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The benefits provided by special perturbation methods
based on Hansen’s ideal frame are broadly recognized
these days, and its use is widely encouraged. However,
the origin of these advantages is not always clearly un-
derstood, probably due to the mixture of facets to con-
sider in the implementation of an orbit propagator. The
increased performance is commonly justified by general
statements taken from the old astronomical literature. For
instance Brown and Shook’s [1] introduction of Hansen’s
ideal frames as a means to achieve a measure of indepen-
dence of the in-plane motion from the rotation of the refer-
ential, is simply adopted in [2], and, from there, repeated
in [3]. Also, the fact that the ideal frame formulation yields
the same velocity in the inertial frame and in the ideal, ro-
tating frame is commonly stated as an advantage without
giving detailed explanations [4, 5].

However, the origin of the advantages of ideal frames
over other frames associated to the orbital plane, as the
nodal or apsidal (perifocal) frames is quite clear. They
stem from the simplified form of the variation equations
this clever setting provides, which releases them from the
appearance of inertia terms. This feature was shown using
Cartan’s exterior calculus by Deprit [6]. Here, we provide
an alternative proof without need of resorting to differen-
tial geometry.

In an inertial frame (O, i, j,k), perturbed Kepler mo-
tion is generally described by the differential equations

ẋ = X, Ẋ = −(µ/r3)x + P , (1)

where x is position, X velocity, r = ‖x‖, µ is the gravi-
tational parameter, P is the disturbing acceleration of the
Kepler motion, which may generally depend on position,
velocity and time, and overdots denote time differentia-
tion. The angular momentum vector G = x×X , and the
eccentricity vector e = (1/µ)X × G − x/r, are funda-
mental invariants of the Kepler problem.

The unit vectors u = x/r, n = G/Θ, with Θ = ‖G‖,
and v = n × u, define the orbital frame (O,u,v,n). In
this frame

x = ru, (2)

and hence X = ṙu + ru̇, from which G = r2u × u̇.
Then, G×u = r2(u× u̇)×u, or Θv = r2u̇, from which

X = ṙu + (Θ/r)v. (3)
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Therefore, one may consider replacing the integration
of (x,X) by that of (r,Θ,u,v,n). That is, the attitude of
the orbital frame together with the in-plane motion.

Thus, from ΘΘ̇ = G · Ġ, where, from Eq. (1), Ġ =
x× P , we obtain

Θ̇ = rT , (4)

with T ≡ P · v. On the other hand, straightforward oper-
ations yield

u̇ =
Θ

r2
v, v̇ =

r

Θ
Nn− Θ

r2
u, ṅ = − r

Θ
Nv, (5)

whereas, from differentiation of ṙ = ẋ · u,

r̈ = (−1 + p/r)(µ/r2) +R, (6)

withR ≡ P · u, thus completing the differential system.
Replacing the integration of Eq. (1) by that of Eqs. (4)–

(6), with the six scalar constraints stemming from the or-
thonormality of the orbital frame, provides an important
insight into the nature of perturbed Kepler motion. In par-
ticular, since (u̇, v̇, ṅ) = ω × (u,v,n), we immediately
obtain the angular velocity of the orbital frame

ω = (r/Θ)Nu + (Θ/r2)n, (7)

which shows that the orbital plane rotates slowly about the
radial direction under the influence of the perturbation in
the normal direction, whereas the orbital frame rotates fast
in this plane with Keplerian-type motion. For the latter,
the perturbation only acts indirectly through its effects on
Θ and r, as follows from Eqs. (4) and (6).

On the other hand, the slow evolution of the attitude of
the orbital plane is not suitably represented when using
the fast rotating orbital frame. Therefore, it is more conve-
niently replaced by a slowly evolving frame, as the nodal
frame (O, `,m,n), where ` = k × n/ sin I , where I de-
notes inclination, (the unit vector pointing to the ascend-
ing node), m = n × `, or the apsidal frame (O,a, b,n),
where a = e/e, where e = ‖e‖ denotes eccentricity, and
b = n × a. From the definitions of the vectors defining
these frames, straightforward operations yield their varia-
tions, from which we easily extract the corresponding an-
gular velocities.

