
EasyChair Preprint
№ 6666

Animal Detection for Road Safety Using Deep
Learning

S Sanjay, Sudhir Sidhaarthan Balamurugan and
Sai Sudha Panigrahi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2021

Animal Detection for Road safety using Deep

Learning

Sanjay S1

RMK Engineering College

Chennai, India

Sudhir Sidhaarthan B2
Lovly Professional University

Punjab, India

Sai Sudha Panigrahi3

Amrita School of Engineering,

Coimbatore, India

Abstract— The recognition of big animals on the images

with road scenes has received little attention in modern

research. There are very few specialized data sets for this task.

Popular open data sets contain many images of big animals,

but the most part of them is not correspond to road scenes that

is necessary for on-board vision systems of unmanned vehicles.

The paper describes the preparation of such a specialized data

set based on Google Open Images and COCO datasets. The

resulting data set contains about 20000 images of big animals

of 10 classes: “Bear”, “Fox”, “Dog”, “Horse”, “Goat”,

“Sheep”, “Cow”, “Zebra”, “Elephant”, “Giraffe”. Deep

learning approaches to detect these objects are researched in

the paper. Authors trained and tested modern neural network

architectures YOLOv3, RetinaNet R-50-FPN, Faster R-CNN

R-50-FPN, Cascade RCNN R-50-FPN. To compare the

approaches the mean average precision (mAP) was determined

at IoU≥50%, also their speed was calculated for input tensor

sizes 640x384x3. The highest quality metrics are demonstrated

by architecture YOLOv3 as for ten classes (0.78 mAP) and one

joint class (0.92 mAP) detection with speed more 35 fps on

NVidia Tesla V-100 32GB video card. At the same hardware,

the RetinaNet R-50-FPN architecture provided recognition

speed of more than 44 fps and a 13% lower mAP. The software

implementation was done using the Keras and PyTorch deep

learning libraries and NVidia CUDA technology. The

proposed data set and neural network approach to recognizing

big animals on images have shown their effectiveness and can

be used in the on-board vision systems of driverless cars or in

driver assistant systems.

Keywords— image recognition, detection, big animals, road

scene, data set, deep learning, neural network, software.

I. INTRODUCTION

Reliable detection of big animals on images is a serious

challenge for the computer vision systems of unmanned

cars. This is especially important because of the relatively

high number road accidents with wild animals[1].

At the early stage, approaches to solving this problem

were used detectors based on hand-crafted features:

Haarfeatures, HOG (Histogram of oriented gradients), LBP

(Local binary patterns) [2, 3]. However, such approaches

were not reliable enough.

Modern research in the field of big animals detection on

images is associated, mainly, with the usage of deep

convolutional neural networks. Moreover, the recognition

of animals is investigated as a solution to the problems of

classification [4], detection [5] and segmentation [6] of

objects. Some works are devoted to the detection of animals

on images obtained from unmanned aerial vehicles, for

example, paper [7].

The appearance of animals on the road is a relatively rare

event, at the same time, sufficiently large and varied data sets

are needed to train neural network systems for their detection.

Table I shows the most popular modern open data sets

containing images for the detection of big animals. There are

also closed data sets created on the basis of images and videos

from the Internet, for example, LADSet [3], but there is little

information about their contents.

The IWildCam [1], Animal Image [2], The Oxford-

IIITPet [3], and STL-10 [4] datasets have disadvantage that

they contain a small number of labeled images in the training

set and a limited number of animal classes. The largest

ImageNet image database [5] currently contains many labeled

images of a huge number of types and subtypes of big

animals, but the vast majority of them do not apply to the road

scene.

TABLE I. OPEN DATA SETS FOR BIG ANIMAL’S DETECTION PROBLEM

Data sets
Total amount of images in the

data set

IWildCam [1] ~200k

Animal Image [2] 3k

The Oxford-IIIT-Pet [3] 7.5k

STL-10 [4] 100k

ImageNet [5] 14kk

COCO [6] 330k

Google’s Open Images [7] 1.9kk

The COCO [6] and Google’s Open Images [7] data sets are

more promising for use in the research area, and they contain

not only bounding boxes, but also polygons of object

segments. In the present article, in section III, we consider the

formation on their basis of a data set for the detection of big

animals on the road scene.

In addition, special attention is paid to the use of modern

object detectors based on deep convolutional neural networks

and the results of experiments using the created data set are

analyzed.

