EasyChair Preprint
Ne 9354

‘j“‘ 220

SAT is as Hard as Solving Homogeneous
Diophantine Equation of Degree Two

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 21, 2023

SAT is as hard as solving Homogeneous
Diophantine Equation of Degree Two

Frank Vega &
NataSquad, 10 rue de la Paix 75002 Paris, France

—— Abstract

In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more

unknowns, such that the only solutions of interest are the integer ones. A homogeneous Diophantine
equation is a Diophantine equation that is defined by a homogeneous polynomial. Solving a
homogeneous Diophantine equation is generally a very difficult problem. However, homogeneous
Diophantine equations of degree two are considered easier to solve. We prove that this decision
problem is actually in NP-complete under the constraints that all solutions contain only positive
integers which are actually residues of modulo 2. In addition, we show its optimization variant
is equivalent to solving a problem of quadratic polynomial optimization without the restriction
that the variables must be necessarily integers. This means that this optimization problem can be
solved over the domains of real numbers with at most quadratic exponent and so, we expect these
pre-conditions can turn this problem to be feasibly solved.

2012 ACM Subject Classification Theory of computation — Complexity classes; Theory of compu-
tation — Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

In 1936, Turing developed his theoretical computational model [9]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [9]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [9]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [9].

Let X be a finite alphabet with at least two elements, and let 3X* be the set of finite
strings over ¥ [9]. A Turing machine M has an associated input alphabet ¥ [9]. For each
string w in ¥* there is a computation associated with M on input w [9]. We say that M
accepts w if this computation terminates in the accepting state, that is M (w) = “yes” [9].
Note that, M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [9].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [4].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [4]. The language accepted by a Turing
machine M, denoted L(M), has an associated alphabet 3 and is defined by:

L(M)={we X" : M(w) = “yes”}.

Moreover, L(M) is decided by M, when w ¢ L(M) if and only if M(w) = “no” [4]. We
denote by tps(w) the number of steps in the computation of M on input w [9]. For n € N
we denote by Tps(n) the worst case run time of M; that is:

Ty (n) = maz{ty(w) : w e X"}

mailto:vega.frank@gmail.com
https://orcid.org/0000-0001-8210-4126

SAT is as hard as solving Homogeneous Diophantine Equation of Degree Two

where X" is the set of all strings over X of length n [9]. We say that M runs in polynomial
time if there is a constant k such that for all n, Ths(n) < n* + k [9]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [4]. A verifier for a language L; is a deterministic Turing
machine M, where:

Ly = {w: M(w,u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [9]. A verifier uses additional information,
represented by the string u, to verify that a string w is a member of L;. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [9].

Let {0,1}* be the infinite set of binary strings, we say that a language L; C {0,1}*
is polynomial time reducible to a language Lo C {0,1}*, written Ly <, Lo, if there is a
polynomial time computable function f : {0,1}* — {0,1}* such that for all x € {0,1}*:

x € Ly if and only if f(x) € Ls.

An important complexity class is NP-complete [7]. If L; is a language such that L’ <, L
for some L' € NP-complete, then Ly is NP-hard [4]. Moreover, if L1 € NP, then L; €
NP-complete [4]. A principal NP-complete problem is SAT [7]. An instance of SAT is a
Boolean formula ¢ which is composed of:

1. Boolean variables: x1,Za,...,ZTy;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such
as A(AND), V(OR), —(NOT), =(implication), < (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A
satisfying truth assignment is a truth assignment that causes ¢ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [7]. We define a C NF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean
formula is in conjunctive normal form, or C N F| if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [4]. A Boolean formula is in 3-conjunctive normal
form or 3CNF, if each clause has exactly three distinct literals [4]. For example, the Boolean
formula:

(x1V — 1V — 22) A (23 V22 Va4) A (— 21V — 23V — 24)

is in 3CNF. The first of its three clauses is (x1V — 21V — x2), which contains the three
literals 1, — =1, and — x5. Using all this knowledge as background, then we may be able
to prove our main results.

