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MORGAN-STONE LATTICES

ALEXEJ P. PYNKO

Abstract. Morgan-Stone (MS) lattices are axiomatized by the constant-free

identities of those axiomatizing Morgan-Stone (MS) algebras. Applying the
technique of characteristic functions of prime filters as homomorphisms from

lattices onto the two-element chain one and their products, we prove that

the variety of MS lattices is the abstract hereditary multiplicative class gen-
erated by a six-element one with an equational disjunctive system expand-

ing the direct product of the three- and two-element chain distributive lat-
tices, in which case subdirectly-irreducible MS lattices are exactly isomorphic

copies of nine non-one-element pair-wise non-isomorphic subalgebras of the

six-element generating MS lattice, and so we get a 29-element non-chain dis-
tributive lattice of varieties of MS lattices subsuming the four-/three-element

chain one of “De Morgan”/Stone lattices/algebras (viz., constant-free versions

of De Morgan algebras)/(more precisely, their term-wise definitionally equiva-
lent constant-free versions, called Stone lattices). Among other things, we pro-

vide an REDPC scheme for MS lattices. Laying a special emphasis onto the

universal/[quasi-]equational unbounded approximation of MS algebras (viz.,
the greatest universal/[quasi-]equational class of MS lattices without members

with both bounds but expandable to no MS algebra), we find a 29-element

non-chain distributive lattice of its sub-quasi-varieties, subsuming the fifteen-
element one of the [quasi-]equational join (viz., the [quasi-]variety generated

by the union) of De Morgan and Stone lattices, in its turn, subsuming the
eight-element one of those of the variety of De Morgan lattices found earlier,

each of the rest being the quasi-equational join of its intersection with the

variety of De Morgan lattices and the variety of Stone lattices, as well as pro-
vide a complete description of their relative subdirectly-irreducibles resulting

from REDPC for MS lattices. In this connection, we also prove that relatively

simple quasi-varieties of MS lattices/algebras are exactly varieties of almost/
De Morgan lattices/algebras, the reservation “almost” meaning presence of

subdirectly-irreducibles not expandable to MS algebras, in which case there is

a strictly decreasing countable chain of quasi-varieties of almost De Morgan
lattices containing all De Morgan lattices, and so its intersection is not finitely

axiomatizable, though the lattice of quasi-vaarieties of almost Kleene lattices

is proved to be finite but not distributive.

1. Introduction

The notion of De Morgan lattice, being originally due to [16], has been indepen-
dently explored in [11] under the term distributive i-lattice w.r.t. their subdirectly-
irreducibles and the lattice of varieties. They satisfy so-called De Morgan identities.
On the other hand, these are equally satisfied in Stone algebras (cf., e.g., [8]). This
has inevitably raised the issue of unifying such varieties. Perhaps, a first way of
doing it within the framework of De Morgan algebras (viz., bounded De Morgan
lattices; cf., e.g., [2]) has been due to [3] (cf. [24]) under the term Morgan-Stone
(MS) algebra providing a description of their subdirectly-irreducibles, among which
there are those being neither De Morgan nor Stone algebras. Here, we study un-
bounded MS algebras naturally called Morgan-Stone (MS) lattices. Demonstrating
the usefulness of the technique of the characteristic functions of prime filters and

2020 Mathematics Subject Classification. 06D15, 06D30, 08A30, 08B05, 08B26, 08C15.

Key words and phrases. De Morgan lattice, Stone algebra, quasi-variety, REDPC..

1



2 A. P. PYNKO

functional products of former ones as well as disjunctive systems, we briefly dis-
cuss the issues of subdirectly-irreducible Morgan-Stone lattices and their varieties.
Likewise, summarizing construction of REDPC schemes (cf. [7]) for distributive
lattice[ expansion]s originally being due to [9] [and [13, 22]], we provide that for
Morgan-Stone lattices and an enhanced one for the {quasi-}equational join of De
Morgan and Stone lattices. Nevertheless, the culminating issue of this study is to
find the lattice of sub-quasi-varieties of the equational unbounded approximation
of MS algebras upon the basis of that of the variety of De Morgan lattices found
in [18]. In this connection, we also prove that relatively simple quasi-varieties of
MS lattices/algebras are exactly varieties of almost/ De Morgan lattices/algebras,
while the equational unbounded approximation of MS algebras is equally the uni-
versal one, whereas there is a strictly decreasing countable chain of quasi-varieties
of almost De Morgan lattices subsuming all De Morgan lattices, its intersection be-
ing then not finitely axiomatizable, though the lattice of quasi-vaarieties of almost
Kleene lattices is proved to be finite but not distributive.

Perhaps, the principal advance of this study with regard to [18] consists in not
merely extending it beyond De Morgan lattices but mainly in providing complete de-
scription of relative subdirectly-irreducibles of the finitely-generated quasi-varieties
of MS lattices under consideration, essentially based upon REDPC for MS lattices
as well as congruence decomposition (in its turn, going back to congruence ideality
[7]) for varieties with REDPC, thus once more demonstrating the power of the ideas
underlying the outstanding work [7].

In general, we seek to expand our results to bounded MS lattices properly sub-
suming MS algebras, whenever it is at all possible. This equally concerns the issues
of subdirectly-irreducibles and the lattice of varieties but not the one of quasi-
varieties because of the well-known infiniteness of that of Kleene algebras (more
specifically, its Q-universality; [1]).

The rest of the work is as follows. Section 2 is a concise summary of basic set-
theoretical and algebraic issues underlying the work. Then, in Section 3 we briefly
summarize general issues concerning REDPC in the sense of [7] as well as equational
implicative/disjunctive systems in the sense of [21]/[20] in connection with simplic-
ity/“subdirect irreducibility”. Next, Section 4 is devoted to preliminary study of
Morgan-Stone lattices as for their generating algebra, subdirectly-irreducibles and
the lattice of varieties. Further, Section 5 is a thorough collection of culminat-
ing results on sub-quasi-varieties of the equational unbounded approximation of
Morgan-Stone algebras. Likewise, Section 6 is devoted to characterizing relatively
semi-simple quasi-varieties of MS lattices/algebras. Finally, Section 7 is a concise
collection of open issues.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with the
sets/ordinals of lesser ones, “their set/ordinal”|“the ordinal‖set class” being de-
noted by ω|(∞‖Υ). Unless any confusion is possible, one-element sets are identified
with their elements. To avoid any confusion because of the standard identification
of Υn (viz., the class of functions with domain n ∈ ω) with [Υn−1×]Υ, when
n = (1[+m]) [where m ∈ ω], the projection operator/function π is endowed with
the superscript specifying the domain of arguments only in such cases {but not in
general}.