II. PROBLEM DEFINITION

This article solves the problem of detecting and classifying

animals on the image with road scene. We need to investigate

methods based on deep neural networks for detection big

animals of 10 widespread classes: “Bear”, “Fox”, “Dog”,

“Horse”, “Goat”, “Sheep”, “Cow”, “Zebra”, “Elephant”,

“Giraffe”. Also task includes the need to study the detection

of an one joint class. To train and test various neural network

architectures appropriate data set should be generated. Then

we need to determine the best architecture for this task with

AP (average precision) [15] quality metric per class and

overall mAP (mean average precision) [16]. Another

important indicator is the inference time for one image

(without taking into account the loading time of the image into

memory and its preparation for supplying the network input).

III. DATA SET PREPARATION

To obtain specific results, we created our own data set

based on COCO [13] and Google’s Open Images V5 [14]. The

following classes of large animals were selected from COCO

data set: “Dog”, “Horse”, “Sheep”, “Cow”, “Bear”,

“Elephant”, “Zebra”, “Giraffe”. Although there are almost no

representatives of the last 3 classes in the area under

consideration, they were added to improve the quality of the

future detector by their recognition on the road scene. Open

Images V5 contains previous and additional two classes of

large animals: deer, “fox” and “goat”. Annotations to images

are stored in COCO format, i.e. are contained in the .json file.

Let's consider in more detail which fields are included in it:

x “Segmentation”: contains polygon’s coordinates; x

“Area”: shows the area of object;

x “IsCrowd”: shows how many objects are present in the

image, ‘0’- one object, ‘1’- more than one;

x “bbox”: contains the coordinates of ground truth

bounding boxes;

x “Category_id”: shows the supercategory to which the

class belongs. In this case, all classes belong to the one

category “animal”; x “id”: unique number of each image.

Table II below provides summary statistics on the number

of images of each class of developed data set. Its fragment is

shown on Fig. 1.

IV. DEEP LEARNING APPROACH TO DETECTION

To solve this problem, we chose four architectures of neural

networks based on the successful experience of their

application for solving similar tasks [17, 18]:

1) YOLOv3 [19]: It is a one-stage neural network

architecture that allows to achieve high-speed image

processing with slightly lower quality. Feature

extractor consists of 3x3 and 1x1 convolutional layers

and shortcut connections. YOLOv3 [19] predicts

boxes at 3 different scales using a similar concept to

feature pyramid networks. For classification

independent logistic classifier is used instead of

softmax. Bounding box predictor uses anchor boxes.

 TABLE II. NUMBER OF IMAGES BY CLASS

Classes
Training sample Testing sample

Images Boxes Images Boxes

Dog 4385 5508 177 218

Horse 2941 6587 128 273

Sheep 1529 9509 65 361

Cow 1968 8147 87 380

Elephant 2143 5513 89 255

Bear 960 1294 49 71

Zebra 1916 5303 85 268

Giraffe 2546 5131 101 232

Fox 460 584 10 12

Goat 274 599 14 34

Total 19122 48175 805 2104

Fig. 1. Fragment of proposed data set.

2) RetinaNet R-50-FPN [20]: This one-stage network

was developed to test a new loss function - the focal loss

function, which was created to improve the effectiveness

of training. Focal loss adds a factor (1 − pt)γ to the standard

cross entropy criterion. Setting γ > 0 reduces the relative loss

for wellclassified examples (pt > 0.5), putting more focus on

hard, misclassified examples. The network is pretty simpe. It

uses FPN (Feature pyramid network) on top of the ResNet-50

[21] architecture as feature extractor.

3) Faster R-CNN R-50-FPN [22]: This two-stage

architecture uses ResNet-50 with FPN to extract feature maps.

The difference between Faster R-CNN and Fast RCNN [23]

is that region proposals are retrieved using the Region

Proposal Network (RPN) [22] instead of using selective

search which exceed network performance by about 10 times.

4) Cascade R-CNN R-50-FPN [24]: Cascade R-CNN is a

multi-stage object detection architecture (Fig. 2). A specialty

of this network is cascaded bounding box regression, as shown

in the figure. “I” is input image, ResNet-50 with FPN is

backbone, “pool” region-wise feature extraction, “H” network

head, “AB” animal bounding box, and “AC” animal

classification. “AB0” is proposals in all architectures.

Fig. 2. Architecture of Cascade R-CNN R-50-FPN neural network

YOLOv3 was trained using the neural-network library

Keras [25] (running on top of TensorFlow [26]). The rest of

the architectures are using the PyTorch library [27]. For

training on our data set, pre-trained models were used.

The YOLOv3 model was pre-trained on ImageNet. We

used only pre-trained backbone (DarkNet53) [19]). Since we

did not use the entire network, but only the backbone, the rest

of the network is initialized with random weights. Because of

this, during the first several epochs, the network trained with

a frozen backbone to train randomly initialized weights first.

