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Abstract. In the field of medical image classification, early research used ma-

chine learning algorithms to classify medical images based on artificially ex-

tracted features, but the development was slow. In order to solve the above exist-

ing problems, this paper proposes two methods that combine frequency domain 

learning with deep learning. The main research contents are as follows. First, this 

paper proposes a medical image classification method based on wavelet trans-

form and transfer learning, combining frequency domain learning with deep 

learning. In order to comprehensively consider the color feature information and 

frequency domain feature information in RGB images, a frequency domain fea-

ture extraction module is proposed: first, the input image is separated along the 

channel to obtain three color components of FR, FG, and FB, and then the wave-

let transform method is used to transform the three components of FR, FG, and 

FB into frequency domain features. At the same time, in order to reduce the 

amount of information processing, the low-frequency features that have the great-

est impact on the classification results are selected from the three components for 

splicing to obtain the frequency domain feature matrix.  

Keywords: Convolutional neural network; wavelet transform; medical image 

classification; attention mechanism; transfer learning. 

1 Introduction 

Medical image classification plays a crucial role in modern healthcare, aiding in the 

diagnosis and treatment of various diseases by automatically categorizing medical im-

ages into predefined classes[1-3]. Early research in this domain primarily relied on tradi-

tional machine learning algorithms, which extracted handcrafted features from medical 

images before applying classification models[4,5]. However, these methods exhibited 

limitations in feature generalization, computational efficiency, and adaptability to di-

verse imaging modalities. With the rapid advancements in deep learning, convolutional 

neural networks (CNNs) and transfer learning techniques have significantly improved 

classification performance by automatically learning hierarchical features from large-

scale datasets[6-8]. Despite these advancements, deep learning models still face chal-

lenges in effectively capturing key structural and frequency-related information embed-

ded in medical images.   

 



To address these challenges, this paper introduces a novel medical image classifi-

cation algorithm that integrates frequency domain learning with deep learning method-

ologies. Specifically, we propose a classification framework based on wavelet trans-

form and transfer learning, leveraging frequency domain representations to enhance 

feature extraction and improve classification accuracy. The key contribution of this 

work is the development of a frequency domain feature extraction module, which pro-

cesses RGB medical images by decomposing them into three color components—FR, 

FG, and FB—before applying wavelet transform to extract frequency domain features. 

By focusing on low-frequency components that have the most significant impact on 

classification performance, our approach effectively reduces the computational com-

plexity while preserving essential image characteristics. The key contributions of this 

work include:   

 Frequency Domain Feature Extraction Module – We introduce a novel feature 

extraction framework that decomposes RGB medical images into frequency 

components using wavelet transform, allowing for better representation of 

critical image patterns.   

 Selective Low-Frequency Feature Fusion – By focusing on the most informa-

tive low-frequency components, our method reduces computational complex-

ity while preserving essential classification features.   

 Deep Learning Integration – Unlike existing frequency domain methods that 

operate independently, our approach seamlessly integrates with deep learning 

models, enhancing classification robustness and accuracy.   

 Improved Generalization – Experimental results demonstrate that our method 

outperforms traditional CNN-based classification by leveraging frequency do-

main insights, offering superior generalization across diverse medical datasets.   

The proposed method bridges the gap between spatial and frequency domain 

learning, offering a more comprehensive representation of medical images. By incor-

porating frequency domain perception into deep learning models, this approach aims to 

improve classification robustness, enhance interpretability, and optimize feature selec-

tion for medical image analysis. Experimental evaluations demonstrate that the pro-

posed algorithm outperforms conventional deep learning-based classification methods, 

showcasing its potential for practical applications in medical diagnosis and decision 

support systems.   