For any sets A, B and D as well as θ ⊆ A2, h : A → B and g : A2 → A, let
℘[K]((B, )A) be the set of all subsets of A (including B) [of cardinality in K ⊆
∞, D ⊆K A standing for D ∈ ℘K(A)], ((∆A|νθ)‖(A/θ)‖χB

A) , ({〈a, a|θ[{a}]〉 |
a ∈ A}‖νθ[A]‖(((A ∩ B) × {1}) ∪ ((A \ B) × {0}))), A∗|+ , (

⋃
m∈(ω\(0|1))A

m),
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h∗ : A∗ → B∗ : a 7→ (a ◦ h), g+ : A+ → A, 〈[〈a, b〉, ]c〉 7→ [g]([g+(〈a, b〉), ]c) and
εB : (ΥB)2 → ℘(B), 〈d, e〉 7→ {b ∈ B | πb(d) = πb(e)}, A-tuples {viz., functions with
domain A} being written in the sequence form t̄ with ta, where a ∈ A, standing for
πa(t̄). Then, for any (ā|C) ∈ (A∗|℘(A)), by induction on the length (viz., domain)
of any b̄ = 〈[c̄, d]〉 ∈ A∗, put ((ā ∗ b̄)|(b̄(∩/\)C)) , (([〈]ā[∗c̄, d〉])|(〈[c̄(∩/\)C(, d)]〉))
|[(provided d ∈ / 6∈ C)]. Likewise, given any S ∈ ℘(D)B and f̄ ∈

∏
b∈B S

A
b , we

have its functional product (
∏F

f̄) : A→ (
∏

b∈B Sb), a 7→ 〈fb(a)〉b∈B such that

ker(
∏F

f̄) = (A2 ∩ (
⋂
b∈B

(ker fb))),(2.1)

∀b ∈ B : fb = ((
∏F

f̄) ◦ πb),(2.2)

f0 � f1 standing for (
∏F

f̄), whenever B = 2.
A lower/upper cone of a poset P = 〈P,5〉 is any C ⊆ P such that, for all

a ∈ C and b ∈ P , (a = / 5 b) ⇒ (b ∈ C). Then, an a ∈ S ⊆ P is said to be
minimal/maximal in S, if {a} is a lower/upper cone of S, their set being denoted
by (min /max)P|5(S), in case of the equality of which to S, this being called an
anti-chain of P.

An X ∈ Y ⊆ ℘(A) is said to be [K-]meet-irreducible in Y , [where K ⊆ ∞], if
∀Z ∈ ℘[K](Y ) : ((A∩(

⋂
Z)) = X) ⇒ (X ∈ Z), their set being denoted by MI[K](Y ),

“finitely-” standing for “ω-” within any related context. Next, a U ⊆ ℘(A) is said
to be upward-directed, if ∀S ∈ ℘ω(U) : ∃T ∈ (U∩℘(

⋃
S, A)), subsets of ℘(A) closed

under unions of upward directed subsets being called inductive. Further, a [finitary]
closure operator over A is any unary operation on ℘(A) such that ∀X ∈ ℘(A),∀Y ∈
℘(X) : (X ∪C(C(X))∪C(Y )) ⊆ C(X)[= (

⋃
C[℘ω(X)])]. Finally, a closure system

over A is any C ⊆ ℘(A) containing A and closed under intersections of subsets
containing A, any B ⊆ C with C = {A∩(

⋂
S) | S ⊆ B} being called a (closure) basis

of C and determining the closure operator CB , {〈Z,A ∩ (
⋂

(X ∩ ℘(Z,A)))〉 | Z ∈
℘(A)} over A with (imgCB) = C. Conversely, imgC is a closure system over A with
Cimg C = C, being inductive iff C is finitary, and forming a complete lattice under
the partial ordering by inclusion with meet/join (∆℘(A)/C)(A∩ ((

⋂
/

⋃
)S)) of any

S ⊆ (imgC), C and imgC being called dual to one another. Then, C(X) ∈ (imgC)
is said to be generated by an X ⊆ A, elements of C[℘ω/{n}(A)] /“with n ∈ (ω|{1})”
being said to be finitely/n-generated |principal.

Remark 2.1. Due to Zorn Lemma, according to which any non-empty inductive set
has a maximal element, MI [K](C) is a basis of any inductive closure system C. �

A filter/ideal on A is any F ⊆ ℘(A) such that, for all S ∈ ℘ω(℘(A)), (S ⊆ F) ⇔
((A ∩ ((

⋂
/

⋃
)S)) ∈ F) “the set Fi(A) of them being an inductive closure system

over ℘(A) with dual finitary closure operator (of filter generation) FgA such that

(2.3) FgA(T) = ℘(A ∩ (
⋂

T), A),

for all T ∈ ℘ω(℘(A))”/. Then, an ultra-filter on A is any filter U on A such that
℘(A) \ U is an ideal on A.

2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but
arbitrary finitary functional signature Σ, Σ-algebras/“their carriers” being denoted
by same capital Fraktur/Italic letters (with same indices|suffixes|prefixes, if any)
“with denoting the class of all [one-element] ones by A

[=1]
Σ ”/. In general, any no-

tation, being specified for single Σ-algebras, is tacitly supposed to be extended to
their classes member-wise. Given any α ∈ (∞ \ 1), let Tmα

Σ be the carrier of the
absolutely-free Σ-algebra Tmα

Σ, freely-generated by the set Vα , {xβ}β∈α of (first
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α) variables, and Eqα
Σ , (Tmα

Σ)2, φ ≈ /(/ | ')ψ, where φ, ψ ∈ Tmα
Σ /“and ∧ ∈ Σ”,

meaning 〈φ/(φ ∧ ψ), ψ/(φ|ψ)〉 “and being called a Σ-equation of rank α”/. /“Like-
wise, for any Σ-algebra A and a, b ∈ A, (a(6 | >)Ab)‖[a, b]A stands for ((a|b) =
(a ∧A b))‖{c ∈ A | a 6A c 6A b}.” Then, any 〈Γ,Φ〉 ∈ (℘∞/(1[∪ω])(Eqα

Σ) × Eqα
Σ)

/“with α ∈ ω” is called a Σ-implication/-[quasi-]identity of rank α, written as
Γ → Φ and identified with Φ, if Γ = ∅, as well as treated as the universal
infinitary/first-order strict Horn sentence ∀β∈αxβ((

∧
Γ) → Φ), the class/set of

those of any /finite rank true in a K ⊆ AΣ being called the implicational/[quasi-
]equational theory of K and denoted by (I/[Q]E)(K).

Subclasses of AΣ{∩K with K ⊆ AΣ} “closed under {K∩}(I|H|S(>1)|P
[SD‖U])”/

“containing each Σ-algebra with finitely-generated subalgebras in them”/“contain-
ing no infinite finitely-generated member” are called “ {relatively} abstract |image-
closed |(non-trivially-)hereditary |[ultra-‖sub-]multiplicative”/local/locally-finite (cf.
[15]). Then, a skeleton {of a(n abstract) K ⊆ AΣ} is any S ⊆ AΣ without pair-wise
distinct isomorphic members {such that S ⊆ K ⊆ IS (i.e., K = IS)}. Given K,K′ ⊆
AΣ 3 A, set hom[S]

(I)(A,K) , {h ∈ hom(A,B) | B ∈ K[, (img h) = B](, (kerh) =

∆A)} and CoK(A) , {θ ∈ Co(A) | (A/θ) ∈ K}, whose elements are called K-
(relative )congruences of A, K′ � K standing for K′ ⊆ ISK and thus providing a
quasi-ordering on AΣ, in which case, by the Homomorphism Theorem, we have

(2.4) (ker[homS|(A,K)]{\(∅|{A2})}) = Co(I|(IS{>1}))K(A),

and so “by the Homomorphism Theorem”|, for all B ∈ AΣ and h ∈ homS|(S‖)(B|A,
A|B):

(2.5) ∀θ ∈ (Co[(I|(I‖(IS)))K](B) ∩ ℘((kerh)|∆B , B
2)) :

h
|(−1)
∗ [θ] ∈ (Co[(I|(I‖(IS)))K](A) ∩ ℘(∆A|(kerh), A2)),

h
(−1)|
∗ [h|(−1)

∗ [θ]] = (θ ∩ (B|h[A])2)

“yielding an isomorphism between the posets Co[IK](B)∩℘(kerh,B2) and Co[IK](A)
ordered by inclusion as well as”‖ |“implying:

(2.6) h−1
∗ [CgB

[(I‖(IS))K](h∗[X]) = ‖ ⊇ CgA
[(I‖(IS))K](X ∪ (kerh)),

for all X ⊆ A2”, while, as, for any set I, B ∈ AI
Σ and f̄ ∈ (

∏
i∈I hom(A,Bi)):

(2.7) (
∏F

f̄) ∈ hom(A,
∏
i∈I

Bi),

by (2.1) and (2.2) with [finite] I , Co(I‖(IS))K(A) [if either A is finite or, by (2.4),
both A is finitely-generated and K as well as all its members are finite] for B,
B , 〈B/i〉i∈I , D , (

⋃
i∈I Bi) and f̄ , 〈νi〉i∈I , we get:

(2.8) (A ∈ IPSD
[ω]({I}‖({I}S))K)) ⇔ ((A2 ∩ (

⋂
ker[homS‖(A,K)])) = ∆A),

whereas, since, for any I , Θ ⊆ Co〈K〉(A), θ , (A2 ∩ (
⋂

Θ)) ∈ Co(A), B ,

〈A/i〉i∈I ∈ (AΣ〈∩K〉)I as well as, by the Homomorphism Theorem, f̄ , 〈ν−1
θ ◦

νi〉i∈I ∈ (
∏

i∈I hom(A/θ,Bi)), taking (2.1), (2.2) and (2.7) into account, we see that
e , (

∏
f̄) is an embedding of A/θ into C , (

∏
i∈I Bi) such that C�(img e), being

isomorphic to A/θ, is a subdirect product of B 〈 in which case (A/θ) ∈ IPSDK, and
so, providing K is both abstract and sub-multiplicative, θ ∈ CoK(A)〉. In particular,
[providing K is both abstract and sub-multiplicative], Co[K](A) is a closure system
over A2, the dual closure operator being denoted by CgA

[K].
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Remark 2.2. By (2.4), the |-right alternative of (2.5) with h = νϑ, where ϑ ∈
CoIPSD([I]‖([I]S))K(A), B = (A/ϑ) and θ = ∆B as well as (2.8), since ϑ = h−1

∗ [θ],
while h−1

∗ preserves intersections, Co(I‖(IS))K(A) is a basis of the closure system
CoIPSD([I]‖([I]S))K(A) over A2. �

Given any Σ-algebra A and any function f with (dom f) = A and (ker f) ∈
(Co(A)/{∆A}), we have its homomorphic/isomorphic image/copy f [A] by f with
carrier f [A] and operations ςf [A] , f∗[ςA], for each ς ∈ Σ, in which case f ∈
homS(A, f [A]), and so f [A] ∈ (H|I)A, such exhausting all members of (H|I)A.

According to [23], pre-varieties are abstract hereditary multiplicative subclasses
of AΣ (these are exactly model classes of theories constituted by Σ-implications of
unlimited rank, and so are also called implicative/implicational ; cf., e.g., [4]/[18]),
PV(K) , ISPK = IPSD(I)S[>1]K = Mod(I(K)) being the least one including and
so called generated by a K ⊆ AΣ. Likewise, [quasi-]varieties are [ultra-multiplicative]
pre-varieties closed under H[I][, I] (these are exactly model classes of sets of Σ-
[quasi-]identities of unlimited finite rank, and so are local and also called [quasi-
]equational ; cf., e.g., [15]), [Q]V(K) , H[I]SP[PU]K = Mod([Q]I(K)) being the
least one including and so called generated by a K ⊆ AΣ. Then, ((pre-/quasi-
)varieties generated by finite classes of finite Σ-algebras are called finitely-generated,
in which case, by [(2.8)] (and [6, Corollary 2.3]), they are locally-finite (and quasi-
equational)/. Further, intersections of a K ⊆ AΣ with [pre-/quasi-]varieties are
called its relative sub-[pre-/quasi-]varieties, in which case, for any E ⊆ Eqω

Σ,

(2.9) (IPSD(K) ∩Mod(E)) = IPSD(K ∩Mod(E)),

and so S 7→ (S ∩ K) and R 7→ IPSDR are inverse to one another isomorphisms
between the lattices of relative sub-varieties of IPSDK and those of K.

Then, a [pre-]variety P ⊆ AΣ is said to be [(relatively)] congruence-distributive,
if, for each A ∈ P, Co[(P)](A) is distributive.

Remark 2.3. Given a [quasi-equational] pre-variety P ⊆ AΣ and α ∈ (∞\1), by the
|-right alternative of (2.4) with K = P and A = Tmα

Σ, any Σ-implication Γ → Φ of
rank α is true in P iff Φ ∈ CgA

P (Γ) [in which case, by the Compactness Theorem
for ultra-multiplicative classes of algebras (cf., e.g., [15]), CgA

P is finitary, and so is
CgB

P , for any B ∈ AΣ, in view of the left ‖-alternative of (2.6), when taking α = |B|
and h to extend any bijection from Vα onto B]. �

Furthermore, [given an abstract K ⊆ AΣ] an A ∈ (AΣ[∩K]) is said to be [ K-
{relatively }]simple/(K-)subdirectly-irreducible /(where K ⊆ ∞), if ∆A ∈ (max⊆ /
MI(K))(Co[K](A) \ ({A2}/∅)), in which case |A| 6= 1, the class of 〈those of〉 them
〈which are in a K′ ⊆ (AΣ[∩K])〉 being denoted by (Si /SI(K))[K]〈(K′)〉,1 and so, by
(2.4) and (2.8),

(2.10) (Si |SI)[IPSD(S)K′′](IPSD(S)K′′) ⊆ I(S>1)K
′′,

for any K′′ ⊆ AΣ. Then, a [pre-]variety P is said to be [ {relatively}] (finitely)
semi-simple/subdirectly-representable, if

(SI(ω)
[{P}](P)/P) ⊆ | = (Si[{P}](P)/IPSD(Si /SI(ω))[{P}](P)),

any variety V ⊆ AΣ being well-known, due to Birkgoff’s Theorem, to be subdirectly-
representable. More generally, we have:

Remark 2.4. Given any [quasi-]variety Q ⊆ AΣ and A ∈ ({Q∩}AΣ), by Remarks
2.1, 2.2, 2.3 and the right ‖-alternative of (2.5), MI(ω)(CoQ(A)) = Co

SI
(ω)
Q (Q)

(A) is

1This is abstract 〈whenever K′ is so〉, in view of (2.5).
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a basis of both CoQ(A) and Co
IPSD SI

(ω)
Q (Q)

(A), in which case these are equal {and

so, since ν∆A
∈ homS(A,A/∆A) is injective, A ∈ IPSD SI(ω)

Q (Q)}. In particular, Q
is [relatively] (finitely) subdirectly-representable. �

Recall that, according to [14], a[n implicational] K ⊆ AΣ is congruence-permutab-
le, i.e., for each A ∈ K and all θ, ϑ ∈ Co(A), (θ◦ϑ) ⊆ (ϑ◦θ), if[f] it has a congruence-
permutation term, viz., a π ∈ Tm3

Σ such that K satisfies the Σ-identities in {x1 ≈
(σi(π)) | i ∈ {0, 2}}, where, for every j ∈ 3, σj , [xj/x1;xk/x0]k∈(3\{j}). Likewise,
a minority |majority term for K |{with Σ+ , {∧,∨} ⊆ Σ and the Σ+-reducts of
members of K being lattices} is any µ ∈ Tm3