Only after that the entire network is included in the training.

The remaining models were pre-trained on the COCO

2017 train [13]. Unlike YOLOv3, we used the whole

pretrained network. However, since there are 80 classes in the

COCO data set, before training, we removed the extra classes

from the models.

The training was carried out with input image tensor sizes

640x384x3 and batch of 8 images. The learning rate was

initially 0.01 and automatically decreased during the learning

process if needed.

V. EXPERIMENTAL RESULTS

The calculations had performed using the NVidia CUDA

technology on the graphics processor of the Tesla V100

graphics card with 32GB, central processor Intel Xeon Gold

6154 CPU, 16 Core with 3.00 GHz and 128 GB RAM.

Table III shows the results of the animal detection and

classification on test samples using YOLOv3, RetinaNet, Faster

R-CNN and Cascade R-CNN architectures.

TABLE III. QUALITY OF BIG ANIMAL DETECTION ON TESTING SAMPLE (10

CLASSES)

Quality

metric

Architecture of deep neural network

Cascade
R-CNN

R-50-FPN

Faster
R-CNN

R-50-FPN

RetinaNet R-

50-FPN
YOLOv3

APdog 0.81 0.81 0.83 0.92

APhorse 0.75 0.76 0.77 0.88

APsheep 0.68 0.67 0.65 0.75

APcow 0.65 0.66 0.60 0.80

APelephant 0.82 0.83 0.84 0.88

APbear 0.81 0.87 0.89 0.95

APzebra 0.84 0.88 0.88 0.91

APgiraffe 0.87 0.86 0.87 0.91

APfox 0.21 0.18 0.19 0.18

APgoat 0.39 0.44 0.41 0.58

mAP 0.68 0.70 0.69 0.78

As we can see from the table above, the YOLOv3 network

has the best mAP score. As for the AP in each category,

YOLOv3 is slightly inferior to the Cascade R-CNN network

only in the fox class. In all other classes, YOLOv3 is

noticeably ahead of other architectures. The rest of the

architectures showed roughly the same results.

RetinaNet has the highest speed (Table V). The slowest

architecture is the Cascade R-CNN.

We had also trained models for detecting animals as one

joint class, that is, without classification. The quality of

detection is presented in the Table IV.

TABLE IV. QUALITY OF BIG ANIMAL DETECTION ON TESTING SAMPLE
(ONE JOINT CLASS)

Quality

metric

Architecture of deep neural network

Cascade
R-CNN

R-50-FPN

Faster
R-CNN

R-50-FPN

RetinaNet R-

50-FPN
YOLOv3

mAP 0.81 0.81 0.83 0.92

When detecting without classification, the mAP is higher.

YOLOv3 has the best result. The rest of the architecture is

about the same level. Table V shows Fps (frame per second)

performance metric for the architectures providing joint class

detection.

We can see that the speed has increased slightly in

comparison of 10 classes detection. RetinaNet has the highest

speed. The slowest architecture is Cascade R-CNN.

TABLE V. PERFORMANCE OF BIG ANIMAL DETECTION

Performance

metric
Neural network architecture

Cascade
R-CNN

R-50-FPN

Faster
R-CNN

R-50-FPN

RetinaNet R-

50-FPN
YOLOv3

Fps for one

joint class

detection

27.5 40.9 50.0 39.8

Fps for 10

classes

detection

26.8 39.6 44.6 35.4

VI. CONCLUSION

The paper demonstrates research of deep learning

approaches to detect 10 classes of big animals on the data

set with about 20000 images: “Bear”, “Fox”, “Dog”,

“Horse”, “Goat”, “Sheep”, “Cow”, “Zebra”, “Elephant”,

“Giraffe”. Authors trained and tested several modern neural

network architectures: YOLOv3, RetinaNet R-50-FPN,

Faster RCNN R-50-FPN, Cascade R-CNN R-50-FPN. To

compare the approaches the mAP metric was determined at

IoU≥50%, also their speed was calculated for input tensor

sizes 640x384x3. The highest quality metrics are

demonstrated by architecture YOLOv3 as for ten classes

(0.78 mAP) and one joint class (0.92 mAP) detection with

speed more 35 fps on NVidia Tesla V-100 32GB video card.

At the same hardware, the RetinaNet R-50-FPN

architecture provided recognition speed of more than 44 fps

and a 13% lower mAP. The proposed data set and neural

network approach to recognizing big animals on images

have shown their effectiveness and can be used in the on-

board vision systems of driverless cars or in driver assistant

systems.

