A3n,

where

A1n =
1

n

n∑
i=1

[ψπ(Ti, Xi, Yi; e, µ0, µ1)− uFNA(π)],

A2n =
1

n

n∑
i=1

[ψ̃π(Ti, Xi, Yi; ê, µ̂0, µ̂1)− ψπ(Ti, Xi, Yi; e, µ0, µ1)],

A3n =
1

n

n∑
i=1

[ψπ(Ti, Xi, Yi; ê, µ̂0, µ̂1)− ψ̃π(Ti, Xi, Yi; ê, µ̂0, µ̂1)].

Note that A1n is a sum of n independent variables with zero means. Next, we focus on analyzing A2n, which can be be
further expanded as

A2n = A2n − E[A2n] + E[A2n].

Define the Gateaux derivative of the generic function g in the direction [ê− e, µ̂0 − µ0, µ̂1 − µ1] by ∂[ê−e,µ̂0−µ0,µ̂1−µ1]g.
By a Taylor expansion for E[A2n] yields that

E[A2n] = E[ψ̃π(Ti, Xi, Yi; ê, µ̂0, µ̂1)− ψπ(Ti, Xi, Yi; e, µ0, µ1)]

= ∂[ê−e,µ̂0−µ0,µ̂1−µ1]E[ψπ(Ti, Xi, Yi; e, µ0, µ1)]

+
1

2
∂2[ê−e,µ̂0−µ0,µ̂1−µ1]

E[ψπ(Ti, Xi, Yi; e, µ0, µ1)] + · · ·

The first-order term

∂[ê−e,µ̂0−µ0,µ̂1−µ1]E[ψπ(Ti, Xi, Yi; e, µ0, µ1)]

= E
[{

(1− T ){Y − µ0(X)}
(1− e(X))2

{ê(X)− e(X)}+
(
1− 1− T

1− e(X)

)
{µ̂1(X)− µ1(X)}

}
π(X)

−
{
−T{Y − µ1(X)}

e(X)2
{ê(X)− e(X)}+

(
1− T

e(X)

)
{µ̂1(X)− µ1(X)}

}
µ0(X)π(X)

]
= 0,

where the last equation follows from the sample splitting. For the second-order term, we get
1

2
∂2[ê−e,µ̂0−µ0,µ̂1−µ1]

E[ψπ(Ti, Xi, Yi; e, µ0, µ1)]

= E
[{

(1− T ){Y − µ0(X)}
(1− e(X))3

{ê(X)− e(X)}2 + 1− T

(1− e(X))2
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}

}
π(X)

−
{
T{Y − µ1(X)}

e(X)3
{ê(X)− e(X)}2 + T

e(X)2
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}

}
µ0(X)π(X)

]
= E

[
1− T

(1− e(X))2
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}π(X)− T

e(X)2
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}µ0(X)π(X)

]
= E

[
1

1− e(X)
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}π(X)− 1

e(X)
{ê(X)− e(X)}{µ̂1(X)− µ1(X)}µ0(X)π(X)

]
≤ C · E

[
{ê(X)− e(X)}{µ̂1(X)− µ1(X)} − {ê(X)− e(X)}{µ̂1(X)− µ1(X)}

]
≤ C · ||ê(X)− e(X)||2 ·

{
||µ̂1(X)− µ1(X)||2 + ||µ̂0(X)− µ0(X)||2

}
= oP(n

−1/2),
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where C is a finite constant. All higher-order terms can be shown to be dominated by the second-order term. Therefore,

E[A2n] = oP(n
−1/2).

In addition, we get that A2n − E[A2n] = oP(n
−1/2) by calculating Var{

√
n(A1n − E[A1n])} = oP(1).

A3n =
1

n

n∑
i=1

[ψπ(Ti, Xi, Yi; ê, µ̂0, µ̂1)− ψ̃π(Ti, Xi, Yi; ê, µ̂0, µ̂1)]

= − 1

n

n∑
i=1

(µ̂0(Xi)− µ0(Xi))

(
Ti{Yi(1)− µ̂1(Xi)}

ê(Xi)
+ µ̂1(Xi)

)
π(Xi)

= − 1

n

n∑
i=1

(µ̂0(Xi)− µ0(Xi))Yi(1)π(Xi)−
1

n

n∑
i=1

(µ̂0(Xi)− µ0(Xi))

(
Ti

ê(Xi)
− 1

)
{Yi(1)− µ̂1(Xi)}π(Xi),

≜ A3n1 +A3n2.

It can be shown that A3n2 = oP(n
−1/2) by calculating its expectation and variance.

√
nA3n1 = − n−1/2

n∑
i=1

(µ̂0(Xi)− µ0(Xi))Yi(1)π(Xi)

= − 1

n

n∑
i=1

∂µ0(Xi;ϕ)

∂ϕ
(ϕ̂− ϕ)Yi(1)π(Xi) + oP(1)

= −

[
1

n

n∑
i=1

∂µ0(Xi;ϕ)

∂ϕ
Yi(1)π(Xi)

]
(ϕ̂− ϕ) + oP(1)

= − E[
∂µ0(X;ϕ)

∂ϕ
µ1(X)π(X)]n−1/2

n∑
i=1

s(Xi) + oP(1).

Combing the results of A1n, A2n, and A3n yields that
√
n(ûFNA(π)− uFNA(π)) =

√
n(A1n +A2n +A3n)

= n−1/2
n∑

i=1

[
ψπ(Ti, Xi, Yi; e, µ0, µ1)− uFNA(π)− E[

∂µ0(X;ϕ)

∂ϕ
µ1(X)π(X)]s(Xi)

]
+ oP(1),

which implies the conclusion of Theorem 6.2(b).