2 Issues and Motivation

We show the NP—completeness in the problem of deciding whether a homogeneous Diophantine
equations of degree 2 has a solution residues of modulo 2. The whole reduction algorithm

F. Vega

runs in polynomial time since we can reduce SAT to NAE-3SAT in a feasible way: This is a
trivial and well-known polynomial time reduction [10]. We could transform this algorithm to
a quadratic polynomial optimization problem that is algorithmically practical solving SAT
instances. The whole algorithm is based on the problem of quadratic polynomial optimization
which is feasible when we do not restrict the variables to be integers [2].

P versus NP is considered as one of the most important open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? It
was essentially mentioned in 1955 from a letter written by John Nash to the United States
National Security Agency. However, a precise statement of the P versus NP problem was
introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to
find a proof for this problem have failed. A polynomial time algorithm for SAT implies that
P=NP.

3 Summary of the Main Results

In computational complexity, not-all-equal 3-satisfiability (NAE-3SAT) is an NP—-complete
variant of SAT over 3CNF Boolean formulas. NAE-3SAT consists in knowing whether a
Boolean formula ¢ in 3CNF has a truth assignment such that for each clause at least one
literal is true and at least one literal is false [7]. NAE-3SAT remains NP—complete when all
clauses are monotone (meaning that variables are never negated), by Schaefer’s dichotomy
theorem [10]. We know that the variant of XOR 2SAT that uses the logic operator &
(XOR) instead of V (OR) within the clauses of 2C'N F' Boolean formulas can be decided in
polynomial time [8]. Despite of its feasible computation, we announce another problem very
similar to this one but in NP-complete.

» Definition 1. Monotone Exact XOR 2SAT (EX2SAT)

INSTANCE: A Boolean formula ¢ in 2CNF with monotone clauses using logic operators
@ and a positive integer K.

QUESTION: Does ¢ has a truth assignment such that there are exactly K satisfied
clauses?

» Theorem 2. EX2SAT € NP-complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a
polynomial whose nonzero terms all have the same degree [5]. The degree of a term is the sum
of the exponents of the variables that appear in it, and thus is a non-negative integer [5]. In
a general homogeneous Diophantine equations of degree two, we can reject an instance when
there is no solution reducing the equation modulo p. We define another decision problem:

» Definition 3. ZERO-ONE Homogeneous Diophantine Equation (HDE)
INSTANCE: A homogeneous Diophantine equation of degree two

P(x1,x9,...,2,) = B

with the unknowns x1,xa,...,T, and a positive integer B.
QUESTION: Does P(xy1,xa,...,2,) = B has a solution uy,us, ..., u, on {0,1}"7

» Theorem 4. HDE € NP-complete.
Finally, we deduce our main goal.

» Theorem 5. Monotone NAE-3SAT instances could be solved in polynomial time.

SAT is as hard as solving Homogeneous Diophantine Equation of Degree Two

4 Main Results

4.1 Proof of Theorem 2

Proof. Let’s take a Boolean formula ¢ in 3C N F with n variables and m clauses when all
clauses are monotone. We iterate for each clause ¢; = (a V bV ¢) and create the conjunctive
normal form formula

di=(a@a;)) NbDb)N(c®c;)A(a; Db) A (a; Bei) A (b Bei)

where a;, b;, ¢; are new variables linked to the clause ¢; in ¢. Note that, the clause ¢; has
exactly at least one true literal and at least one false literal for some truth assignment if and
only if d; has exactly one unsatisfied clause for the same assignment. Finally, we obtain a
new formula

<p=d1/\d2/\d3/\.../\dm

where there is not any duplicated clause. In this way, we make a polynomial time reduction
from ¢ in NAE-3SAT to (¢,5-m) in EX2SAT. Certainly, ¢ € NAE-3SAT if and only
if (¢,5-m) € EX2SAT, where the new instance (¢,5 - m) is polynomially bounded by
the bit-length of ¢. At the end, we see that EX2SAT is trivially in NP, since we could
check when there are exactly K satisfied clauses for a single truth assignment in polynomial
time. <