2 Related Work 

In the field of medical image classification, various research efforts have explored dif-

ferent methodologies to enhance accuracy and robustness[9]. Existing studies can be 

categorized into three major approaches: (1) traditional machine learning-based classi-

fication, (2) deep learning-based classification, and (3) frequency domain-based medi-

cal image analysis. Below, we discuss representative works in each category and ana-

lyze their limitations.   
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2.1 Traditional Machine Learning-Based Medical Image Classification   

 

Early medical image classification techniques predominantly relied on handcrafted fea-

tures and conventional machine learning algorithms[10]. Representative studies in this 

domain include:  Kumar et al. (2013) [11] employed texture-based feature extraction 

using Gray-Level Co-occurrence Matrix (GLCM) and classified images using Support 

Vector Machines (SVMs).  Zhang et al. (2015) [12] proposed a method combining His-

togram of Oriented Gradients (HOG) and Principal Component Analysis (PCA) to en-

hance feature selection for medical image classification.  Sharma et al. (2016) [13] intro-

duced a hybrid model integrating Local Binary Patterns (LBP) with K-Nearest Neigh-

bors (KNN) for skin lesion classification. While these methods demonstrated moderate 

success, they suffer from several limitations. Handcrafted features require extensive 

domain expertise and often fail to generalize well across diverse datasets. Additionally, 

traditional machine learning models struggle with high-dimensional medical image 

data, leading to suboptimal classification accuracy when compared to deep learning-

based methods.   

 

2.2 Deep Learning-Based Medical Image Classification   

 

With the advent of deep learning, convolutional neural networks (CNNs) have become 

the dominant approach in medical image classification. Several key studies include:  

Ronneberger et al. (2015) [14] proposed the U-Net architecture for biomedical image 

segmentation, which inspired subsequent classification models.  Rajpurkar et al. (2017) 
[15] developed CheXNet, a deep CNN trained on chest X-rays, demonstrating expert-

level pneumonia classification accuracy.  Esteva et al. (2017) [16] introduced a deep 

learning model for skin cancer classification, outperforming dermatologists in mela-

noma detection.  Litjens et al. (2019) [17] provided a comprehensive review of deep 

learning applications in medical imaging, highlighting CNN-based classification tech-

niques. Despite their success, deep learning-based approaches have notable shortcom-

ings. These models require large labeled datasets for training, which is challenging in 

medical imaging due to data privacy concerns and annotation costs. Moreover, deep 

models often function as black boxes, limiting their interpretability and clinical trust-

worthiness. The reliance on spatial domain features alone further constrains their ability 

to capture subtle yet crucial frequency domain patterns in medical images.   

 

2.3 Frequency Domain-Based Medical Image Analysis   

Several studies have attempted to incorporate frequency domain information into med-

ical image analysis, leveraging techniques such as Fourier transform and wavelet trans-

form. For example, Liu et al. (2018) [18] applied Discrete Wavelet Transform (DWT) 

for feature extraction in MRI brain tumor classification, achieving improved perfor-

mance over spatial domain methods.  Zhou et al. (2019) [19] combined wavelet decom-

position with deep learning to enhance medical image denoising and classification.   

Wang et al. (2020) [20] integrated frequency-domain attention mechanisms into CNNs, 



improving lung nodule classification in CT scans.  Chen et al. (2021) [21] proposed a 

hybrid framework utilizing Fourier transform-based frequency filtering for melanoma 

diagnosis. Although frequency domain methods provide valuable complementary in-

formation, most existing approaches either use frequency features separately or apply 

them in a limited capacity. The fusion of frequency domain learning with deep learning 

remains underexplored, and existing models often fail to optimize the selection of fre-

quency components critical for classification.   

 

To address the limitations of existing methods, this paper proposes a medical image 

classification algorithm based on frequency domain perception, which effectively inte-

grates frequency domain learning with deep learning. Unlike prior works that rely 

solely on spatial domain features or apply frequency domain methods in isolation, our 

approach innovatively combines wavelet transform with transfer learning, enabling 

more comprehensive feature extraction. By incorporating frequency domain perception 

into deep learning models, this work provides a novel perspective on medical image 

classification, offering a more interpretable and efficient approach for clinical applica-

tions. 

3 Method 

To improve the accuracy and efficiency of medical image classification, we propose 

a novel approach that integrates frequency domain learning with deep learning-based 

feature extraction. Our method is composed of four key components: Frequency Do-

main Feature Extraction Module, Selective Low-Frequency Feature Fusion, Deep 

Learning Integration, and Improved Generalization. The detailed methodology of each 

component is described below.   

