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Abstract—Glioblastoma (GBM) is a deadly malignant brain
tumor. The biggest threat is the very low survival time, as it
reduces the chances of administering the right treatment. For
patients with GBM, time is extremely precious and an accurate
prognosis is essential. The problem that is prevalent is the
invasiveness in the procedures required to identify if the standard
treatment will be effective for the patient. Due to lack of a direct
indication in the MRI, doctors are forced to perform surgery
to identify the genotypic indication of the prognosis. Promoter
methylation of the MGMT biomarker indicates a better response
to chemotherapy and longer survival times in patients with GBM.
While MGMT itself is not identifiable from images, this project
attempts to predict its presence from multimodal MRI data
acquired from Radiological Society of North America (RSNA).
The proposed method trains an EfficientNet-RNN model for each
of the 4 modalities of the MRI and fuses their individual outputs
to produce an AU-ROC score of 0.5876, which is an improvement
on the individual values.

Index Terms—Glioblastoma, brain, genotype, MGMT, MRI,
multimodal, deep learning

I. INTRODUCTION

Glioblastoma is one of the deadliest cancers due to the
very low median survival time of the patients affected by this
condition[1]. It is essential to identify and begin the best mode
of treatment quickly to improve survival time. It is found
that administering temozolomide(TMZ) can prove beneficial
to patients and could contribute to long term survival[2].
However, TMZ and all forms of chemotherapy are highly toxic
and have severe side effects such as multiple organ failure. It is
not humane to begin treatment without any assurance of the ef-
ficacy of the treatment. The efficacy of the accepted treatment
methods could be hindered by the DNA repair enzyme O(6)-
methylguanine-DNA methyltransferase (MGMT) when it is
active[3]. Promoter methylation of MGMT is shown to favour
long-term survival in about 71% of patients[4]. Therefore, it
would be safer to identify the status of the MGMT promoter
before starting treatment. Standard methods for identifying
MGMT promoter status such as RT-PCR tests are invasive,
expensive and time-consuming. Hence, it is essential to have
a method that is safe, quick and reliable while also being

economically viable. This paper proposes a method to use
multimodal MR Image data to predict the promoter status.

A. MGMT Promoter Methylation

O6-methylguanine-DNA methyltransferase, known as
MGMT is a DNA repair enzyme. In the case of glioblastoma
patients undergoing alkylating agent chemotherapy, the active
MGMT gene leads to poor results as it leads to repair
of cancer cells. This is highly unfavourable and counter-
productive. This also leads us to ponder if the inactivity
of MGMT could offer considerable improvement in the
treatment of patients with glioblastoma. Studies have shown
that the methylation of MGMT promoter leads to selective
gene silencing, subsequently improving the efficacy of the
medication[3].

B. Magnetic Resonance Imaging

MR Imaging is widely used for diagnosis and post-
treatment inspection of patients with glioblastoma. The main
modalities that are available include T1-weighted (T1w)
and contrast-enhanced T1 (T1wCE), T2-weighted (T2w) and
Fluid-Attenuated Inversion Recovery (FLAIR). Each of these
provide essential information about the tumor and its envi-
ronment. T1w and T1wCE are preferable for harder material
such as muscle; T2w offers a clearer picture of soft tissues;
FLAIR is similar to T2 but also enhances the cerebrospinal
fluid (CSF) in the image[5].

C. EfficientNet

EfficientNet[13] is a family of models that implements a
uniform scaling method with the help of compound scaling
coefficients. It performs well on common transfer learning
datasets such as ImageNet, CIFAR-100 among others, and
produces state-of-art accuracy while being computationally
less intensive than standard CNNs.



Fig. 1: Backbone Feature Extractor.

II. RELATED WORK

A. Video Resnet

It uses a full convolution layer which predicts by combining
all the slices trying to extract features without localizing
specific slice information. Here the layers are similar to resnet
but the kernel is 3D instead of the 2D kernel as in resnet.
Video resnet is used to analyse video files and predict output.
To train using this technique, we fix the number of slices.
The model does not treat slices with and without tumors as
different entities, leading to unnecessary training.

B. Resnet

Resnet was the first model to implement a residual layer
in which the output of the previous layer is added to the
current layer which creates an effect of regularization within
the network thereby giving the ability to generate models
with more layers without overfitting and vanishing gradient
problem. We used Resnet 18 (18 layers) as feature extractor
which was pre trained on image net dataset (having 30.24%
as Top-1 error). We used the full model which gave us output
of a 2048 dimension vector which then is fed into another
layer of CNN and finally passed into RNN. Resnet does not
efficiently scale as Efficient Net.

C. Unet RNN

Unet is an image segmentation model which has two parts:
an encoder and a decoder. The encoder tries to extract the
features and reduce the dimension of input and decoder tries
to generate the segmentation mask of the actual image. We
trained the standard Unet model with BraTS[7][8] segmenta-
tion data. The model predicts tumor segments with a DICE
loss of 0.24. The idea was to use the encoder as our feature
extractor so that model would be able to extract features
which were related to the tumor. By this way we could give
a single channel (corresponding to the specific modal) input
to the pretrained single channel input receiving UNet. The
accuracy was less compared to the feature extractor we are
using currently.

