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Abstract

We present Stable Video Diffusion — a latent video
diffusion model for high-resolution, state-of-the-art
text-to-video and  image-to-video  generation.
Recently, latent diffusion models trained for 2D
image synthesis have been turned into generative
video models by inserting temporal layers and
finetuning them on small  high-quality video
datasets. However; training methods in the literature
vary widely, and the field has yet to agree on a
unified strategy for curating video data. In this
paper; we identify and evaluate three different stages
for successful training of video LDMs: text-to-
image pretraining, video pretraining, and high-
quality video finetuning.  Furthermore, we
demonstrate  the necessity of a well-curated
pretraining dataset for generating high-quality
videos and present a systematic curation process to
train a strong base model, including captioning and

filtering strategies. We then explore the impact of

finetuning our base model on high-quality data and
train a text-to-video model that is competitive with
closed-source video generation. We also show that
our base empirical study on the effect of data
curation during video.

L.Introduction

Driven by advances in generative image modelling
with diffusion models, there has been significant
recent progress on generative video models both in
research and real-world applications. Broadly, these
models are either trained from scratch or finetuned
(partially or fully) from pretrained image models
with additional temporal layers inserted. Training is
often carried out on a mix of image and video
datasets.

While research around improvements in video
modelling has primarily focused on the exact
arrangement of the spatial and temporal layers, none
of the afore mentioned works mvestigate the
influence of data selection. This is surprising,
especially since the significant impact of the training
data distribution on generative models is undisputed.
Moreover, for generative image modelling, it is
known that pretraining on a large and diverse dataset
and finetuning on a smaller but higher quality
dataset significantly improves the performance.
Since many previous approaches to video modelling
have successfully drawn on techniques from the
image domain, it is noteworthy that the effect of data
and training strategies, i.e., the separation of video
pretraining at lower resolutions and high-quality
finetuning, has yet to be studied. This work directly
addresses these previously uncharted territories. We
believe that the significant contribution of data
selection is heavily underrepresented in today’s
video research landscape despite being well-
recognized among practitioners when training video
models at scale. Thus, in contrast to previous works,
we draw on simple latent video diffusion baselines
for which we fix architecture and training scheme
and assess the effect of data curation. To this end, we
first identi fy three different video training stages that
we find crucial for good performance: text-to-image
pre training, video pretraining on a large dataset at
low resolution, and high-resolution video finetuning
on a much smaller dataset with higher-quality
videos. Borrowing from large scale image model
training, we introduce a systematic approach to
curate video data at scale and present an empirical
study on the effect of data curation during video
pretraining. Ouw main findings imply that
pretraining on well-curated datasets leads to




significant performance improvements that persist
after high-quality finetuning.

A general motion and multi-view prior

Drawing on these findings, we apply our proposed
curation scheme to a large video dataset comprising
roughly 600 million samples and train a strong
pretrained text-to-video base model, which provides
a general motion representation. We exploit this and
finetune the base model on a smaller, high-quality
dataset for high-resolution downstream tasks such as
text to-video (see Figure 1, top row) and image-to-
video, where we predict a sequence of frames from
a single conditioning image (see Figure 1, mid
rows). Human preference studies reveal that the
resulting model outperforms state-of-the-art image-
to-video models. Furthermore, we also demonstrate
that our model pro videos a strong multi-view prior
and can serve as a base to finetune a multi-view
diffusion model that generates multiple consistent
views of an object in a feedforward manner and
outperforms specialized novel view synthesis
methods such as Zerol23XL and SyncDreamer.
Finally, we demonstrate that our model allows for
explicit motion control by specifically prompting the
temporal layers with motion cues and also via
training LoRA modules on datasets resembling
specific motions only, which can be efliciently
plugged into the model. To summarize, our core
contributions are threefold: (i) We present a
systematic data curation workflow to turn a large
uncurated video collection into a quality dataset for
generative video modelling. Using this workflow,
we (11) train state-of-the-art text-to-video and image-
to-video models, outperforming all prior models.
Finally, we (iil) probe the strong prior of motion and
3D understanding in our models by conducting
domain-specific experiments. Specifically, we
provide evidence that pretrained video diffusion
models can be turmed into strong multi-view
generators, which may help overcome the data
scarcity typically observed in the 3D domain.