Σ such that K satisfies the Σ-identities in
{x(1−min(2−i,i))|0 ≈ (σi(µ)) | i ∈ 3} |{µ+ , (∧+〈xi∨(xmax(1−i,0)∧x2+min(i,1−i))〉i∈3)
being so}, in which case it is so “as well as a congruence-permutation term”| for the
variety generated by K, and so this is congruence-distributive [17], while, for any
congruence-permutation term π for K, π[x1/µ] is a majority|minority term for K
“and so µ[x1/µ] is a majority term for K”|. Finally, a (ternary) |dual discriminator
(term) for K is any δ ∈ Tm3

Σ such that, for each A ∈ K, δA = ((π2|0�(∆A ×
A)) ∪ (π0|2�((A2 \ ∆A) × A))), in which case A is simple, because, for every θ ∈
(Co(A)\{∆A}), any 〈a, b〉 ∈ (θ\∆A) 6= ∅ and all c ∈ A, we have (a|c) = δA(a, b, c) θ
δA(a, a, c) = (c|a), so getting θ = A2, while δ is a |dual discriminator for ISPUK as
well as a minority|majority term for K, whereas, for any congruence-permutation
term π for K, π[x1/δ] is a dual| discriminator for K “and so δ[x1/δ] is a dual
discriminator for K”|, {〈quasi-/pre-〉varieties generated by classes of} Σ-algebras
with [dual] discriminator δ being called [dual] δ-discriminator, with denoting the
class of [dual] δ-discriminator members of a C ⊆ AΣ by C

[∂]
δ . Then, [dual] δ-

discriminator quasi-varieties are exactly quasi-equational [dual] δ-discriminator pre-
varieties.

2.2.1. Filtral congruences. Let I be a set, F a{n ultra-}filter on I [P ⊆ AΣ a (quasi-
equational) pre-variety], A ∈ (AΣ[∩P])I and B a subalgebra of its direct product.
Then, by (2.5), for each i ∈ I, (B2 ∩ (kerπi)) = ((πi�B)−1

2 [∆Ai
] ∈ Co[P](B), as

(πi�B) ∈ hom(B,Ai) and ∆Ai
∈ Co[P](Ai), in which case, for all K ⊆ J ⊆ I,

the closure system Co[P](B) on B2 contains θB
J , (B2 ∩ ε−1

I [℘(J, I)]) = (B2 ∩
(
⋂

j∈J kerπj)) ⊆ θB
K , ΘB

F , {θB
L | L ∈ F} being thus upward-directed (and so

Co[P](B), being inductive, in view of Remark 2.3, contains θB
F , (

⋃
ΘB

F ) = (B2 ∩
ε−1

I [F]), called 〈F-〉{ultra-}filtral). Clearly, for any X ⊆ Fi(I) |“with (
⋃

X) ∈ Fi(I)”,

(2.11) θB
℘(I)∩((

⋂
|
⋃

)X) = (B2 ∩ ((
⋂
|
⋃

){θB
F | F ∈ X})).

A [pre-]variety P ⊆ AΣ is said to be [relatively] (subdirectly) 〈finitely/principally〉
filtral, if every 〈finitely-generated/principal〉 [P-]congruence of each member of SP
SI[P](P)(∩PSD SI[P](P)) is filtral (cf. [7] for the equational case).
2.2.1.1. Filtrality versus semi-simplicity.

Lemma 2.5. Any [relatively] subdirectly principally filtral [pre-]variety P ⊆ AΣ is
[relatively] semi-simple.

Proof. Consider any A ∈ SI[P](P), in which case |A| > 1, and any θ ∈ (Co[P](A) \
{∆A}) as well as any ā ∈ (θ\∆A) 6= ∅, in which case B , A1 ∈ PSD SI[P](P), while
h , (π0�B) ∈ homS(B,A) is injective, whereas B2 3 b̄ , (ā◦h−1) ∈ ϑ , CgB

[P](b̄) =
θB

F , for some F ∈ Fi(1), and so, by (2.5), η , h−1
∗ [θ] ∈ (Co[P](B)∩℘(ϑ,B2)), while

θ = h∗[η], whereas ∅ = ε1(b̄) ∈ F. Then, F = ℘(1), in which case η ⊇ ϑ = B2, and
so θ ⊇ h∗[B2] = A2. Thus, A ∈ Si[P](P), as required. �
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2.2.1.2. Filtrality versus congruence-distributivity.

Lemma 2.6 (cf. [10] for the []()-non-optional case). Let Q ⊆ AΣ be a [quasi-
]variety, I a set, A ∈ QI , B ∈ S(

∏
A) and θ ∈ MI(ω)(Co[Q](B)). Suppose Co[Q](B)

is distributive. Then, there is an ultra-filter U on I such that θB
U ⊆ θ.

Proof. By (2.11), S , {F ∈ Fi(I) | θB
F ⊆ θ} 3 {I} is inductive, for Fi(I) is

so, in which case, by Zorn Lemma, it, being non-empty, has a maximal element
U, and so, for any X ∈ ℘ω(℘(I)) such that Y , (

⋃
X) ∈ U, (X ∩ U) 6= ∅, as,

for each Z ∈ X, θB
FZ

∈ Co[Q](B) with U ⊆ FZ , FgI(U ∪ {Z}) ∈ Fi(I), while
U = FgI(U) = FgI(U ∪ {Y }) = (℘(I) ∩ (

⋂
{FZ | Z ∈ X})), in view of (2.3), since

FgI is finitary, whereas, by (2.11), θ = CgB
[Q](θ ∪ θB

U) = CgB
[Q](θ ∪ (B2 ∩ (

⋂
{θB

FZ
|

Z ∈ X}))) = (B2 ∩ (
⋂
{CgB

[Q](θ ∪ θB
FZ

) | Z ∈ X})), that is, for some Z ∈ X,
θ = CgB

[Q](θ ∪ θB
FZ

) ⊇ θB
FZ

, i.e., U ⊆ FZ ∈ S, viz., Z ∈ FZ = U, as required. �

This, by (2.5), Birkgoff’s and the Homomorphism Theorems [as well as [6, Corol-
lary 2.3]/[21, Lemma 2.1]], immediately yields:

Corollary 2.7. Let K be a [finite/] class of [finite/] Σ-algebras (with {dual}
discriminator δ) and P , H〈I〉SPK. Suppose P is a drelativelye congruence-
distributive [/locally-finite] dquasi-evariety. Then,

(P{∂}
δ ⊆ SibdPec(P) ⊆) SIω|∞dPe (P) ⊆ H(‖〈I)‖〉SPUK[⊆ H(‖〈I)‖〉SK](⊆ P

{∂}
δ )

[in which case its members are finite, and so SIωdPe(P) = SIdPe(P)]/. In particu-
lar, {dual} (δ-)discriminator quasi-varieties are exactly [semi-simple] {dual} (δ-
)discriminator varieties.