Next, the estimator R̂(π; c, ρ) can be written as

R̂(π; c, ρ)−R(π; c, ρ) = B1n +B2n,

where

B1n =
1

n

n∑
i=1

[φπ(Ti, Xi, Yi; e, µ0, µ1)−R(π; c, ρ)],

B2n =
1

n

n∑
i=1

[φπ(Ti, Xi, Yi; ê, µ̂0, µ̂1)− φπ(Ti, Xi, Yi; e, µ0, µ1)].

It can shown that B2n = oP(n
−1/2) by a similar arguments of A2n. Then by the central limit theorem,

√
nB1n

d−→ N
(
0, σ2

2

)
.

This completes the proof.
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B.2. Proof of Theorem 6.3

Lemma B.1. (Shapiro, 1991) Let Θ be a compact subset of Rk. Let C(Θ) denote the set of continuous real-valued functions
on Θ, with L = C(Θ)× . . .× C(Θ) the r-dimensional Cartesian product. Let ψ(θ) = (ψ0, . . . , ψr) ∈ L be a vector of
convex functions. Consider the quantity α∗ defined as the solution to the following convex optimization program:

α∗ = min
θ∈Θ

ψ0(θ)

subject to ψj(θ) ≤ 0, j = 1, . . . , r

Assume that Slater’s condition holds, so that there is some θ ∈ Θ for which the inequalities are satisfied and non-affine
inequalities are strictly satisfied, i.e. ψj(θ) < 0 if ψj is non-affine. Now consider a sequence of approximating programs,
for n = 1, 2, . . . :

α̂n = min
θ∈Θ

ψ̂0n(θ)

subject to ψ̂jn(θ) ≤ 0, j = 1, . . . , r

with ψ̂n(θ) :=
(
ψ̂0n, . . . , ψ̂rn

)
∈ L. Assume that f(n)

(
ψ̂n − ψ

)
converges in distribution to a random element W ∈ L

for some real-valued function f(n). Then:
f(n) (α̂n − α0)⇝ L

for a particular random variable L. It follows that α̂n − α0 = OP(1/f(n)).

□

Theorem 6.3 Suppose that for all π ∈ Π, π(x) = π(x; θ) is a continuously differentiable and convex function with respect
to θ, where θ ∈ Θ is a compact set, then under the assumptions in Theorem 6.2(b), we have

(a) R(π̂∗; c, ρ)−R(π∗; c, ρ) = OP(1/
√
n);

(b) R̂(π̂∗; c, ρ)−R(π∗; c, ρ) = OP(1/
√
n).

Proof of Theorem 6.3. We first show the Theorem 6.3(b). Under Assumptions in Theorem 6.2(b), we have that

√
n

(
R̂(π; c, ρ)−R(π; c, ρ)
ûFNA(π)− uFNA(π)

)
=

1√
n

n∑
i=1

(
ψπ(Ti, Xi, Yi; e, µ0, µ1)− uFNA(π)− E[∂µ0(X;ϕ)

∂ϕ µ1(X)π(X)]s(Xi)

φπ(Ti, Xi, Yi; e, µ0, µ1)−R(π; c, ρ)

)
+ oP(1)

By the central limit theorem,
√
n

(
R̂(π; c, ρ)−R(π; c, ρ)
ûFNA(π)− uFNA(π)

)
d−→ N

((
0
0

)
,Σ

)
,

where

Σ = V

((
ψπ(T,X, Y ; e, µ0, µ1)− E[∂µ0(X;ϕ)

∂ϕ µ1(X)π(X)]s(X)

φπ(T,X, Y ; e, µ0, µ1))

))
.

This implies that (
R̂(π; c, ρ)−R(π; c, ρ)
ûFNA(π)− uFNA(π)

)
= OP(n

−1/2).

Under Assumptions that for all π ∈ Π, π(x) = π(x; θ) is a continuously differentiable and convex function with respect
to θ, where θ ∈ Θ is a compact set. We then show the Slater’s condition holds, so that there is some θ ∈ Θ for which
the non-affine inequalities are strictly satisfied. In fact, one can consider a policy that treat T = 0 for all x ∈ X , so that
for all ϵ > 0, we have 0 = FNA(π) ≤ ûFNA(π) < ϵ and the inequality is strictly satisfied. The convexity of R̂(π; c, ρ)
and ûFNA(π) follows directly from the convexity of π(x) = π(x; θ) with respect to θ, and the linearity of R̂(π; c, ρ) and
ûFNA(π) with respect to π ∈ Π. Now consider the following convex optimization problem

R̂(π̂∗; c, ρ) = max
π∈Π

R̂(π; c, ρ) =
1

n

n∑
i=1

φπ(Ti, Xi, Yi; ê, µ̂0, µ̂1)

s.t. ûFNA(π) =
1

n

n∑
i=1

ψπ(Ti, Xi, Yi; ê, µ̂0, µ̂1) ≤ ϵ,
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Then the conclusion of Theorem 6.3(b) follows from the direct application of Lemma B.1, and f(n) =
√
n.

Next, we prove Theorem 6.3(a). Note that

R(π̂∗; c, ρ)−R(π∗; c, ρ) = R(π̂∗; c, ρ)− R̂(π̂∗; c, ρ) + R̂(π̂∗; c, ρ)−R(π∗; c, ρ),

the first term of the right side is Op(1/
√
n) by the conclusion of Theorem 6.2(a), second term of the right side also is

Op(1/
√
n) by Theorem 6.3(b). Thus, R(π̂∗; c, ρ)−R(π∗; c, ρ) = Op(1/

√
n).