2. Background

Latent Video Diffusion Models Video-LDMs train
the main generative model in a latent space of
reduced computational complexity. Most related
works make use of a pretrained text-to-image model
and insert temporal mixing layers of various forms
into the pretrained architecture. Ge et al. addition
ally relies on temporally correlated noise to increase
temporal consistency and ease the learning task. In
this work, we follow the architecture proposed in
Blattmann et al. and insert temporal convolution and
attention layers after every spatial convolution and

attention layer. In contrast to works that only train
temporal layers or are completely training-free, we
finetune the full model. For text to-video synthesis
in particular, most works directly condition the
model on a text prompt or make use of an additional
text-to-image prior. In our work, we follow the
former approach and show that the resulting model
is a strong general motion prior, which can easily be
finetuned into an image-to-video or multi-view
synthesis model. Additionally, we introduce micro-
conditioning on frame rate. We also employ the
EDM-framework and significantly shift the noise
schedule towards higher noise values, which we find
to be essential for high-resolution finetuning.

3. Curating Data for HQ Video Synthesis

In this section, we introduce a general strategy to
train a state-of-the-art video diffusion model on
large datasets of videos. To this end, we (i) introduce
data processing and cu ration methods, for which we
systematically analyze the impact on the quality of
the final model, and (i) identify three different
training regimes for generative video modelling. In
particular, these regimes consist of » Stage I: image
pretraining, i.e. a 2D text-to-image diffusion model.
« Stage 1I: video pretraining, which trains on large
amounts of videos. = Stage III: video finetuning,
which refines the model on a small subset of high-
quality videos at higher resolution.

3.1. Data Processing and Annotation

We collect an initial dataset of long videos which
forms the base data for our video pretraining stage.
To avoid cuts and fades leaking mto synthesized
videos, we apply a cut detection pipelinel in a
cascaded manner at three different FPS levels. After
applying our cut-detection pipeline, we obtain a
significantly higher number (~4x) of clips,
indicating that many video clips in the unprocessed
dataset contain cuts beyond those obtained from
metadata. Next, we annotate each clip with three
different synthetic captioning methods: First, we use
the image captioner CoCa to annotate the mid-frame
of each clip and use V-BLIP to obtain a video-based
caption. Finally, we generate a third description of
the clip via an LLM-based summarization of the first
two captions. The resulting initial dataset, which we
dub Large Video Dataset (LVD), consists of 580M
annotated video clip pairs, forming 212 years of
content. However, further investigation reveals that
the resulting dataset contains examples that can be
expected to degrade the performance of our final
video model, such as clips with less motion,
excessive text presence, or generally low aesthetic
value. We therefore additionally annotate our dataset




with dense optical flow, which we calculateat 2 FPS
and with which we filter out static scenes by
removing any videos whose average optical flow
magnitude is below a certain threshold. Indeed,
when considering the motion distribution of LVD
via optical flow scores, we identify a subset of close-
to-static clips therein. Moreover, we apply optical
character recognition to weed out clips containing
large amounts of written text. Lastly, we annotate the
first, middle, and last frames of each clip with CLIP
embeddings from which we calculate aesthetics
scores as well as text-image similarities.

3.2. Stage I: Image Pretraining

We consider image pretraining as the first stage in
our training pipeline. Thus, in line with concurrent
work on video models, we ground our initial model
on a pre trained image diffusion model- namely
Stable Diffusion to equip it with a strong visual
representation. To analyze the effects of image
pretraining, we train and compare two identical
video models as detailed in App. D on a 10M subset
of LVD; one with and one without pre trained spatial
weights. We compare these models using a human
preference study which clearly shows that the
image-pretrained model is preferred in both quality
and prompt-following.

3.3. Stage II: Curating a Video Pretraining
Dataset

A systematic approach to video data curation. For
multimodal image modelling, data curation is a key
element of many powerful discriminative and
generative models. However, since there are no
equally powerful off-the-shelf representations
available in the video domain to filter out unwanted
examples, we rely on human preferences as a signal
to create a suitable pre training dataset. Specifically,
we curate subsets of LVD using different methods
described below and then consider the human-
preference-based ranking of latent video diffusion
models trained on these datasets.

3.4. Stage I11: High-Quality Finetuning

In the previous section, we demonstrated the
beneficial effects of systematic data curation for
video pretraining. However, since we are primarily
interested in optimizing the performance after video

finetuning, we now investigate how these
differences afler Stage II translate to the final
performance after Stage III. Here, we draw on
training techniques from latent image diffusion
modelling and increase the resolution of the training
examples. Moreover, we use a small finetuning

dataset comprising 250K pre-captioned video clips
of high visual fidelity.