 
Figure 1. The overall structure of the proposed framework. 
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3.1 Frequency Domain Feature Extraction Module   

In medical image analysis, traditional deep learning models rely on spatial domain 

features, often overlooking the critical structural patterns embedded in the frequency 

domain. To address this limitation, we introduce a frequency domain feature extraction 

module based on wavelet transform, which effectively decomposes RGB medical im-

ages into multiple frequency components.   

1. Channel Separation – The input medical image 𝐼 (in RGB format) is first sepa-

rated into three individual color channels: IR, IG, and IB.   

2. Wavelet Transform – Each channel undergoes a Discrete Wavelet Transform 

(DWT) to obtain its corresponding frequency components, represented as WR, WG, and 

WB.   

3. Frequency Band Decomposition – The transformed images are decomposed into 

four sub-bands:   

   - LL (Low-Low): Captures large-scale structures (most significant for classifica-

tion).   

   - LH (Low-High) & HL (High-Low): Preserve edge details.   

   - HH (High-High): Contains high-frequency noise.   

By transforming images into the frequency domain, this module enhances the repre-

sentation of texture and structural information, making it more distinguishable for deep 

learning models. 

 

3.2 Selective Low-Frequency Feature Fusion   

Medical image classification benefits from low-frequency feature selection, as low-

frequency components capture the most relevant structures while filtering out high-

frequency noise. However, incorporating the entire frequency domain information may 

introduce redundancy and increase computational complexity. To optimize the use of 

frequency features, we propose a Selective Low-Frequency Feature Fusion strategy.   

1. Low-Frequency Component Selection – Instead of using all frequency sub-bands, 

we focus on LL components from WR, WG, and WB since they retain the most essential 

image features.   

2. Feature Fusion – The three selected LL components are concatenated along the 

channel dimension, forming a frequency domain feature matrix Ffreq.   

3. Dimensionality Reduction – To enhance computational efficiency, we apply prin-

cipal component analysis (PCA) to reduce redundant information in Ffreq.   

By selectively fusing low-frequency components, our method preserves crucial clas-

sification features while reducing unnecessary computational overhead, ensuring effi-

cient deep learning integration. 

 

3.3  Deep Learning Integration   

Unlike conventional frequency domain methods that operate independently from 

deep learning, we seamlessly integrate frequency domain features with deep learning-

based classification models. This integration leverages the complementary nature of 



spatial domain features (captured by CNNs) and frequency domain features (captured 

by our proposed module).  The model architecture are shown below.   

1. Dual-Path Network Design – Our framework consists of two parallel branches:   

   - Spatial Domain Path: Uses a CNN backbone (e.g., ResNet, EfficientNet) to ex-

tract traditional spatial features from the raw medical image.   

   - Frequency Domain Path: Utilizes the frequency domain feature matrix 

\( F_{freq} \) as an additional input to a lightweight CNN module.   

2. Feature Fusion Mechanism – The output from both paths is concatenated and pro-

cessed using a fully connected (FC) layer, enabling the network to learn a comprehen-

sive representation.   

3. Multi-Stage Training Strategy – We employ transfer learning with a pre-trained 

CNN backbone while fine-tuning the frequency domain branch separately, ensuring 

optimal feature learning.   

By incorporating both spatial and frequency information, our integrated deep learn-

ing model significantly enhances the classification robustness and accuracy of medical 

image analysis. 

 

3.4 Improved Generalization   

To ensure the proposed model's effectiveness across diverse medical imaging da-

tasets, we focus on improving generalization through several optimization techniques:   

 

 1. Cross-Dataset Performance Evaluation   

- We conduct experiments on multiple publicly available medical datasets (e.g., ISIC 

for skin cancer, ChestX-ray14 for lung disease, and Brain MRI datasets), ensuring that 

the model performs consistently across various medical domains.   

 

 2. Data Augmentation in the Frequency Domain   

- Unlike traditional augmentation techniques that apply spatial transformations, we 

introduce frequency domain augmentations, including:   

  - Frequency Masking – Randomly removes specific frequency bands to improve 

robustness.   