B.3. Proof of Theorem 6.4

Theorem 6.4 (Main result 3) Suppose that Π is a P-G-C class, µ̂t(x) and ê(x) are uniformly consistent estimators of µt(x)
and e(x) for t = 0, 1, respectively, and aπ ∈ Π for any π ∈ Π and 0 < a < 1, then we have

(a) R(π̂∗; c, ρ)−R(π∗; c, ρ) = oP(1).

(b) R̂(π̂∗; c, ρ)−R(π∗; c, ρ) = oP(1).

Proof of Theorem 6.4. For clarity, we summarize the conditions in Theorem 6.4 as

(C1) µ̂0(x), µ̂1(x), and ê(x) are uniformly consistent estimators of µ0(x), µ1(x), and e(x), respectively,

(C2) Π is a P-G-C class,

(C3) For any π ∈ Π and 0 < a < 1, aπ ∈ Π,

and recall that

π̂∗ =argmax
π∈Π

R̂(π; c, ρ) = argmax
π∈Π

1

n

n∑
i=1

φπ(Ti, Xi, Yi; ê, µ̂0, µ̂1)

subject to
1

n

n∑
i=1

ψπ(Ti, Xi, Yi; ê, µ̂0, µ̂1) ≤ λ,

π∗ =argmax
π∈Π

R(π; c, ρ) = argmax
π∈Π

Eψπ(T,X, Y ; e, µ0, µ1)

subject to E[ψπ(Ti, Xi, Yi; e, µ0, µ1)] ≤ λ.

Note that T (Y−µ1(X))
e(X) + µ1(X)− c(X), (1−T )(Y−µ0(X))

1−e(X) + µ0(X), (T (Y−µ1(X))
e(X) + µ1(X))µ0(X) are bounded random

variables, we have both {φπ : π ∈ Π} and {ψπ : π ∈ Π} are P-G-C class by condition (C2) and the Theorem 9.26 in
Kosorok (2008).

We first show Theorem 6.4(b). For ease of presentation, we define the operator Pn as the sample average and let

Πλ = {π ∈ Π | Eψπ(T,X, Y ; e, µ0, µ1) ≤ λ},
Πn,λ = {π ∈ Π | Pnψπ(T,X, Y ; ê, µ̂0, µ̂1) ≤ λ},

then the estimation error R(π̂∗; c, ρ)−R(π∗; c, ρ) can be rewritten as

R(π̂∗; c, ρ)−R(π∗; c, ρ) = D1n +D2n +D3n,

where

D1n = max
π∈Πλ

E[φπ(T,X, Y ; e, µ0, µ1)]− max
π∈Πλ

Pnφπ(T,X, Y ; e, µ0, µ1),

D2n = max
π∈Πλ

Pnφπ(T,X, Y ; e, µ0, µ1)− max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1),

D3n = max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1)− max
π∈Πn,λ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1).
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We will discuss D1n, D2n, and D3n one by one.

D1n = max
π∈Πλ

E[φπ(T,X, Y ; e, µ0, µ1)]− max
π∈Πλ

Pnφπ(T,X, Y ; e, µ0, µ1)

≤ max
π∈Πλ

∣∣E[φπ(T,X, Y ; e, µ0, µ1)]− Pnφπ(T,X, Y ; e, µ0, µ1)
∣∣

= oP(1),

where the last inequality holds from that {φπ : π ∈ Π} is a P-G-C class. Similarly,

D2n = max
π∈Πλ

Pnφπ(T,X, Y ; e, µ0, µ1)− max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1)

≤ max
π∈Πλ

∣∣Pn

[
φπ(T,X, Y ; e, µ0, µ1)− φπ(T,X, Y ; ê, µ̂0, µ̂1)

]∣∣
= oP(1),

where the last inequality follows from condition (C1).

Next, we focus on analyzing D3n. For any π ∈ Π, we consider the difference between Eψπ(T,X, Y ; e, µ0, µ1) and
Pnψπ(T,X, Y ; ê, µ̂0, µ̂1), which can be reformulated as

Eψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; ê, µ̂0, µ̂1)

= Eψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; e, µ0, µ1) + Pnψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; ê, µ̂0, µ̂1),

where Eψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; e, µ0, µ1) converges to zero uniformly over π ∈ Π by noting that {ψπ :
π ∈ Π} is P-G-C class, and Pnψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; ê, µ̂0, µ̂1) converges to zero uniformly over π ∈ Π
by condition (C1). Thus, ∀ϵ > 0, ∃ N ∈ N, such that for all n > N ,∣∣Eψπ(T,X, Y ; e, µ0, µ1)− Pnψπ(T,X, Y ; ê, µ̂0, µ̂1)

∣∣ < ϵ,

which implies that, for any π ∈ Πλ, i.e., Eψπ(T,X, Y ; e, µ0, µ1) ≤ λ, we have

Pnψπ(T,X, Y ; ê, µ̂0, µ̂1) < λ+ ϵ,

that is, λ
λ+ϵπ ∈ Πn,λ, i.e., λ

λ+ϵπ ⊆ Πn,λ. On the other hand, since φπ(T,X, Y ; ê, µ̂0, µ̂1) is uniformly bounded with
sufficiently large samples according to condition(C1), there exist a positive constant L such that for any π1 and π2,

|φπ1
(T,X, Y ; ê, µ̂0, µ̂1)− φπ2

(T,X, Y ; ê, µ̂0, µ̂1)| ≤ L sup
x∈X

|π1(x)− π2(x)|.