For further study of this topic, it is necessary to increase

the volume of training and testing samples for all classes

especially for night and poorly lit road scenes. This can be

done, for example, by using image augmentation or by the

usual addition of new labeled images.

ACKNOWLEDGMENT

This study was carried out under the contract with the

Scientific-Design Bureau of Computing Systems (SDB CS)

and supported by the Government of the Russian Federation

(Agreement No 075-02-2019-967).

REFERENCES

[1] W. Saad, A. Alsayyari, Loose Animal-Vehicle Accidents Mitigation: Vision
and Challenges. 2019 International Conference on Innovative Trends in
Computer Engineering (ITCE), 2019.

[2] D. Zhou, “Real-time animal detection system for intelligent vehicles,” 2014.
[3] A. Mammeri, D. Zhou, A. Boukerche, “Animal-Vehicle Collision

Mitigation System for Automated Vehicles,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, Vol. 46, Iss. 9, 2016, pp. 1287-
1299.

[4] G. K. Verma, P. Gupta, “Wild Animal Detection Using Deep Convolutional
Neural Networks,” Second International Conference on Computer Vision &
Image Processing (CVIP-2017), vol. 704, 2017.

[5] Z. Zhang, Z. He, G. Cao, W. Cao. “Animal Detection From Highly Cluttered

Natural Scenes Using Spatiotemporal Object Region Proposals and Patch
Verification,” IEEE Transactions on Multimedia, Vol. 18, Iss. 10 , 2016, pp.
2079-2092.

[6] K. Saleh, M. Hossny, S. Nahavandi. “Kangaroo Vehicle Collision Detection
Using Deep Semantic Segmentation Convolutional Neural Network,” 2016

International Conference on Digital Image Computing: Techniques and
Applications (DICTA), 2016.

[7] B. Kellenberger, M. Volpi, D. Tula, “Fast animal detection in UAV
images using convolutional neural networks,” IGARSS 2017 - 2017
IEEE International Geoscience and Remote Sensing Symposium, 2017.

[8] S. Beery, D. Morris, and P. Perona, “The iWildCam 2019 Challenge
Dataset,” arXiv:1907.07617, 2019.

[9] Animal Image Dataset (DOG, CAT and
 PANDA), https://www.kaggle.com/ashishsaxena2209/animal-
image-datasetdogcat-and-panda.

[10] O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar. Cats and Dogs.
IEEE Conference on Computer Vision and Pattern Recognition, 2012

[11] A. Coates, H. Lee, and A. Y. Ng, “An Analysis of Single Layer
Networks in Unsupervised Feature Learning,” AISTATS, 2011.

[12] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “ImageNet: A
large-scale hierarchical image database,” CVPR, pp. 248-255, 2009 [13]
COCO. Common objects in context, http://cocodataset.org.

[14] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. PontTuset,
S. Kamali, S. Popov, M. Malloci, T. Duerig, and V. Ferrari, “The Open
Images Dataset V4: Unified image classification, object detection, and
visual relationship detection at scale,” arXiv:1811.00982, 2018.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The PASCAL Visual Object Classes (VOC) Challenge,”
International Journal of Computer Vision, 88(2), 303-338, 2010.

[16] S.M. Beitzel, E.C. Jensen, O. Frieder, “MAP,” In: LIU L., ÖZSU M.T.
(eds) Encyclopedia of Database Systems. Springer, Boston, MA, 2009.

[17] D. A. Yudin, A. Skrynnik, A. Krishtopik, I. Belkin, A. I. Panov, “Object
Detection with Deep Neural Networks for Reinforcement Learning in
the Task of Autonomous Vehicles Path Planning at the Intersection,”
Optical Memory & Neural Networks (Information Optics), Vol. 28 №
4, 2019.

[18] D. Yudin, A. Ivanov, M.Shchendrygin, “Detection of a Human Head on
a Low-Quality Image and its Software Implementation,” International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 42, 2/W12, 2019.

[19] J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv:1804.02767, 2018.

[20] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, “Focal Loss for
Dense Object Detection,” The IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 2980-2988.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv:1512.03385, 2015.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
RealTime Object Detection with Region Proposal Networks,” Neural
Information Processing Systems, 2015.

[23] R. Girshick, “Fast R-CNN,” The IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1440-1448.

[24] Z. Cai, N. Vasconcelos, “Cascade R-CNN: Delving Into High Quality
Object Detection,” The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 6154-6162.

[25] Keras library, https://github.com/keras-team/keras.

[26] Tensorflow library. https://github.com/tensorflow/tensorflow.
[27] PyTorch library. https://github.com/pytorch/pytorch.