4.2 Proof of Theorem 4

Proof. Let’s take a Boolean formula ¢ in XOR 2C N F with n variables and m clauses when
all clauses are monotone and a positive integer K. We iterate for each clause ¢; = (a @ b)
and create the Homogeneous Diophantine Polynomial of degree two

2 2
P(xg,2p) = 25 — 2 - 24 - p + T

where z,, T}, are variables linked uniquely to the positive literals a,b in the Boolean formula
. When the literals a, b are evaluated in {false,true}, then we assign the respective values
{0,1} to the variables z,,xzp (1 if it is true and O otherwise). Note that, the clause ¢;
is satisfied for some truth assignment if and only if P(z,,2,) = 1 for the equivalent and
translated assignment (otherwise P (x4,) = 0). Finally, we obtain a polynomial

P(x1,22,...,2y) = P(xq,2) + P(ze, 2q) + ... + P(ze, xy)

iterating for each clause in ¢ which is exactly a Homogeneous Diophantine Polynomial of
degree two. Indeed, K satisfied clauses in ¢ for a truth assignment correspond to K distinct
small pieces of polynomials P(x;,z;) equal to 1 inside of the Homogeneous Diophantine
Polynomial of degree two after its corresponding evaluation on z;,x;. In this way, we create
a polynomial time reduction from (¢, K) in EX2SAT to (P(x1,22,...,2,),K) in HDE.
Certainly, (¢, K) € EX2SAT if and only if (P(z1,2,...,2n), K) € HDE, where the new
instance (P(x1,a,...,%y), K) is polynomially bounded by the bit-length of (¢, K). At the
end, we see that HDF is trivially in NP, since we could check whether an evaluation of
X1,Ta,...,T, in the solution uy, ua, ..., u, over {0,1}" is equal to K in polynomial time. <«

F. Vega

4.3 Proof of Theorem 5

Proof. We claim that monotone NAFE-3SAT instances could be solved in polynomial time.
This is because of we can reduce the instances from NAE-35SAT to HDFE into a parsimonious
way [9]. We assume that the problem of quadratic polynomial optimization could be feasible
when we do not restrict the variables to be integers [2]. Certainly, the conversion of a clause
¢; = (a @ b) into a small piece of Homogeneous Diophantine Polynomial of degree two on
residues of modulo 2

P(xq,zp) = xi — 224X —l—w% = (x4 — xp)*

works for integers x,,x, € {0,1} and real values 0 < x, < 1 and 0 < z;, < 1 at the same
time, since the expression (z, — x3)? is maximized to the optimal value of 1 only on solutions
in {0,1} for both domains according to our described and explained reduction in Theorem 4.

Now, for an instance of monotone NAE-35AT, we could reduce it to the optimization
variant of HDFE just picking the first variable x; and introducing the constraint 7 = 0 or
either 1 = 1 between two new instances respectively. In this way, we have to decide which
one has the maximal optimum value between these two instances of the quadratic polynomial
optimization problem associated with HDE under this last single constraint and the rest of
other constraints 0 < x; <1 for every real variable x; contained on them.

After deciding which one has the maximal optimum value, then we pick the optimal
instance from the optimization variant of HDFE (if both instances have the same optimal
value, then we pick up arbitrarily anyone of them). Finally, we repeat the process on the
second variable xo just keeping the stored constraint over x; that exists in the selected
optimization instance of HDFE that won in the previous step. We choose again between
these quadratic optimization polynomials on this second phase from the transformed instance
HDF using the constraint o = 0 or either x5 = 1 respectively.