  - Wavelet Noise Injection – Adds controlled perturbations in the wavelet domain 

to simulate variations in real-world medical images.   

 

 3. Regularization and Dropout Mechanisms   

- We incorporate batch normalization and dropout layers to prevent overfitting, en-

suring that the model generalizes well to unseen medical image distributions.   

 

 4. Comparative Performance Analysis   

- Our proposed approach is compared with state-of-the-art CNN-based classification 

models, demonstrating superior accuracy, robustness, and computational efficiency.   
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By leveraging frequency domain insights and deep learning integration, our method 

outperforms conventional CNN-based classification models, offering superior general-

ization and reliability in real-world medical applications. 

 

Our proposed method presents a novel approach to medical image classification by 

incorporating frequency domain perception into deep learning models. The frequency 

domain feature extraction module enhances feature representation, while selective low-

frequency feature fusion optimizes computational efficiency. Deep learning integration 

ensures robust classification, and improved generalization techniques enhance adapta-

bility across multiple medical datasets. Experimental results confirm the superiority of 

our approach, making it a promising solution for real-world medical image analysis and 

classification tasks. 

3.5 

4 Experimental Results 

 

4.1 Datasets 

 

To evaluate the performance of the proposed frequency domain-based medical im-

age classification method, we conducted experiments on three publicly available med-

ical image datasets, each representing a different medical imaging domain. The datasets 

are as follows: 

 

ISIC (Skin Cancer) Dataset: The ISIC dataset contains dermoscopic images of skin 

lesions, aimed at detecting melanoma and other types of skin cancer. The dataset in-

cludes over 25,000 labeled images with annotations for various skin cancer types. These 

images present various challenges, including variations in skin tones, lighting condi-

tions, and lesion shapes. 

 

ChestX-ray14 (Lung Disease) Dataset: The ChestX-ray14 dataset is a large collec-

tion of over 100,000 frontal-view chest X-ray images, each labeled with one or more 

disease categories (14 different conditions such as pneumonia, tuberculosis, and lung 

cancer). These X-rays represent common diseases and pathologies, offering a challeng-

ing dataset for classification due to the presence of both subtle and overt abnormalities. 

 

Brain MRI (Tumor) Dataset: The Brain MRI dataset includes MRI scans of the hu-

man brain, annotated with the presence or absence of different types of brain tumors, 

such as gliomas and meningiomas. The dataset consists of more than 3,000 MRI scans. 

It is challenging due to varying tumor sizes, locations, and imaging modalities (e.g., 

T1-weighted, T2-weighted, and contrast-enhanced images). 

 



Each of these datasets is distinct in terms of the types of images, the complexity of 

the disease classifications, and the imaging techniques used, making them suitable for 

a comprehensive evaluation of the proposed method. 

 

4.2 Experimental Setup 

 

Before feeding the images into the model, several preprocessing steps were applied 

to standardize the input and enhance the training process: 

 

Image Resizing: All images were resized to a uniform size of 224x224 pixels to fit 

the input requirements of the neural network. 

Data Augmentation: To increase the diversity of the training data and prevent over-

fitting, we applied several data augmentation techniques, including: 

Random horizontal and vertical flips. 

Rotation within ±30 degrees. 

Random zooming. 

Random brightness and contrast adjustments. 

Frequency domain augmentation, including wavelet noise injection and frequency 

masking, which helps improve the model’s robustness to noise and variance in image 

quality. 

Model Architecture: 

Spatial Domain Path: The spatial features were extracted using a pre-trained ResNet-

50 backbone, which was fine-tuned on each dataset. ResNet-50 is a deep CNN that has 

shown state-of-the-art performance in many image classification tasks and was selected 

for its ability to capture hierarchical spatial features. 

Frequency Domain Path: A custom lightweight CNN architecture was used to pro-

cess the frequency domain features, extracted using wavelet transform. The frequency 

domain path focuses on the low-frequency components (LL sub-bands) to capture the 

key structural and textural features. 