4. Training Video Models at Scale

In this section, we borrow takeaways and present
results of training state-of-the-art video models at
scale. We first use the optimal data strategy inferred
from ablations to train a power ful base model at 320
% 576 in App. D.2. We then perform finetuning to
yield several strong state-of-the-art models for
different tasks such as text-to-video in Section 4.2,
image-to-video in  Section 4.3 and frame
interpolation in Section 4.4. Finally, we demonstrate
that our video-pretraining can serve as a strong
implicit 3D prior, by tuning our image-to-video
models on multi-view generation in Section 4.5 and
outperform con current work, in particular
Zerol23XL and Sync Dreamer in terms of multi-
view consistency.

4.1. Pretrained Base Model

Ours 0.7 0.6 0.5 0.4 0.3 0.2 User Preference 0.1 0.0
baseline Ours vs Pika Ours vs Gen2 Figure 6. Our
25 frame Image to-Video model is preferred by
human voters over GEN-2 and PikaLabs. As
discussed in Section 3.2, our video model is based
on Stable Diffusion. Recent works show that it is
crucial to adopt the noise schedule when training
image diffusion models, shifting towards more noise
for higher-resolution images. As a first step, we
finetune the fixed discrete noise schedule from our
image model towards continuous noise using the
network preconditioning proposed in Karras et al.
for images of size 256 x 384, After inserting
temporal layers, we then train the model on LVD-F
on 14 frames at resolution 256 x 384. We use the
standard EDM noise schedule for 150k iterations
and batch size 1536. Next, we finetune the model to
generate 14320 =576 frames for 100k iterations
using batch size 768. We find that it is important to
shift the noise schedule towards more noise for this
training stage, confirming results by Hoogeboom et
al. for image models. For further training details, see
App. D. We refer to this model as our base model
which can be easily finetuned for a variety of tasks
as we show in the following sections. The base
model has learned a powerful motion representation,
for example, it significantly outperforms all
baselines for zero-shot text to-video generation on
UCF-101. Evaluation details can be found in App. E.

4.2. High-Resolution Text-to-Video Model

We finetune the base text-to-video model on a high-
quality video dataset of ~ 1M samples. Samples in
the dataset generally contain lots of object motion,




steady camera motion, and well-aligned captions,
and are of high visual quality al together. We
finetune our base model for 50k iterations at
resolution 576 x 1024 (again shifting the noise
schedule towards more noise) using batch size 768.
Samples are, more can be found in App. E.

4.3. High Resolution Image-to-Video Model

Besides text-to-video, we finetune our base model
for image-to-video generation, where the video
model receives a still mput image as a conditioning.
Accordingly, we re place text embeddings that are
fed into the base model with the CLIP image
embedding of the conditioning. Additionally, we
concatenate a noise-augmented version of the
conditioning frame channel-wise to the input of the
UNet. We do not use any masking techniques and
simply copy the frame across the time axis. We
finetune two models, one predicting 14 frames and
another one predicting 25 frames; implementation
and training details can be found in App. D. We
occasionally found that standard vanilla classifier-
free guidance can lead to artifacts: too little guidance
may result in inconsistency with the conditioning
frame while too much guidance can result in
oversaturation. Instead of using a constant guidance
scale, we found it helpful to linearly increase the
guidance scale across the frame axis (from small to
high). Details can be found in App. D. Samples are
more can be found in App. E. In Section 4.5 we
compare our model with state-of-the art, closed-
source video generative models, in particular GEN-
2 and Pikalabs, and show that our model is
preferred in terms of visual quality by human voters.
Details on the experiment, as well as many more
image-to video samples, can be found in App. E.

4.3.1 Camera Motion LoRA

To facilitate controlled camera motion in image-to-
video generation, we train a variety of camera
motion LoRAs within the temporal attention blocks
of our model; see App. D for exact implementation
details. We train these additional parameters on a
small dataset with rich camera motion metadata. In
particular, we use three subsets of the data for which
the camera motion is categorized as “horizontally
moving”, “zooming”, and “static”. We show
samples of the three models for identical
conditioning frames; more samples can be found in
App. E.