Thus, ∀ϵ > 0, ∃ N ∈ N, such that for all n > N

D3n = max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1)− max
π∈Πn,λ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1).

≤ max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1)− max
π∈ λ

λ+ϵΠλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1).

≤ ϵ

λ+ ϵ
L,

Similarly, for the same ϵ, ∃ N ′ ∈ N, such that for all n > N ′,

D3n = max
π∈Πλ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1)− max
π∈Πn,λ

Pnφπ(T,X, Y ; ê, µ̂0, µ̂1).

≥ − ϵ

λ+ ϵ
L,

which leads to D3n = oP(1). This completes the proof of Theorem 6.4(b).

Then, we prove Theorem 6.4(a).

R(π∗; c, ρ)−R(π̂∗; c, ρ) = H1n +H2n +H3n
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where

H1n = R(π∗; c, ρ)− R̂(π∗; c, ρ),

H2n = R̂(π∗; c, ρ)− R̂(π̂∗; c, ρ),

H3n = R̂(π̂∗; c, ρ)−R(π̂∗; c, ρ).

It can be shown that H1n = op(1) by a similar argument of D1n and D2n.

H3n = Pnφπ̂(T,X, Y ; ê, µ̂0, µ̂1)− E[φπ̂(T,X, Y ; e, µ0, µ1)]

= Pnφπ̂(T,X, Y ; ê, µ̂0, µ̂1)− Pnφπ̂(T,X, Y ; e, µ0, µ1) + Pnφπ̂(T,X, Y ; e, µ0, µ1)− E[φπ̂(T,X, Y ; e, µ0, µ1)].

The condition (C1) implies

Pnφπ̂(T,X, Y ; ê, µ̂0, µ̂1)− Pnφπ̂(T,X, Y ; e, µ0, µ1) = oP(1),

and the truth that {φπ : π ∈ Π} is a P-G-C class gives that

Pnφπ̂(T,X, Y ; e, µ0, µ1)− E[φπ̂(T,X, Y ; e, µ0, µ1) = oP(1).

Thus, H3n = oP(1). In addition, by a similar argument of D3n, for any π ∈ Π and ϵ > 0, ∃N ′ ∈ N, for all n ≥ N ′,
λ

λ+ϵπ ∈ Πλ,n, then

H2n = R̂(π∗; c, ρ))− R̂(π̂∗; c, ρ)

= R̂(π∗; c, ρ))− R̂(
λ

λ+ ϵ
π∗; c, ρ) + R̂(

λ

λ+ ϵ
π∗; c, ρ)− R̂(π̂∗; c, ρ)

≤ ϵ

λ+ ϵ
L.

Likewise, for any ϵ > 0, ∃N ∈ N, for all n ≥ N , λ
λ+ϵ π̂

∗ ∈ Πλ, which implies that

R(π∗; c, ρ)−R(π̂∗; c, ρ) ≥ R(
λ

λ+ ϵ
π̂∗; c, ρ)−R(π̂∗; c, ρ) ≥ − ϵ

λ
L.

This finishes the proof.

C. Estimation of Nuisance Parameters with Sample Splitting
Let K be a small positive integer, and (for simplicity) suppose that m = n/K is also an integer. Let I1, ..., IK be a random
partition of the index set I = {1, ..., n} so that #Ik = m for k = 1, ...,K. Denote ICk as the complement of Ik.

Step 1. Nuisance parameter training for each sub-sample.

for k = 1 to K do

(1) Construct estimates ẽ(x), µ̃1(x), and µ̃0(x) using the sample with ICk .

(2) Obtain the predicted values of ẽ(Xi), µ̃1(Xi), and µ̃0(Xi) for i ∈ Ik.

end

Step 2. All the predicted values ẽ(Xi), µ̃1(Xi), and µ̃0(Xi) for i ∈ I consist of the estimates of e(Xi), µ1(Xi), and
µ0(xi), denoted as ê(Xi), µ̂1(Xi), and µ̂0(Xi), respectively.

Remark. (Cross-fitting) the full sample is split into K parts, and the average causal effect is estimated for each subsample
while the nuisance parameter training is implemented in the corresponding complement sample. This is the “cross-fitting”
approach to machine-learning-aided causal inference advocated by (Chernozhukov et al., 2018), which is prevalent in many
recent literature of causal inference (Wager & Athey, 2018; Athey et al., 2019; Semenova & Chernozhukov, 2021).
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D. Further Semi-sythetic and Real-world Experiments
Let e(x) := P(T = 1|X = x), µt(x) := E[Y |T = t,X = x] for t = 0, 1, the estimators of R(π; c, ρ) and uFNA(π) are

R̂(π; c, ρ) =
1

n

n∑
i=1

φπ(Zi; ê, µ̂0, µ̂1), and ûFNA(π) =
1

n

n∑
i=1

ψπ(Zi; ê, µ̂0, µ̂1),

where φπ and ψπ can be any of the outcome regression (OR), inverse probability weighting (IPW), and augmented inverse
probability weighting (AIPW) estimators.

Specifically, the OR estimators are given as

φOR
π (Z; e, µ0, µ1) = (µ1(X)− c(X))π(X) + ρµ0(X)(1− π(X)),

ψOR
π (Z; e, µ0, µ1) = µ0(X)π(X)− µ1(X)µ0(X)π(X),

where Z = (T,X, Y ).