Corollary 2.8. Let Q ⊆ AΣ be a ([relatively] semi-simple) [quasi-]variety, I ∈ Υ,
A ∈ Si[Q](Q)I , D , (

∏
A), B ∈ S{D} and θ ∈ (Co[Q](B) \ {B2}). Suppose

Si[Q](Q)I is both ultra-multiplicative and non-trivially-hereditary {while Co[Q](B)
is distributive}. Then, θ is maximal in Co[Q](B) \ {B2} if {f } it is ultra-filtral.
{(In particular, all elements of Co[Q](B) are filtral.)}

Proof. First, assume θ = θB
U , for some ultra-filter U on I, in which case C ,

(D/θD
U ) ∈ PU Si[Q](Q) ⊆ Si[Q](Q), while h , (∆B ◦ νθD

U
) ∈ hom(B,C), whereas

(kerh) = (∆B)−1
∗ [θD

U ] = θ, and so by (2.4) and Footnote 1, as θ 6= B2, (B/θ) ∈
IS>1 Si[Q](Q) ⊆ Si[Q](Q). Then, by (2.5), θ ∈ max(Co[Q](B) \ {B2}). {Conversely,
assume θ ∈ max(Co[Q](B) \ {B2}) ⊆ MI(Co[Q](B)), in which case, by Lemma 2.6,
there is some ultra-filter U on I such that, as θ 6= B2, (Co[Q](B) \ {B2}) 3 θB

U ⊆ θ,
and so, by the “if” part, θ = θB

U . (Then, Remarks 2.1, 2.3, 2.4, (2.5) and (2.11)
complete the argument.)} �

2.2.2. Subdirect products versus subalgebras.

Lemma 2.9 (cf. [12]). Let A ∈ AΣ and B a subalgebra of A. Then, hB
A , {〈ā, b〉 ∈

(Aω × B) | |ω \ εω(ā, ω × {b})| ∈ ω} ⊇ (
⋃
{{〈ω × {b}, b〉} ∪ {〈((ω \ {i}) × {b}) ∪

{〈i, a〉}, b〉 | i ∈ ω, a ∈ A} | b ∈ B}) is a function forming a subalgebra of Aω ×B,
in which case it is a surjective homomorphism from CB

A , (Aω�(domhB
A)) onto B,

and so CB
A is a subdirect product of ω × {A}. In particular, the variety generated

by any K ⊆ AΣ is equal to IPSDK.

2.2.2.1. Filtrality versus non-trivial hereditarity of simplicity.

Corollary 2.10. Let P ⊆ AΣ be a [relatively] subdirectly principally filtral [pre-
]variety. Then, (SI[P](P) ∪ A=1

Σ )(\A=1
Σ ) is (non-trivially-)hereditary.
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Proof. Let A ∈ (SI[P](P)∪A=1
Σ ) and B a non-one-element subalgebra of A, in which

case |A| 6= 1, and so, by Lemma 2.9, h , hB
A is a surjective homomorphism from

the subdirect product C , CB
A of (ω × {A}) ∈ SI[P](P)ω onto B. Consider any

θ ∈ (Co[P](B) \ {∆B}) and take any 〈a, b〉 ∈ (θ \ ∆B) 6= ∅, in which case, by
(2.5), Co[P](C) 3 ϑ , h−1

∗ [θ] 3 〈c̄, d̄〉 , 〈ω × {a}, ω × {b}〉, while h∗[ϑ] = θ, and so
ϑ ⊇ η , CgC

[P](〈c̄, d̄〉) = θC
F , for some F ∈ Fi(ω). Then, ∅ = εω(c̄, d̄) ∈ F, in which

case F = ℘(ω), and so ϑ ⊇ η = C2. Thus, θ ⊇ h∗[C2] = B2, in which case θ = B2,
and so B ∈ Si[P](P), as required. �

2.2.3. Locality versus local finiteness. As an immediate consequence of [21, Lemma
2.1], in its turn, being that of [6, Corollary 2.3], we, first, have the following useful
universal observation:

Corollary 2.11. Any abstract hereditary local subclass of a locally-finite quasi-
variety is ultra-multiplicative.

Aside from quasi-varieties as such, certain representative subclasses of them are
local as well.
2.2.3.1. Local subclasses of local pre-varieties.

Lemma 2.12. Let P ⊆ AΣ be a [local (more specifically, quasi-equational) pre-
]variety. Then, (SIω |Si)[P])(P) ∪ A=1

Σ ) is local.

Proof. Consider any B ∈ (P \ ((SIω |Si)[P])(P) ∪ A=1
Σ )), in which case there are

some ā ∈ (B2 \∆B) 6= ∅, n ∈ (ω|{1}) and θ̄ ∈ (Co[P](B) \ (img ϑ̄B))n, where, for
any C ⊆ B, ϑ̄C , (〈∆C〉|〈∆C , C

2〉), “such that (B2 ∩ (
⋂

(img θ̄))) = ∆B”|, and
so some 〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((θi \ ϑB
j ) ∪ (ϑB

j \ θi))) 6= ∅. Let A be the finitely-
generated subalgebra of B generated by {a0, a1} ∪ {bi,jk | i ∈ n, j ∈ (1|2), k ∈ 2}, in
which case, by (2.5) with h = ∆A, η̄ , 〈θi ∩ A2〉i∈n ∈ (Co[P](A) \ (img ϑ̄A))n, as
〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((ηi\ϑA
j )∪(ϑA

j \ηi))), so A ∈ (P\((SIω Si)[P])(P)∪A=1
Σ )), for

ā ∈ (A2\∆A) “and (A2∩(
⋂

(img η̄))) = (A2∩(
⋂

(img θ̄))) = (A2∩∆B) = ∆A”|. �

2.2.3.1.1. Finite semi-simplicity versus semi-simplicity and local finiteness. Lemma
2.12 immediately yields:

Corollary 2.13. Any locally-finite [relatively] semi-simple [local (more specifically,
quasi-equational) pre-]variety P ⊆ AΣ with hereditary SIω[P](P) ∪ A=1

Σ is [relatively]
finitely semi-simple.

2.2.4. Subdirect irreducibility versus homomorphisms onto simple algebras.

Lemma 2.14. Let A,B ∈ AΣ and h ∈ homS(A,B) (as well as n ∈ (ω \ 2)).
(Suppose B is simple, while |A| = n, whereas |B| = (n−1).) Then, A is subdirectly-
irreducible if(f) its congruences form the three-element chain ∆A ( (kerh) ( A2.

Proof. The “if” part is immediate. (Conversely, assume A is subdirectly-irreducible,
in which case θ , (A2 ∩ (

⋂
(Co(A) \ {∆A}))) ∈ (Co(A) \ {∆A}), and so, by (2.5),

{θ ⊆}(kerh) ∈ [max⊇](Co(A) \ {{∆A, }A2}), for 1 6= n{
 (n − 1)}. Then, by the
Homomorphism Theorem, g , (ν−1

θ ◦ h) ∈ homS(A/θ,B), in which case (n− 1) 6
|A/θ| < n, for θ 6= ∆A, and so |A/θ| = (n− 1). Thus, g is injective, in which case
(kerh) = θ, and so its maximality completes the argument.) �

3. Preliminaries: quaternary equational schemes

A quaternary Σ-(equational )scheme is any f ⊆ Eq4
Σ. This is called an implica-

tion scheme for a K ⊆ AΣ, if this satisfies the Σ-implication:

(3.1) ({x0 ≈ x1} ∪ f) → (x2 ≈ x3).
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Likewise, it is called an identity |reflexive|symmetric|transitive one, if K satisfies
the Σ-implications of the form (∅|∅|f|(f ∪ (f[x2+i/x3+i]i∈2))) → Ψ, where Ψ ∈
(f([x3/x2]|[x2+i/xi]i∈2|[x3/x2, x2/x3]|[x3/x4])), reflexive symmetric transitive ones
being also called equivalence ones. Then, f is called a congruence one, if it
is an equivalence one, while, for each ς ∈ Σ of arity n ∈ (ω \ 1), K satisfies
the Σ-implications of the form (

⋃
j∈n(f[x2+i/x2+i+(2·j)]i∈2)) → Ψ, where Ψ ∈

(f[x2+i/ς(〈x2+i+(2·j)〉j∈n)]i∈2).] Finally, f [being finite] is called a “restricted
equationally definable principal {relative} congruence (REDP{R}C)”/“(equation-
al) implicative|disjunctive scheme/system for a “{pre-}variety”/ K ⊆ AΣ, if, for
each A ∈ K and all ā ∈ A4, (∀θ ∈ (Co{K}(A)/{∆A}) : (〈a0, a1〉 ∈ | 6∈ θ) ⇒
(〈a3, a3〉 ∈ θ)) ⇔ (A |= (

∧
f)[xi/ai]i∈I [cf. [7]/[21]|[20]] /“and so for IS[PU]K,

〈pre-varieties generated by classes of〉 Σ-algebras with [finite] implicative|disjunctive
system f being called 〈[finitely]〉 f-implicative|-disjunctive with the class of f-
implicative|-disjunctive members of any K′ ⊆ AΣ denoted by K′

f “in which case f,
being an implication scheme for (the pre-variety generated by) K, providing this
is quasi-equational, includes a finite one, by the Compactness Theorem for ultra-
multiplicative classes of algebras [15]”|, and so implicative quasi-varieties, being
thus finitely so, are exactly those in the original sense of [21]. Then, by Remark 2.4
therein, quasi-equational/finitely implicative pre-varieties are finitely disjunctive.