Transfer Learning: Transfer learning was applied to the spatial domain path, where 

the pre-trained weights of ResNet-50, which were trained on the ImageNet dataset, 

were fine-tuned to adapt to the medical image datasets. The frequency domain path was 

trained from scratch, as the features extracted from wavelet decomposition are domain-

specific. 

The model was trained using the Adam optimizer with a learning rate of 0.0001, and 

the loss function used was categorical cross-entropy for multi-class classification. The 

training process ran for 50 epochs with early stopping based on validation loss. 

 

4.3 Results 

 

We evaluated the performance of our method on each dataset and compared it with 

baseline models using traditional CNN architectures without frequency domain fea-

tures. 



9 

Table 1. Metric ISIC (Skin Cancer) ChestX-ray14 (Lung Disease) Brain MRI 

(Tumor) 

 

Accuracy: The proposed method outperformed baseline CNN models in all three 

datasets, achieving an accuracy of 94.5% on the ISIC dataset, 91.3% on ChestX-ray14, 

and 92.1% on the Brain MRI dataset. The improvement in accuracy can be attributed 

to the additional frequency domain features, which help the model capture critical pat-

terns that may be missed by traditional CNNs. 

 

Precision: Precision is particularly important in medical imaging tasks where false 

positives can lead to unnecessary treatments or follow-up procedures. Our method 

demonstrated competitive precision, with the highest value (92.8%) on the ISIC dataset, 

indicating a good balance between detecting true positives and minimizing false posi-

tives. 

 

Recall: Recall measures the ability of the model to identify all relevant instances of 

the diseases. Our method achieved high recall across all datasets, particularly on the 

ISIC dataset (95.1%) and Brain MRI dataset (93.4%). The ability to detect a high per-

centage of actual cases is crucial in medical diagnoses, especially when dealing with 

severe conditions such as tumors and skin cancer. 

 

F1-Score: The F1-score, which combines both precision and recall into a single met-

ric, shows that our method excels in maintaining a balance between precision and recall. 

The method achieved an F1-score of 93.9% on the ISIC dataset, 90.9% on ChestX-

ray14, and 91.8% on the Brain MRI dataset, outperforming traditional CNN-based ap-

proaches, which typically have lower F1-scores due to their inability to leverage fre-

quency domain information effectively. 

 

The results indicate that the integration of frequency domain features with deep 

learning models leads to substantial performance improvements across various medical 

imaging tasks. 

 

4.4 Ablation Study 

An ablation study was conducted to assess the contribution of the frequency domain 

features in the overall performance. We compared the full model (with both spatial and 

frequency domain features) against models with only spatial features (ResNet-50) and 

Metric 
ISIC (Skin 

Cancer) 

ChestX-ray14 (Lung 

Disease) 

Brain MRI 

(Tumor) 

Accuracy 94.5% 91.3% 92.1% 

Precision 92.8% 89.5% 90.2% 

Recall 95.1% 92.6% 93.4% 

F1-Score 93.9% 90.9% 91.8% 



models with only frequency domain features (wavelet CNN). The results showed that 

both the spatial and frequency domain features contribute significantly to the model's 

performance. 

Table 3. Ablation Study 

 
 

Model with only spatial features: Achieved 91.5% accuracy on ISIC, 88.2% on 

ChestX-ray14, and 89.0% on Brain MRI. 

 

Model with only frequency domain features: Achieved 92.3% accuracy on ISIC, 

88.8% on ChestX-ray14, and 90.4% on Brain MRI. 

The combined spatial and frequency domain approach outperformed both individual 

feature sets, demonstrating the complementary nature of the two domains in improving 

classification accuracy. 

5 Conclusion 

The experimental results demonstrate that the proposed medical image classification 

algorithm, which integrates frequency domain perception with deep learning, outper-

forms traditional CNN-based approaches in terms of accuracy, precision, recall, and 

F1-score. The method is not only effective across diverse medical imaging datasets but 

also computationally efficient, making it suitable for real-world applications in medical 

diagnostics. Future work will explore further optimizations for real-time deployment 

and expand the model’s applicability to additional medical imaging modalities. 
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