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Abstract

We describe a framework that can integrate prior physical information, e.g., the presence of kinematic
constraints, to support data-driven simulation. Unlike other approaches, e.g., Fully-connected Neural
Network (FCNN) or Recurrent Neural Network (RNN)-based methods that are used to model the sys-
tem states directly, the proposed approach embraces a Neural Ordinary Differential Equation (NODE)
paradigm that models the derivatives of system states. A central part of the proposed methodology is its
capacity to learn the multibody system dynamics from prior physical knowledge and constraints com-
bined with data inputs. This learning process is facilitated by a constrained optimization approach, which
ensures that physical laws and system constraints are accounted for in the simulation process. The mod-
els, data, and code for this work are available athttps://github.com/jqwang2373/PNODE-for-MBD.

1 Introduction

In the MBD community, the research has focused on directly capturing the time evolution of the system
states [} 2} 13} 4} 15, [6]. This approach is challenging since the nonlinear nature of the MBD problem
means that any alterations in initial conditions or external forces during the simulation necessitate either
retraining the model or doubling the input dimensions. As such, incorporating initial conditions and
external forces, can exponentially increase the required training data and the associated costs. More-
over, although constraints are a fundamental component of MBD, their integration within deep neural
network models remains a complex and open issue. To address these challenges, we extended the ex-
isting NODEs [7, [8]] and proposed a multibody dynamics parameterized second-order Neural Ordinary
Differential Equation method called MBD-NODE. The salient point of MBD-NODE is that we model
the derivatives of MBD system states, enabling MBD-NODE to effectively adapt to varying initial con-
ditions and external forces. Furthermore, we have incorporated the augmented Lagrangian method and
constraint-equation-based optimization to integrate physical laws and system constraints into the simu-
lation.

2 Methodology
Given the hidden state Z(t, ) = (z(¢,1),z(t, )" for a multibody system with n bodies, the MBD-
NODE is defined as:

Z(tvﬂ) - f@(z(tu“)7i(t7u>7u(t)7t7”)7 Z(Ouu) - (ZO(u>7iO(“))Ta

where: Z(0, ) = (zo(1),20(p))7, is the initial condition, z(t,u) = (z'(t, ), ..., 2" (t,n))" € R" stores
the generalized positions for the n bodies in a coordinate system, u(t) = (u!(¢),...,u"(t))" € R™ is the
set of external forces/torques applied at time ¢, u = (Uj, Uo, . .. ,un#)T € R™  are the problem-specific
parameters, and fg : R _ R” is the neural network parameterized by ® with 2n + ny +m di-
mensional input.

To solve the IVP for Z(z, i), as shown in Fig. |1} we can use a numerical integrator ®

2(0,0) = Z00) + [ folZ(5,42),u(2).1,)d% = B(Z(O, ). fou1)

For a given initial state Zo = (zo,Zp) with its next state  (Zp, Zp, U, W) ==1  (Zn+1, Zn+1)

1
Z, = (z1,7)) and the integrator ® used with time interval H
At, the loss function L(®) used for the MBD-NODE without L_,@E@
constraints describes the mean square error (MSE) between 3
the ground truth state and the predicted state

L(©) = |®(Zo. fo,Ar) ~Zi |3 = |21~ Z1 3 ,

where Z; = (21,21) is the predicted state by MBD-NODE.  Figure 1: The discretized forward pass for
MBD-NODE for general MBD.
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https://github.com/jqwang2373/PNODE-for-MBD

3 Experiment and Analysis

We used a single mass-spring-damper system as a case study to illustrate our approach. As demonstrated
in Fig. we conducted a comparative analysis of the MBD-NODE against LSTM and FCNN. The
MBD-NODE predictions, showcased in Fig. [2(a), align closely with the actual observed behavior of the
system, indicating a high level of accuracy. In contrast, the LSTM model, depicted in Fig. [2(b), shows
a noticeable stagnation and fails to accurately capture the system’s eventual cessation of movement.
Meanwhile, the FCNN model, as seen in Fig. [2(c), struggles particularly during extrapolation tests.
It tends to generate predictions that veer off tangentially, leading to a significant deviation from the
expected trajectory. Notably, the MBD-NODE outperforms these models, achieving the lowest Mean
Squared Error (MSE) of approximately 8.6e-4.
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Figure 2: The phase space x vs v for the single mass-spring-damper system. Dashed lines represent
performance on the training data and the dotted lines on the test data.

4 Conclusion and Future Work

We outlined MBD-NODE, a method built on the framework of NODE for the data-driven modeling of
general MBD problems. Although the results reported are in conjunction with a mass-spring-damper
system, we have compared the method against several state-of-the-art data-driven modeling methods
using five numerical examples covering various features of multibody dynamics problems in practice,
such as energy conservation, energy dissipation, multiscale dynamics, chaotic behavior, and kinematic
constraints. Overall, results demonstrate superior performance of the proposed MBD-NODE method.
Due to space limitations, these results will be presented at the June meeting.
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