Given any A ∈ AΣ, let fA : ℘(A)2 → ℘(A), 〈X,Y 〉 7→ {〈φA
0 [xi/ai, x2+i/bi]i∈2,

φA
1 [xi/ai, x2+i/bi]i∈2〉 | φ̄ ∈ f, ā ∈ X, b̄ ∈ Y }.
Given any τ ∈ Tm3

Σ, put

f⊃
τ , {τ ≈ (τ [x2/x3])},

f∂⊃
τ , {(τ [x0/x2+k, x1/x3−k, x2/(τ [x2/x2+k])]) ≈ x2+k | k ∈ 2},
f∨

τ , {(τ [x0/τ, x1/(τ [x2/x3])]) ≈ (τ [x0/τ, x1/(τ [x2/x3]), x2/x3])},
in which case f∨

τ is defined by f⊃
τ according to [21, Remark 2.4].

Remark 3.1. Given any [dual] discriminator τ ∈ Tm3
Σ for a K ⊆ AΣ, f([∂]⊃)/∨

τ is a
finite implicative/disjunctive system for K. In particular, any [dual] discriminator
pre-variety is finitely both implicative and disjunctive. �

This enables us to build easily an example of a non-quasi-equational finitely
both implicative and disjunctive pre-variety well-justifying the generic framework
of pre-varieties we follow here:

Example 3.2. Let Σ = {¬,∇, τ}, where ¬ and ∇ are unary, while τ is ternary,
A the Σ-algebra such that A , ω, τ(x0, x1, x2) is a (dual) discriminator for A

and, for all a ∈ A, ∇A(a) , min(a, 1), whereas ¬A(a) , max(0, a − 1). Then,
by Remark 3.1, the pre-variety P generated by A, being (dual) τ -discriminator,
is finitely both implicative and disjunctive. Let us show, by contradiction, that
it is not a quasi-variety. For suppose it is a quasi-variety. By induction on any
n ∈ ω, put ¬0[+n+1]xi , [¬¬n]xi[= ¬n¬xi], where i ∈ 2, and set εn , (∇(¬nx0) ≈
∇(¬nx1)). Then, given any N ⊆ ω, set εN , {εn|n ∈ N}. Note that the Σ-
implication εω → (x0 ≈ x1) is true in A, and so in P. Hence, by Remark 2.3,
there is some N ∈ ℘ω(ω) such that the Σ-quasi-identity εN → (x0 ≈ x1) is true
in P 3 A. However, A |= εN [xi/(i + m + 1)]i∈2, where m , (

⋃
N) ∈ ω, though

(m+ 1) 6= (m+ 2). This contradiction means that P is not a quasi-variety. �

3.1. Implicativity versus REDPRC and relative semi-simplicity.

Lemma 3.3. Let f ⊆ Eq4
Σ be an implication scheme for a [pre-]variety P ⊆ AΣ,

A ∈ P, ā, b̄ ∈ A2 and θ , CgA
[P](ā). Suppose A |= (

∧
f)[xi/ai, x2+i/bi]i∈2. Then,

b̄ ∈ θ.
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Proof. As (3.1) is true in P 3 (A/θ) |= (
∧

f)[xi/νθ(ai), x2+i/νθ(bi)]i∈2, while ā ∈
θ = (ker νθ), we get b̄ ∈ θ. �

Corollary 3.4. Let f ⊆ Eq4
Σ be an implication/REDPC scheme for a [pre-]variety

P ⊆ AΣ. Then, Pf ⊆ / = (Si[P](P) ∪ A=1
Σ ). In particular, any implicative [pre-

]variety is [relatively] both semi-simple and subdirectly representable.

Proof. Consider any non-one-element A ∈ Pf and ϑ ∈ (Co[P](A) \ {∆A}), in
which case there is some ā ∈ (ϑ \ ∆A) 6= ∅, and so, for any b̄ ∈ A2, A |=
(
∧

f)[xi/ai, x2+i/bi]i∈2. Then, “by Lemma 3.3”/ b̄ ∈ ϑ, in which case ϑ = A2,
and so A is [P-]simple. Conversely, for any A ∈ Si[P](P), Co[P](A) = {∆A, A

2}, in
which case, for all ā ∈ A4, as 〈a2, a3〉 ∈ A2, we have (∀θ ∈ Co[P](A) : (a0 θ a1) ⇒
(a2 θ a3)) ⇔ ((a0 = a1) ⇒ (a2 = a3)), and so A is f-implicative, whenever f is an
REDP[R]C scheme for P 3 A. �

Theorem 3.5. Any f ⊆ Eq4
Σ is an identity congruence implication scheme for a[n

equational] pre-variety K ⊆ AΣ if[f ] it is an REDPC one.

Proof. The “if” part is immediate. [Conversely, if f is an identity congruence
implication scheme for K, then, by induction on construction of any ϕ ∈ Tmω

Σ, we
conclude that K satisfies the Σ-identities in f[x2+i/(ϕ[x0/xi])]i∈2, in which case, by
Mal’cev Lemma [14] (cf. [7, Lemma 2.1]), for any A ∈ A, ā ∈ A2 and b̄ ∈ CgA(ā), we
have A |= (

∧
f)[xi/ai, x2+i/bi]i∈2, and so Lemma 3.3 completes the argument]. �

This, by Lemma 3.3 and the Compactness Theorem for ultra-multiplicative
classes of algebras (cf., e.g., [15]), immediately yields:

Corollary 3.6. Any quasi-variety with REDPRC scheme f has a finite one ⊆ f.

Theorem 3.7. Let f ⊆ Eq4
Σ. Then, any [(not necessarily) quasi-equational pre-

]variety P ⊆ AΣ is f-implicative iff it is [relatively (both subdirectly-representable
and)] semi-simple with REDP[R]C scheme f, in which case ((SI |Si)[P](P)∪A=1

Σ ) =
Pf.

Proof. If P is f-implicative, that is, is the pre-variety generated by Pf, then, for any
A ∈ P and ā ∈ A4 such that A 6|= (

∧
f)[xi/ai]i∈4, by (2.8), there are some B ∈ Pf

and h ∈ hom(A,B) such that B 6|= (
∧

f)[xi/h(ai)]i∈4, that is, h(a0|2) = | 6= h(a1|3),
in which case, by (2.4), 〈a0|2, a1|3〉 ∈ | 6∈ (kerh) ∈ Co[P](A), and so Remark 2.4,
Lemma 3.3 and Corollary 3.4 complete the argument. �

3.1.1. REDPC versus congruence decomposition.

Definition 3.8. Given any n ∈ ω, a f ⊆ Eq2·(n+1)
Σ is called a(n) restricted equa-

tionally definable n-generated [relative] congruence (n-REDG[R]C) scheme for a
[pre-]variety P ⊆ AΣ, if, for each A ∈ P and every ā ∈ (A2)n+1, (an ∈ CgA

[P](ā[n])) ⇔
(A |= (

∧
f)[xi+j/πj(ai)]i∈(n+1),j∈2). �

Given any f ⊆ Eq4
Σ, by induction on any n ∈ ω, define fn ⊆ Eq2·(n+1)

Σ by
f0 , {x0 ≈ x1} and fn+1 , (

⋃
{fn[x(2·n)+i/ϕi]i∈2 | ϕ̄ ∈ (f[xj/x(2·n)+j ]j∈4)}).