The IPW estimators are given as

φIPS
π (Z; e, µ0, µ1) =

(
TY

e(X)
− c(X)

)
π(X) + ρ

(
(1− T )Y

1− e(X)

)
(1− π(X)),

ψIPS
π (Z; e, µ0, µ1) =

(
(1− T )Y

1− e(X)

)
π(X)−

(
TY

e(X)

)
µ0(X)π(X).

The DR estimators are given as

φDR
π (Z; e, µ0, µ1) =

(
T (Y − µ1(X))

e(X)
+ µ1(X)− c(X)

)
π(X) + ρ

(
(1− T )(Y − µ0(X))

1− e(X)
+ µ0(X)

)
(1− π(X)),

ψDR
π (Z; e, µ0, µ1) =

(
(1− T )(Y − µ0(X))

1− e(X)
+ µ0(X)

)
π(X)−

(
T (Y − µ1(X))

e(X)
+ µ1(X)

)
µ0(X)π(X).

In the following, we show more experimental results using OR, IPW, and AIPW estimators on the semi-synthetic dataset
IHDP, and the real-world dataset JOBS, in Tables 3, 4, and 5, respectively.
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Table 3. Comparison of the Naive method (maximizing estimated rewards), the proposed No-Harm (u) and No-Harm (w) methods in
terms of the true reward, welfare change, and true harm on IHDP and JOBS. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functions c(x) = 0, 0.025, 0.05, 0.075, 0.10), respectively, where the expected reward and
counterfactual harm upper bound are estimated using outcome regression (OR) estimators.

IHDP: TRUE HARM ≤ 13 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 569.56 ± 6.66 ↑ 155.84 ± 1.44 ↑ 40.26 ± 8.14 ↑ 550.52 ± 1.67 ↑ 139.54 ± 1.04 ↑ 64.62 ± 0.62 ↑
NO-HARM (u) 456.70 ± 7.48 45.98 ± 10.27 9.32 ± 2.91 144.74 ± 15.75 47.44 ± 7.73 9.24 ± 3.03
NO-HARM (w) 444.63 ± 8.60 30.88 ± 8.29 4.42 ± 1.92 107.24 ± 16.14 33.24 ± 7.61 5.06 ± 2.35

c = 0.025
NAIVE 558.57 ± 7.86 ↑ 157.52 ± 8.55 ↑ 36.74 ± 9.62 ↑ 533.40 ± 1.38 ↑ 139.70 ± 1.36 ↑ 64.28 ± 0.83 ↑
NO-HARM (u) 452.72 ± 6.55 44.58 ± 10.58 8.82 ± 2.97 135.42 ± 14.01 45.08 ± 8.24 9.28 ± 2.42
NO-HARM (w) 442.99 ± 6.88 32.4 ± 7.43 4.64 ± 2.20 93.59 ± 13.51 30.78 ± 6.67 4.68 ± 2.37

c = 0.05
NAIVE 549.85 ± 10.90 ↑ 162.80 ± 10.08 ↑ 28.58 ± 11.21 ↑ 516.94 ± 1.70 ↑ 139.50 ± 1.25 ↑ 64.46 ± 0.78 ↑
NO-HARM (u) 448.60 ± 5.77 45.38 ± 8.33 7.82 ± 2.81 131.05 ± 18.30 44.94 ± 7.87 9.22 ± 3.38
NO-HARM (w) 440.05 ± 6.45 32.06 ± 5.16 2.43 ± 2.09 92.16 ± 12.14 33.48 ± 6.94 4.30 ± 2.13

c = 0.075
NAIVE 546.12 ± 8.15 ↑ 165.58 ± 7.89 ↑ 22.96 ± 8.83 ↑ 500.23 ± 1.34 ↑ 139.38 ± 1.23 ↑ 64.54 ± 0.75 ↑
NO-HARM (u) 445.90 ± 6.34 43.68 ± 9.18 8.94 ± 3.05 125.54 ± 14.45 44.06 ± 8.99 9.16 ± 2.84
NO-HARM (w) 438.25 ± 7.29 31.44 ± 7.75 4.66 ± 2.38 94.34 ± 19.68 35.10 ± 8.45 4.52 ± 1.98

c = 0.10
NAIVE 537.80 ± 8.66 ↑ 165.72 ± 6.25 ↑ 14.59 ± 7.63 ↑ 483.20 ± 1.56 ↑ 139.02 ± 1.28 ↑ 64.60 ± 0.56 ↑
NO-HARM (u) 440.68 ± 7.25 44.32 ± 9.78 8.68 ± 2.69 121.68 ± 16.09 43.46 ± 7.28 8.48 ± 3.08
NO-HARM (w) 432.85 ± 6.86 31.80 ± 5.76 4.60 ± 2.23 92.28 ± 17.61 33.16 ± 8.39 5.90 ± 3.28