4.4, Frame Interpolation

To obtain smooth videos at high frame rates, we
finetune our high-resolution text-to-video model
into a frame interpolation model. We follow

Blattmann et al. and concatenate the left and right
frames to the input of the UNet via masking. The
model learns to predict three frames within the two
conditioning frames, effectively increasing the
frame rate by four. Surprisingly, we found that a very
small number of iterations (= 10k) suffices to get a
good model. Details and samples can be found in
App. D and App. E, respectively.

4.5. Multi-View Generation

To obtain multiple novel views of an object
simultaneously, we finetune our image-to-video
SVD model on multi-view datasets. Datasets. We
finetuned our SVD model on two datasets, where the
SVD model takes a single image and outputs a
sequence of multi-view images: (i) A subset of Obja
verse [14] consisting of 150K curated and CC-
licensed synthetic 3D objects from the original
dataset. For each object, we rendered 360- orbital
videos of 21 frames with 7 randomly sampled HDRI
environment map and elevation angles between
[=52,30=]. We evaluate the resulting models on an
unseen test dataset consisting of 50 sampled objects
from Google Scanned Objects (GSO) dataset. and
(i1) MVImgNet consisting of casually captured multi
view videos of general household objects. We split
the videos into ~200K train and 900 test videos. We
rotate the frames captured in portrait mode to
landscape orientation. The Objaverse-trained model
is additionally conditioned on the elevation angle of
the input image, and outputs orbital videos at that
elevation angle. The MVImgNet-trained models are
not conditioned on pose and can choose an arbitrary
camera path in their generations. For details on the
pose conditioning mechanism, see App. E.

Models

We refer to our finetuned Multi-View model as
SVD-MV. We perform an ablation study on the
importance of the video prior of SVD for multi-view
generation. To this effect, we compare the results
from SVD MV ie. from a video prior to those
finetuned from an image prior i.e. the text-to-image
model SD2.1 (SD2.1 MV), and that traned without
a prior Le. from random initialization (Scratch-MV).
In addition, we compare with the current state-of-
the-art multi-view generation models of Zerol23,
Zerol23XL, and SyncDreamer.

Metrics

We use the standard metrics of Peak Signal-to Noise
Ratio (PSNR), LPIPS, and CLIP Similarity scores
(CLIP-S) between the corresponding pairs of ground
truth and generated frames on 50 GSO test objects.




Training

We train all our models for 12k steps (~16 hours)
with 8 80GB A 100 GPUs using a total batch size of
16, with a learning rate of le-3.

Results

The average metrics on the GSO test dataset. The
higher performance of SVD-MV compared to
SD2.1-MV and Scratch-MV clearly demonstrates
the advantage of the learned video prior in the SVD
model for multi-view generation. In addition, as in
the case of other models finetuned from SVD, we
found that a very small number of iterations (= 12k)
suffices to get a good model. Moreover, SVD-MV is
competitive w.r.t state-of the-art techniques with
lesser training time (12k iterations in 16 hours),
whereas existing models are typically trained for
much longer (for example, SyncDreamer was
trained for four days specifically on Objaverse). The
convergence of different finetuned models. After
only 1k iterations, SVD-MV has much better CLIP-
S and PSNR scores than its image-prior and no-prior
counterparts. A qualitative comparison of multi-
view generation results on a GSO test object and
Figure 10 on an MVImgNet test object. As can be
seen, our generated frames are multi-view consistent
and realistic. More details on the experiments, as
well as more multi-view generation samples, can be
found in App. E

5. Conclusion

We present Stable Video Diffusion (SVD), a latent
video diffusion model for high-resolution, state-of-
the-art text-to video and image-to-video synthesis.
To construct its pre training dataset, we conduct a
systematic data selection and scaling study, and
propose a method to curate vast amounts of video
data and turn large and noisy video collection into
suitable datasets for generative video models.
Furthermore, we introduce three distinct stages of
video model training which we separately analyze to
assess their impact on the final model performance.
Stable Video Diffusion provides a powerful video
representation from which we finetune video models
for state-of-the-art image-to-video synthesis and
other highly relevant applications such as LoRAs for
camera control. Finally we provide a pioneering
study on multi-view finetuning of video diffusion
models and show that SVD constitutes a strong 3D
prior, which obtains state of-the-art results in multi-
view synthesis while using only a 8 fraction of the
compute of previous methods. We hope these
findings will be broadly useful in the generative
video modelling literature. A discussion on our

work’s broader impact and limitations can be found
in App. A.
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