Lemma 3.9. For any [pre-]variety P ⊆ AΣ with a REDP[R]C scheme f ⊆ Eq4
Σ

and any n ∈ ω, fn is an n-REDPG[R]C scheme for P.

Proof. By induction on n. For consider any A ∈ P, in which case ∆A is the
least [P-]congruence of A, and so f0 is a 0-REDPGRC scheme for P. Now, as-
sume fn is an n-REDPGRC scheme for P and consider any ā ∈ (A2)n+2, in
which case, by the right alternative of (2.6) with B = (A/θ) ∈ P and h =
νθ ∈ homS(A,B), where θ , CgA

[P](ā[n]) ∈ Co[P](A), as θ = (kerh), we have
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(an+1 ∈ CgA
[P](ā[n+1]) = CgA

[P](θ∪{an})) ⇔ (h∗(an+1) ∈ CgB
[P]({h∗(an)})) ⇔ (B |=

(
∧

f)[x(2·i)+j/h(πj(an+i))]i,j∈2) ⇔ (fA({an}, {an+1}) ⊆ θ) ⇔ (A |= (
∧

fn+1)
[xk+l/πl(ak)]k∈(n+2),l∈2), and so fn+1 is an (n+ 1)-REDPGRC scheme for P. �

Theorem 3.10. Let P ⊆ AΣ be a ([relatively] semi-simple) {[quasi-]equational}
[pre-]variety, f ⊆ Eq4

Σ, I ∈ Υ, A ∈ (SI[P])(P)I , B a subalgebra of
∏

i∈I Ai and
X ∈ ℘ω|∞(B2). Suppose f is an REDP[R]C scheme for P, while |B| ∈ (∞|ω).
Then, CgB

[P](X) = (B2 ∩ (
⋂

i∈I (πi�B)−1
∗ [CgAi

[P]((πi�B)∗[X])]))(= θB
℘(I∩(

⋂
εI [X]),I)),

in which case (all elements of)

(3.2) CgB
[P][℘〈(ω|∞)∪〉(〈∅∩〉(ω{∪∞}))(B2)]

〈⊆ | = {B2(
⋂

i∈I
(πi�B)−1

∗ [θi]) | θ̄ ∈ (
∏

i∈I
Co[P](Ai))}〉

(are filtral in the 〈〉-non-optional case {and so is P}). In particular, any /“finitely‖
[quasi-]equational” implicative [pre-]variety is [relatively] both subdirectly-represen-
table and finitely/ filtral.

Proof. Take a bijection ā from n , |X| ∈ ω toX, in which case, by Lemma 3.9, ∀b̄ ∈
B2 : (b̄ ∈ CgB

[P](X)) ⇔ (B |= (
∧

fn)[xj+k/πk(aj);x(2·n)+l/bl]j∈n;k,l∈2) ⇔ (∀i ∈ I :
Ai |= (

∧
fn)[xj+k/πi(πk(aj));x(2·n)+l/πi(bl)]j∈n;k,l∈2) ⇔ (∀i ∈ I : (πi�B)∗(b̄) ∈

CgAi

[P]((πi�B)∗[X])) ⇔ (b̄ ∈ (B2 ∩ (
⋂

i∈I (πi�B)−1
∗ [CgAi

[P]((πi�B)∗[X])])))(⇔ ((I ∩
(
⋂
εI [X])) ⊆ (εI(b̄))) ⇔ (b̄ ∈ θB

℘(I∩(
⋂

εI [X]),I))), and so 〈(3.2) holds |“in view of
(2.5)”, while〉 ({for every η ∈ Co[P](B), since, by Remark 2.3, CgB

[P] is finitary,
whereas Fi(I), being inductive, contains F , (

⋃
Y ∈℘ω(η) ℘(I ∩ (

⋂
εI [Y ]), I)), for

{℘(I ∩ (
⋂
εI [Z]), I) | Z ∈ ℘ω(η)} ⊆ Fi(I) is upward-directed, as ℘ω(η) is so, by

(2.11), η = CgB
[P](η) = (

⋃
CgB

[P][℘ω(η)]) = θB
F }. Finally, assume f is finite, in

which case, by Theorem 3.7, it, being an implicative system for K′ , SI[P](P), is
so for K′′ , IPUK′ ⊇ K′, and so Q , QV(K′) = PV(K′′) ⊇ PV(K′) = P, being
f-implicative, is [relatively] semi-simple with REDPC scheme f and SI[P](P) ⊇ K′.
Then, by the {}-optional case, P is filtral, for Q is so.) In this way, Corollary 3.4
and Theorem 3.7 complete the argument. �

Whether the converse of the []-optional version of the /-right alternative of the
‖-left one of the last statement holds remains an open problem. On the other hand,
the 〈〉-optional restriction by merely finitely-generated [P-]congruences of B in (3.2)
can not be omitted, even if P is equational, as it is demonstrated by the following
apparently simplest counter-example:

Example 3.11. Let Σ , (Σ+ ∪ 2∪{¬}), P the variety of De Morgan algebras and
(A|C) ∈ (Si ‖SI)(P) the Kleene|Boolean algebra with carrier (A|C) , (2∪({ 1

2}|∅)),
in which case, by [22], P has an REDPC scheme, while C is a subalgebra of A, and
so, by Lemma 2.9, there are a subdirect power B of A of degree I , ω and some
h ∈ homS(B,C). Then, by (2.5) and the subdiract irreducibility of C, (kerh) ∈
MI(Co(B)). Therefore, if the 〈〉-optional version of (3.2) held for arbitrary [P-
]congruences of B, then, by the simplicity of A, there would be some J ⊆ I such that
(kerh) = (B2 ∩ (

⋂
i∈J(ker(πi�B)))), in which case there would be some j ∈ J such

that (kerh) = (ker(πj�B)), and so, by the Homomorphism Theorem, h−1 ◦ (πj�B)
would be an isomorphism from C onto A, contrary to the inequality 2 6= 3. �

Corollary 3.12. Let V ⊆ AΣ be a variety with an REDPC scheme, P ⊆ AΣ a pre-
variety, A,B,C[,D(,E)] ∈ V, F ∈ P a finite subalgebra of (A[(×E)])× C and [both]
(h[|g]) ∈ hom[|(I)](A[|C],B[|D]) Assume both Co(A‖C[(‖E)]) = {∆A‖C[(‖E)], (A‖C
[(‖E)])2} ∪ ({kerh}‖(∅[∪{ker g}])[(‖∅)]), while ({(π2(+1)

0 �F )[F][, ((π2(+1)
0 �F ) � ((
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π
2(+1)
1(+1)�F ) ◦ g))[F](, ((π3

0�F ) � (π3
1�F ))[F])]} ∩ P) = ∅ {cf. (2.7)}, whereas F �

((B[(×E)])× C). Then, F ∈ SIP(P).