III. ARCHITECTURE

The v here (in Fig. I) represents the number of slices.
The proposed architecture accommodates a varying number
of slices per image. Each slice is an image of dimension 256
× 256. This tensor is then normalised and fed into a 3 × 3
kernel convolution layer which treats each slice as separate
images. This produces v images each with dimensions 3 ×
256 × 256. The ouput is passed to an efficient net for feature
extraction. An extra full convolution layer is added so that
the extracted features are in the required dimensions. Instance
normalisation is applied on each convolution layer.

The v vectors are fed into a LSTM layer for processing
all the slices combined to give a 1024 dimension output
vector. Another fully connected layer and a sigmoid activation
layer are added to give a single class output probability. The
weighted average of the four modalities trained separately on
the same architecture is calculated to give the final prediction.

A. Efficient Net

Different variations of efficient net were considered.
EfficientNet-b4 was chosen as it produces optimum results.
We tried incrementing the number of hidden layers in LSTM
and the number of parameters in the b4 model balanced with
the optimum number of hidden layers considering the RAM
space we had.

B. Instance Normalisation

Normalisation maintains the intermediate output towards
unit gaussian distribution thereby solving the vanishing gra-
dient problem. Batch normalisation is the most commonly
used technique which normalises the output per batch. Here,
the batch size is the number of slices of the MR image.
Normalisation across the batch is less insightful and hence,
instance normalisation was used. This can normalise slices
independent of the entire batch. This provides improved accu-
racy for shorter epochs.



C. LSTM

LSTM layer is used in speech processing to process a
sentence word-by-word. It is able to relate words that occur
early in the sentence to those that appear later. We relate the
vectorised feature extracted slice information to a word and
feed it into a LSTM layer. This provides an efficient way to
distinguish slices with and without the favourable features and
passes on the necessary information for the final prediction.

Fig. 2: LSTM layer.

D. Multimodal Fusion

Often, any one modality of the MRI is used for training
the model due to availability constraints. To exploit all four
modes, we could combine the 4 modalities and feed into a
single neural network thereby enabling it to correlate features
of different modalities. In this technique, we would be passing
each modality of the MR image as a channel and the feature
extractor would be able to predict output based on combining
the information in all 4 channels. An analysis of the dataset
(shown in Fig. 3) showed that each mode had varying numbers
of slices for different patients.

Fig. 3: Plot of number of slices for image vs number of images
with slices in the specified range.

On analysis of the dataset all the channels had varying
numbers of slices for different images. Thereby we were not
able to fix the number of slices (which should be constant
for combining different channels). If we take random slices to
fix the number of slices we would compromise highly critical
data for prediction.

IV. IMPLEMENTATION AND RESULT

This project uses a deep learning based approach to extract
features from the MR images and also to classify the images
into two classes - MGMT Promoter Methylated and MGMT
Promoter Unmethylated. The architecture is explained in detail
in the previous section.

A. Training and Validation

Binary cross entropy loss was used in training the model.
AdamW optimiser was used and the model was trained with
a learning rate of 10e-6. The model was trained for 50-60
epochs with early stopping as a regularisation method to
avoid the possibility of overfitting. The model was trained
separately on each modality of the MRI. The final output was
calculated by calculating a weighted average of the individual
models’ outputs. The weights can be assigned based on
knowledge of the domain or can be learned with the help of
machine learning algorithms.

Fig. 4: ROC curve.

Fig. 5: Confusion Matrix after outputs are fused.



TABLE I: Study of pre-existing methods.

Scan Mode val acc Model train loss val loss
Without T2w 0.6059 r2plus1d 18 0.6885 0.6837
Without T2w 0.5547 resNext 0.2669 3.6044
FLAIR 0.5324 monai 0.6905 0.6990
All 0.5312 efficientnet-b0 0.6365 0.7217
T2w 0.5154 unet 0.689 0.6952
Without T2w 0.4740 resNext50 0.5940 0.7598

TABLE II: Efficient Net metrics

Name Scan Mode val acc val loss rnnh rnnl
efficientnet-b4-T2w T2w 0.6323 0.6852 1024 1
efficientnet-b5-T2w T2w 0.6488 0.6858 512 2
efficientnet-b4-T1wCE T1wCE 0.6309 0.6855 512 2
efficientnet-b6-T1w T1w 0.6501 0.6871 512 2
efficientnet-b6-T1wCE T1wCE 0.6507 0.6845 512 2
efficientnet-b4-FLAIR FLAIR 0.6504 0.6829 512 2
efficientnet-b6-FLAIR FLAIR 0.6387 0.677 1024 1

Fig. 6: Confusion matrices for model trained on 4 modalities.

B. Implementation Environment

The model was trained on the NVIDIA TESLA P100 Cloud
GPU provided by Kaggle on the predefined environment. WB
was used to log the results and visualise the data to draw
meaningful conclusions from various metrics.

C. Performance

The curve in Fig. 4 shows that Postfusion performs signif-
icantly better than the individual models with an AU-ROC

score of 0.5876. Table 1 provides a comparison of various
standard techniques and their performance on this data.

V. CONCLUSION

This work predicts the methylation of MGMT promoter
using Efficient net as feature extractor and LSTM to process
the features to arrive at the prediction. The difference from past
attempts at similar problems is very significant in the way the
modalities are fused. “Post-fusion” provides a way to handle
medical data in deep learning when the 3D image slices are
not the same in different modalities.



While the focus has been on optimising the deep learning
model, this work remains faithful to the goal of helping
patients diagnosed with glioblastoma by providing a quick and
non-invasive solution and in the future, would proceed in the
direction of improving feature extraction techniques.
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