We repeat over and over again just solving exactly 2 -n times an optimization problem on
quadratic homogeneous polynomials and deciding which is the optimal one between two new
candidates in each step over a linear number of new additional constraints (n is the number
of variables inside of the original reduction to HDE). In order to obtain a final satisfying
truth assignment, we assign each value of the single variable b as true whether the ultimatum
and remaining quadratic optimization instance has the constraint z;, = 1 otherwise we select
false if this one contains the constraint x; = 0. If this constructed truth assignment turns
out to be false after of evaluating in the original Boolean formula, then this would mean
that the formula is not an acceptance instance of monotone NAE-3SAT. To sum up, we
are able to decide whether any Boolean formula in 3CN F' belongs to monotone NAE-3SAT
in polynomial time just assuming that the quadratic polynomial optimization problem is
feasible whenever we do not restrict the variables to be solely integers [2]. <

5 Explanation of their Significance

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP-complete problems [7]. A proof of P = NP will have stunning
practical consequences, because it possibly leads to efficient methods for solving some of the
important problems in computer science [3]. The consequences, both positive and negative,
arise since various NP—complete problems are fundamental in many fields [6]. A polynomial
solution for any NP—-complete problem will imply a feasible solution to every problem in N P
and thus, P would be equal to NP [4].

SAT is as hard as solving Homogeneous Diophantine Equation of Degree Two

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP-complete problem such as SAT will break most existing
cryptosystems including: Public-key cryptography, symmetric ciphers and one-way functions
used in cryptographic hashing. These would need to be modified or replaced by information-
theoretically secure solutions not inherently based on P-NP equivalence.

There are positive consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research
are NP-complete, such as some types of integer programming and the traveling salesman
problem [6]. Efficient solutions to these problems have enormous implications for logistics [6].
Many other important problems, such as some problems in protein structure prediction, are
also NP-complete, so this will spur considerable advances in biology [1].

Since all the NP—complete optimization problems become easy, everything will be much
more efficient [6]. Transportation of all forms will be scheduled optimally to move people
and goods around quicker and cheaper [6]. Manufacturers can improve their production
to increase speed and create less waste [6]. Learning becomes easy by using the principle
of Occam’s razor: We simply find the smallest program consistent with the data [6]. Near
perfect vision recognition, language comprehension and translation and all other learning
tasks become trivial [6]. We will also have much better predictions of weather and earthquakes
and other natural phenomenon [6].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP-complete problems will cause in mathematics itself [3]. Research mathem-
aticians spend their careers trying to prove theorems, and some proofs have taken decades or
even centuries to be discovered after problems have been stated [3]. For instance, Fermat’s
Last Theorem took over three centuries to be proved [3]. A method that guarantees to
find proofs for theorems, should one exist of a “reasonable” size, would essentially end this
struggle [3].

—— References

1 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model
is NP-complete. Journal of computational biology: a journal of computational molecular cell
biology, 5(1):27-40, 1998. doi:10.1145/279069.279080.

2 Richard P Brent. Algorithms for Minimization without Derivatives. Courier Corporation,
2013.

3 Stephen Arthur Cook. The P versus NP Problem. https://www.claymath.org/wp-content/
uploads/2022/06/pvsnp.pdf, June 2022. Clay Mathematics Institute. Accessed 9 September
2023.

4 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

5 David A Cox, John Little, and Donal O’shea. Using Algebraic Geometry, volume 185. Springer
Science & Business Media, 2006.

6 Lance Fortnow. The status of the P versus NP problem. Communications of the ACM,
52(9):78-86, 2009. doi:10.1145/1562164.1562186.

7 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

8 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondetermin-
istic log space. Mathematical systems theory, 10(1):1-17, 1976. doi:10.1007/BF01683259.

9 Christos Harilaos Papadimitriou. Computational Complexity. Addison-Wesley, USA, 1994.

10 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 216-226, 1978. doi:10.1145/800133.804350.

https://doi.org/10.1145/279069.279080
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1007/BF01683259
https://doi.org/10.1145/800133.804350

	1 Introduction
	2 Issues and Motivation
	3 Summary of the Main Results
	4 Main Results
	4.1 Proof of Theorem 2
	4.2 Proof of Theorem 4
	4.3 Proof of Theorem 5

	5 Explanation of their Significance