JOBS: TRUE HARM ≤ 50 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 1991.00 ± 14.28 ↑ 786.26 ± 10.50 ↑ 106.57 ± 3.81 ↑ 1965.57 ± 1.26 ↑ 758.46 ± 1.02 ↑ 251.80 ± 0.40 ↑
NO-HARM (u) 1725.50 ± 66.29 518.53 ± 65.31 37.43 ± 2.89 1032.37 ± 30.33 489.97 ± 22.53 44.47 ± 3.29
NO-HARM (w) 1397.40 ± 21.07 188.33 ± 13.81 15.40 ± 3.39 464.90 ± 49.61 181.87 ± 23.24 21.77 ± 3.62

c = 0.025
NAIVE 1936.55 ± 12.95 ↑ 776.43 ± 11.65 ↑ 99.96 ± 4.77 ↑ 1901.49 ± 1.21 ↑ 758.36 ± 1.05 ↑ 251.80 ± 0.47 ↑
NO-HARM (u) 1680.94 ± 89.24 526.00 ± 59.31 37.83 ± 3.67 997.85 ± 29.31 484.80 ± 24.57 44.16 ± 3.54
NO-HARM (w) 1380.61 ± 10.71 182.50 ± 21.86 16.06 ± 4.73 437.67 ± 47.01 178.23 ± 16.01 22.00 ± 5.07

c = 0.05
NAIVE 1886.97 ± 11.13 ↑ 763.76 ± 8.31 ↑ 92.90 ± 3.56 ↑ 1837.49 ± 1.19 ↑ 758.63 ± 1.05 ↑ 251.73 ± 0.51 ↑
NO-HARM (u) 1652.53 ± 52.50 486.96 ± 75.47 37.23 ± 3.28 960.03 ± 33.10 480.10 ± 27.15 44.23 ± 3.76
NO-HARM (w) 1372.85 ± 19.88 183.83 ± 12.38 15.56 ± 3.57 449.35 ± 65.58 184.16 ± 23.92 23.13 ± 4.19

c = 0.075
NAIVE 1831.76 ± 8.83 ↑ 750.93 ± 10.72 ↑ 89.30 ± 3.33 ↑ 1772.82 ± 1.08 ↑ 758.50 ± 0.95 ↑ 251.76 ± 0.49 ↑
NO-HARM (u) 1632.88 ± 61.48 503.23 ± 71.29 36.00 ± 4.27 935.82 ± 18.88 482.33 ± 17.79 44.03 ± 3.14
NO-HARM (w) 1355.03 ± 18.64 182.93 ± 22.55 15.53 ± 4.00 430.02 ± 57.74 180.26 ± 24.04 23.03 ± 3.65

c = 0.10
NAIVE 1780.10 ± 7.62 ↑ 731.50 ± 11.70 ↑ 85.30 ± 16.11 ↑ 1693.56 ± 6.14 ↑ 753.23 ± 4.55 ↑ 243.90 ± 3.87 ↑
NO-HARM (u) 1596.99 ± 58.06 458.06 ± 85.07 36.26 ± 3.18 877.43 ± 82.77 461.66 ± 53.40 43.46 ± 3.23
NO-HARM (w) 1351.57 ± 18.55 183.90 ± 12.59 15.20 ± 3.63 412.10 ± 54.78 172.13 ± 20.86 23.33 ± 4.66
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Table 4. Comparison of the Naive method (maximizing estimated rewards), the proposed No-Harm (u) and No-Harm (w) methods in
terms of the true reward, welfare change, and true harm on IHDP and JOBS. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functions c(x) = 0, 0.025, 0.05, 0.075, 0.10), respectively, where the expected reward and
counterfactual harm upper bound are estimated using inverse probability weighting (IPW) estimators.

IHDP: TRUE HARM ≤ 13 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 573.56 ± 6.37 ↑ 157.08 ± 7.09 ↑ 36.78 ± 9.22 ↑ 550.72 ± 1.45 ↑ 139.48 ± 1.23 ↑ 64.52 ± 0.64 ↑
NO-HARM (u) 457.26 ± 7.33 45.72 ± 7.86 10.38 ± 2.97 143.88 ± 14.96 44.82 ± 6.30 9.96 ± 2.69
NO-HARM (w) 449.53 ± 6.73 35.32 ± 7.45 6.60 ± 2.44 118.40 ± 17.20 38.32 ± 7.77 6.82 ± 2.96

c = 0.025
NAIVE 562.26 ± 6.94 ↑ 162.52 ± 7.44 ↑ 29.60 ± 9.22 ↑ 533.56 ± 1.63 ↑ 139.23 ± 1.25 ↑ 64.48 ± 0.72 ↑
NO-HARM (u) 452.45 ± 8.15 44.06 ± 7.22 9.92 ± 3.16 136.11 ± 53.14 46.75 ± 18.50 7.89 ± 4.42
NO-HARM (w) 444.63 ± 7.59 36.80 ± 7.01 6.62 ± 1.96 93.09 ± 35.06 32.63 ± 11.64 3.80 ± 2.69

c = 0.05
NAIVE 551.81 ± 9.64 ↑ 162.96 ± 7.84 ↑ 26.72 ± 9.48 ↑ 516.72 ± 1.49 ↑ 139.30 ± 1.19 ↑ 64.53 ± 0.59 ↑
NO-HARM (u) 449.54 ± 6.75 44.84 ± 8.13 9.62 ± 3.27 130.54 ± 58.23 46.43 ± 21.28 7.81 ± 5.44
NO-HARM (w) 444.11 ± 6.95 35.40 ± 7.24 6.36 ± 2.27 84.16 ± 30.55 29.96 ± 11.31 3.78 ± 2.48

c = 0.075
NAIVE 546.41 ± 7.22 ↑ 167.30 ± 5.06 ↑ 19.58 ± 5.00 ↑ 500.13 ± 1.69 ↑ 139.48 ± 1.11 ↑ 64.51 ± 0.72 ↑
NO-HARM (u) 444.35 ± 7.30 47.62 ± 8.09 9.94 ± 2.70 123.41 ± 49.26 45.53 ± 18.15 7.67 ± 4.02
NO-HARM (w) 439.14 ± 7.38 36.48 ± 6.07 6.22 ± 2.19 81.82 ± 30.43 30.18 ± 11.39 3.83 ± 2.70

c = 0.10
NAIVE 537.24 ± 7.21 ↑ 166.22 ± 4.73 ↑ 18.32 ± 5.32 ↑ 483.06 ± 1.57 ↑ 139.18 ± 1.32 ↑ 64.54 ± 0.69 ↑
NO-HARM (u) 439.38 ± 5.47 42.92 ± 8.98 9.62 ± 3.16 125.39 ± 59.57 47.29 ± 21.43 7.33 ± 4.81
NO-HARM (w) 435.13 ± 4.92 37.24 ± 8.26 6.64 ± 3.16 74.97 ± 14.05 29.52 ± 6.90 3.30 ± 1.99