Thus, for the nodal frame ( ˙̀ , ṁ, ṅ) = w × (`,m,n),
and hence

w =
r

Θ
Nu +

r sin θ

Θ

k · n
k ·m

Nn. (8)
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As expected, the component in the radial direction is the
same as before, yet now the one in the normal direction
evolves slowly too, both driven by the perturbations in
the out-of-plane direction. Regarding the apsidal frame
(ȧ, ḃ, ṅ) = ω̃ × (a, b,n), and hence

ω̃ =
r

Θ
Nu+

Θ

µ

1

e

[
2T sin f−

(
R+

rR

Θ
T
)

cos f
]
n, (9)

with f denoting the true anomaly. The rotation in the out-
of-plane direction is now much more involved, depending
on the in-plane components of the perturbation, due to the
dynamical definition of the apsidal frame as opposite to
the geometric definitions of the orbital and nodal frames.

Therefore, we may ask ourselves, as Hansen did it
first [7], why not to simplify things and choose a frame
(O,u∗,v∗,n) fixed in the orbital plane? That is, a rotat-
ing frame about the radial direction with angular veloc-
ity ω∗ = (r/Θ)Nu. In that case the variation equations
(u̇∗, v̇∗, ṅ) = ω∗ × (u∗,v∗,n), take the neat, symmetric
form

u̇∗ = −(N/Θ)(x·v∗)n, v̇∗ = (N/Θ)(x·u∗)n, (10)

and ṅ = (u̇∗ · n)u∗ − (v̇∗ · n)v∗. The initial orienta-
tion u∗ = u∗(0), v∗ = v∗(0), can be chosen arbitrarily.
The instantaneous direction u∗ is customarily denoted as
a departure point in the orbital frame [8, 9].

Differentiation of cosϑ = u · u∗, followed by the re-
placement of u̇ and u̇∗ from previous equations, yields the
rotation ϑ̇ = Θ/r2, which, as expected, matches the nor-
mal component of the angular velocity of the orbital frame
in Eq. (7). This can be viewed as a Keplerian rotation as
far as the perturbation has only indirect effects on ϑ̇.

Remarkably, in this slowly rotating frame ω∗ × x = 0,
and hence the theorem of the moving frame trivially shows
that the velocity is the same in both the inertial and ideal
frames. That is, calling x∗ = x · u∗ = r cosϑ, y∗ =
x · v∗ = r sinϑ, in the ideal frame the first of Eq. (1)
yields ẋ∗ = ẋ · u∗ = X · u∗ = X∗, ẏ∗ = ẋ · v∗ =
X · v∗ = Y ∗. Moreover, from Eq. (3), ω∗ ×X = Nn.
Then, the theorem of the moving frame yields (Ẋ)ω∗ =
Ẋ − Nn. Therefore, the in-plane motion with respect
to the ideal frame is directly obtained from the second of
Eq. (1). By these reasons, Hansen named the intermediate
frame (O,u∗,v∗,n) ideal [7].

On account of v · u∗ = −u · v∗, v · v∗ = u · u∗, we
readily obtain

Ẋ∗ = Ẋ · u∗ =− (µ/r3)x∗ + (Rx∗ − T y∗)/r,

Ẏ ∗ = Ẋ · v∗ =− (µ/r3)y∗ + (Ry∗ + T x∗)/r.

It may be checked that these variations agree with
Eqs. (111)–(114) in [6], whose derivation was based on
exterior calculus. The additional term in [6] is recovered
when making the decomposition P = F + ∇xU . Note
that Θ = x∗Y ∗ −X∗y∗.

In practice, the over-dimensioned integration of the at-
titude variations (u̇∗, v̇∗, ṅ) is replaced by that of the

Euler angles (Ω, I, β), standing for right ascension of
the ascending node, inclination, and polar angle β =
arccos(u∗ · `), respectively. The usual rotation formula
ω∗ = Ω̇k + İ` + θ̇n [10, 11], allows us to obtain the
components (ω∗ · u,ω∗ · v,ω∗ · n), from which

Ω̇ =
r

Θ
N sin θ

sin I
, İ =

r

Θ
N cos θ, β̇ = −Ω̇ cos I

where θ = ϑ + β. Moreover, to avoid singularities, it is
customary after Musen [12] to replace the integration of
the Euler angles by that of the Euler parameters. Finally,
after Deprit [2], the integration of Cartesian coordinates in
the ideal frame is very effectively replaced by the integra-
tion of the three hodographic velocities κ = (µ/Θ)e · u∗,
σ = (µ/Θ)e · v∗, ζ = µ/Θ [13].

Using internal units, modulating ϑ between 0 and 2π,
and keeping the geometric property stemming from the
norm 1 of the quaternion comprised by the Euler parame-
ters are common programming strategies that increase the
performance of the numerical integration.
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