JOBS: TRUE HARM ≤ 50 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 1984.20 ± 13.21 ↑ 786.93 ± 13.10 ↑ 123.80 ± 13.29 ↑ 1966.66 ± 0.47 ↑ 760.00 ± 0.82 ↑ 251.00 ± 0.82 ↑
NO-HARM (u) 1511.40 ± 21.42 296.32 ± 24.15 42.56 ± 5.69 570.00 ± 22.73 245.33 ± 6.80 37.33 ± 9.39
NO-HARM (w) 1330.60 ± 77.69 100.74 ± 75.55 11.90 ± 7.87 345.33 ± 11.84 119.33 ± 7.36 20.33 ± 3.09

c = 0.025
NAIVE 1932.78 ± 14.33 ↑ 781.02 ± 16.96 ↑ 115.46 ± 7.47 ↑ 1901.81 ± 1.10 ↑ 759.76 ± 1.08 ↑ 250.73 ± 0.89 ↑
NO-HARM (u) 1494.08 ± 19.43 301.46 ± 23.38 40.40 ± 5.78 584.38 ± 70.30 245.56 ± 29.73 41.26 ± 7.46
NO-HARM (w) 1295.49 ± 62.65 106.65 ± 71.70 12.13 ± 7.67 221.85 ± 126.16 84.4 ± 53.59 13.36 ± 8.45

c = 0.05
NAIVE 1887.69 ± 23.29 ↑ 768.43 ± 13.10 ↑ 27.01 ± 14.27 ↑ 1837.38 ± 1.18 ↑ 759.90 ± 1.79 ↑ 250.26 ± 1.09 ↑
NO-HARM (u) 1472.92 ± 25.37 311.48 ± 43.17 41.43 ± 7.98 564.00 ± 80.85 243.33 ± 29.23 40.76 ± 8.08
NO-HARM (w) 1254.64 ± 39.94 68.36 ± 49.85 8.93 ± 7.71 162.04 ± 126.33 55.76 ± 47.32 10.40 ± 9.47

c = 0.075
NAIVE 1829.04 ± 12.64 ↑ 755.32 ± 13.87 ↑ 96.30 ± 5.42 ↑ 1772.48 ± 1.55 ↑ 760.50 ± 2.15 ↑ 249.00 ± 2.11 ↑
NO-HARM (u) 1463.46 ± 41.26 298.37 ± 29.81 37.33 ± 5.90 524.29 ± 54.50 234.00 ± 19.90 38.53 ± 5.74
NO-HARM (w) 1254.91 ± 43.66 58.08 ± 46.51 7.36 ± 8.53 157.57 ± 103.43 62.00 ± 44.58 11.46 ± 8.46

c = 0.10
NAIVE 1788.05 ± 13.89 ↑ 742.21 ± 14.64 ↑ 92.90 ± 17.15 ↑ 1695.79 ± 5.96 ↑ 752.86 ± 5.67 ↑ 243.70 ± 2.86 ↑
NO-HARM (u) 1436.82 ± 34.44 296.32 ± 35.98 37.60 ± 6.18 553.18 ± 108.61 253.83 ± 45.00 40.80 ± 9.44
NO-HARM (w) 1244.65 ± 19.54 50.88 ± 38.55 8.40 ± 8.29 168.94 ± 114.49 60.13 ± 44.88 13.03 ± 10.80
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Table 5. Comparison of the Naive method (maximizing estimated rewards), the proposed No-Harm (u) and No-Harm (w) methods in
terms of the true reward, welfare change, and true harm on IHDP and JOBS. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functions c(x) = 0, 0.025, 0.05, 0.075, 0.10), respectively, where the expected reward and
counterfactual harm upper bound are estimated using augmented inverse probability weighting (AIPW) estimators.

IHDP: TRUE HARM ≤ 13 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 570.96 ± 3.28 ↑ 157.78 ± 4.11 ↑ 19.12 ± 2.29 ↑ 549.14 ± 1.61 ↑ 139.16 ± 1.43 ↑ 64.36 ± 0.87 ↑
NO-HARM (u) 496.93 ± 11.39 83.8 ± 10.42 10.34 ± 2.54 100.90 ± 15.11 43.82 ± 10.37 9.60 ± 2.52
NO-HARM (w) 459.80 ± 6.86 48.56 ± 6.82 5.98 ± 1.95 73.76 ± 15.62 31.82 ± 7.16 5.42 ± 2.26

c = 0.025
NAIVE 561.60 ± 4.19 ↑ 157.2 ± 3.77 ↑ 18.04 ± 2.25 ↑ 532.09 ± 1.84 ↑ 139.24 ± 1.47 ↑ 64.42 ± 0.66 ↑
NO-HARM (u) 494.78 ± 12.52 85.04 ± 12.27 10.24 ± 2.47 102.31 ± 12.87 46.58 ± 8.51 9.66 ± 3.15
NO-HARM (w) 461.50 ± 6.02 48.76 ± 6.38 6.06 ± 1.82 69.39 ± 12.30 32.12 ± 7.24 6.16 ± 2.46

c = 0.05
NAIVE 551.62 ± 4.15 ↑ 154.4 ± 4.39 ↑ 16.76 ± 2.21 ↑ 515.30 ± 2.29 ↑ 139.48 ± 1.38 ↑ 64.16 ± 0.70 ↑
NO-HARM (u) 491.33 ± 13.44 84.34 ± 13.91 9.32 ± 2.83 101.42 ± 12.16 47.82 ± 9.10 9.88 ± 2.61
NO-HARM (w) 456.17 ± 6.88 50.50 ± 6.40 6.02 ± 2.01 67.59 ± 13.56 31.46 ± 7.74 5.98 ± 2.94

c = 0.075
NAIVE 542.33 ± 3.96 ↑ 152.50 ± 4.55 ↑ 15.26 ± 2.34 ↑ 497.64 ± 2.09 ↑ 139.08 ± 1.31 ↑ 64.06 ± 0.88 ↑
NO-HARM (u) 485.32 ± 14.59 85.36 ± 13.78 9.42 ± 3.15 97.68 ± 20.44 46.68 ± 8.32 9.28 ± 3.44
NO-HARM (w) 454.34 ± 5.26 49.32 ± 5.65 5.64 ± 1.88 68.00 ± 17.56 32.00 ± 7.33 6.18 ± 3.47

c = 0.10
NAIVE 534.27 ± 4.21 ↑ 148.74 ± 4.10 ↑ 14.86 ± 2.21 ↑ 480.98 ± 2.63 ↑ 139.50 ± 1.96 ↑ 63.90 ± 0.96 ↑
NO-HARM (u) 482.14 ± 12.73 81.68 ± 15.00 8.60 ± 3.46 92.42 ± 15.17 47.34 ± 8.52 8.90 ± 2.84
NO-HARM (w) 452.29 ± 5.76 49.00 ± 7.03 5.42 ± 1.92 63.33 ± 12.54 31.82 ± 8.05 5.58 ± 2.17

JOBS: TRUE HARM ≤ 50 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD ∆WELFARE TRUE HARM REWARD ∆WELFARE TRUE HARM

c = 0.00
NAIVE 1798.60 ± 7.63 ↑ 583.96 ± 10.54 ↑ 113.73 ± 4.47 ↑ 1965.33 ± 1.44 ↑ 758.50 ± 1.52 ↑ 251.30 ± 0.69 ↑
NO-HARM (u) 1453.00 ± 21.96 237.36 ± 29.81 43.23 ± 8.06 528.00 ± 22.16 195.73 ± 13.80 41.40 ± 4.85
NO-HARM (w) 1325.00 ± 48.62 113.74 ± 60.39 16.80 ± 8.41 197.46 ± 138.66 66.26 ± 52.88 17.16 ± 12.60

c = 0.025
NAIVE 1745.02 ± 8.34 ↑ 577.09 ± 9.00 ↑ 105.03 ± 4.95 ↑ 1862.44 ± 10.42 ↑ 731.80 ± 8.35 ↑ 245.00 ± 3.14 ↑
NO-HARM (u) 1444.40 ± 51.75 233.02 ± 29.29 40.30 ± 4.78 532.88 ± 34.84 200.40 ± 15.42 42.93 ± 6.75
NO-HARM (w) 1310.60 ± 50.36 245.94 ± 116.93 14.38 ± 9.27 226.97 ± 117.47 72.10 ± 44.27 20.13 ± 9.48

c = 0.05
NAIVE 1701.13 ± 10.41 ↑ 566.23 ± 11.23 ↑ 93.93 ± 4.68 ↑ 1760.50 ± 11.30 ↑ 705.26 ± 8.62 ↑ 238.23 ± 3.68 ↑
NO-HARM (u) 1408.72 ± 27.01 242.66 ± 44.18 41.13 ± 9.31 504.18 ± 25.78 195.80 ± 18.89 42.86 ± 5.32
NO-HARM (w) 1325.56 ± 32.28 118.83 ± 55.50 19.76 ± 9.13 220.94 ± 113.36 77.30 ± 43.96 18.93 ± 8.92

c = 0.075
NAIVE 1656.66 ± 11.96 ↑ 548.50 ± 11.85 ↑ 82.83 ± 6.17 ↑ 1658.70 ± 35.11 ↑ 678.36 ± 24.10 ↑ 229.60 ± 8.60 ↑
NO-HARM (u) 1387.93 ± 37.70 222.50 ± 25.68 36.56 ± 5.64 488.11 ± 25.88 197.03 ± 17.94 42.30 ± 5.44
NO-HARM (w) 1306.39 ± 44.39 71.16 ± 60.56 11.80 ± 9.14 202.11 ± 115.71 70.16 ± 47.71 20.73 ± 11.82

c = 0.10
NAIVE 1612.20 ± 9.07 ↑ 527.06 ± 52.29 ↑ 72.66 ± 7.65 ↑ 1529.96 ± 49.49 ↑ 630.86 ± 34.30 ↑ 212.93 ± 11.51 ↑
NO-HARM (u) 1362.20 ± 22.95 232.63 ± 51.70 36.26 ± 8.04 475.10 ± 20.52 193.83 ± 16.48 44.30 ± 5.84
NO-HARM (w) 1257.19 ± 39.17 67.83 ± 59.52 11.63 ± 8.91 214.76 ± 179.24 85.33 ± 82.95 22.93 ± 23.32
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