Proof. Then, by (2.1), {ker(π2(+1)
0 �F ) ∩ θ | θ ∈ {F 2[, ker((π2(+1)

1(+1)�F ) ◦ g)(, ker(π3
1�

F ))]}} is disjoint with Θ , CoP(F) ⊇ Θ′ , (Θ \ {∆F }) 63 ∆F = (ker(π2(+1)
0 �F )[(∩

ker(π3
1�F ))] ∩ ker(π2(+1)

1(+1)�F )) ∈ Θ, in which case, by the finiteness of F ∈ V and

Theorem 3.10(3.2) [(as well as the injectivity of g)], Θ′ ⊆ ℘(ker((π2(+1)
0 �F ) ◦

h)[(∩ ker(π3
1�F ))] ∩ ker(π2(+1)

1(+1)�F ), F 2), and so, for any Θ′′ ⊆ Θ′, (F 2 ∩ (
⋂

Θ′′)) ⊇
(ker((π2(+1)

0 �F ) ◦ h)[(∩ ker(π3
1�F ))]∩ ker(π2(+1)

1(+1)�F )) 6= ∆F , for, otherwise, by (2.1)

and (2.7), (((π2(+1)
0 �F ) ◦ h)(�(π2(+1)

1 �F ))� (π2(+1)
1(+1)�F ) would be an embedding of

F into (B(×E))× C. �

3.1.1.1. Implicativity versus filtrality.

Theorem 3.13. Any [quasi-]equational/ [pre-]variety P ⊆ AΣ is implicative iff it is
[relatively] /“both subdirectly-representable and” (subdirectly) /“finitely |principally”
filtral.

Proof. The “only if” part is by Theorem 3.10. Conversely, assume P is [relatively]
/“both subdirectly-representable and” subdirectly principally filtral, in which case,
by “Remark 2.4 as well as”/ Footnote 1, Lemma 2.5 and Corollary 2.10, P is
[relatively] both subdirectly-representable and semi-simple with abstract and non-
trivially-hereditary K , (Si ‖SI)[P](P). Let I , {θ ∈ CoK(Tm4

Σ) | (x0 θ x1) ⇒ (x2 θ

x3)}, A , 〈A/i〉i∈I ∈ KI , D , (
∏

A), h , (
∏

i∈I νi) and ā , 〈h(vj)〉j∈4, in which
case, by (2.2) and (2.7), h ∈ hom(Tm4

Σ,D), while B , (D�(img h)) is a subdirect
product of A, whereas h ∈ homS(Tm4

Σ,B), and so ϑ , CgB
[P](〈a0, a1〉) = θB

F , for
some F ∈ Fi(I). Then, 〈a0, a1〉 ∈ ϑ, in which case εI(〈a2, a3〉) ⊇ εI(〈a0, a1〉) ∈ F,
and so εI(〈a2, a3〉) ∈ F, i.e., 〈a2, a3〉 ∈ ϑ. Let f , (kerh) ⊆ Eq4

Σ. Consider any
C ∈ K and g ∈ hom(Tm4

Σ,C). Then, providing f ⊆ η , (ker g) 3 〈x0, x1〉, by
the Homomorphism Theorem, f , (h−1 ◦ g) ∈ hom(B,C), in which case, by (2.5),
〈a0, a1〉 ∈ ζ , (ker f) = f−1

∗ [∆C ] ∈ Co[P](B), and so 〈a2, a3〉 ∈ ϑ ⊆ ζ. In that
case, 〈x2, x3〉 ∈ η. Now, assume (〈x0, x1〉 ∈ η) ⇒ (〈x2, x3〉 ∈ η), in which case
f ⊆ η, i.e., C |= (

∧
f)[g], whenever η = Eq4

Σ. Otherwise, by the {}-optional ver-
sion of the right alternative of (2.4), η ∈ I, in which case, by (2.1), f ⊆ η, i.e.,
C |= (

∧
f)[g], and so f is an implicative system for K. Thus, P, being [relatively]

subdirectly-representable, is f-implicative. �

This relativezes [7].

3.1.2. Generic identity equivalence implication schemes for distributive lattice ex-
pansions. Here, it is supposed that Σ+ ⊆ Σ. Given any A ∈ AΣ, X ⊆ A and
Ω ⊆ Tm1

Σ, we have ΩA
X : A→ ℘(Ω), a 7→ {ϕ ∈ Ω | ϕA(a) ∈ X}.

Given any ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ , (img ϕ̄), ι ∈ Ω ∈ ℘(V1,Ξ), i ∈ 2 and

∆ ∈ ℘(Ξ), let εi,ι
ϕ̄,∆ , ((∧+〈(ϕ̄ ∩∆) ∗ ((ϕ̄ ∩∆) ◦ [x0/x1]), ι(x2+i)〉) / (∨+〈(ϕ̄ \∆) ∗

((ϕ̄ \ ∆) ◦ [x0/x1]), ι(x3−i))) ∈ Eq4
Σ and fϕ̄

Ω , {εi,ι
ϕ̄,∆ | i ∈ 2, ι ∈ Ω,∆ ∈ ℘(Ξ)} ∈

℘ω(Eq4
Σ).

Lemma 3.14. Let A be a Σ-algebra with (distributive) lattice Σ+-reduct, ϕ̄ ∈
(Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Then, fϕ̄
Ω is an identity reflexive

symmetric (transitive implication) scheme for A.

Proof. Clearly, for all j ∈ 2, ι ∈ Ξ and ∆ ∈ ℘(Ξ), there are some φ, ψ, ξ ∈ Tm3
Σ

such that (εj,ι
ϕ̄,∆[x3/x2]) = ((φ ∧ ξ) / (ψ ∨ ξ)), in which case this is satisfied in
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lattice Σ-expansions, and so in A. Likewise, there are then some η̄, ζ̄ ∈ (Tm2
Σ)+

with ((img η̄) ∩ (img ζ̄)) 6= ∅ such that (εj,ι
ϕ̄,∆[x2+i/xi]i∈2) = ((∧+η̄) / (∨+ζ̄)),

in which case this is satisfied in lattice Σ-expansions, and so in A. Furthermore,
(fϕ̄

Ω[x2/x3, x3/x2]) = fϕ̄
Ω. (Next, since the Σ+-quasi-identity {(x0 ∧ x1) / (x2 ∨

x3), (x0 ∧ x3) / (x2 ∨ x4)} → ((x0 ∧ x1) / (x2 ∨ x4)), being satisfied in distributive
latices, is so in A, so are logical consequences of its substitutional Σ-instances
(fϕ̄

Ω ∪ (fϕ̄
Ω[x2+i/x3+i]i∈2)) → Ψ, where Ψ ∈ (fϕ̄

Ω[x3/x4]). Finally, consider any
a ∈ A and b̄ ∈ (A2 \ ∆A), in which case, by the Prime Ideal Theorem, there
are some k ∈ 2 and some prime filter F of A such that bk ∈ F 63 b1−k, and
so, as ∆ , ΞA

F (a) ∈ ℘(Ξ) and x0 ∈ Ω, A 6|= (
∧

fϕ̄
Ω)[xi/a, x2+i/bi]i∈2, for A 6|=

εk,x0
ϕ̄,∆ [xi/a, x2+i/bi]i∈2.) �

This, by Corollary 3.4, immediately yields:

Corollary 3.15. Let A be a non-one-element Σ-algebra with distributive lattice
Σ+-reduct, ϕ̄ ∈ (Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Suppose fϕ̄
Ω is

an implicative system for A. Then, A is simple.

3.1.2.1. Equality determinants versus implicativity. Recall that a (logical) Σ-matrix
is any pair A = 〈A, D〉 with a Σ-algebra A and a D ⊆ A, in which case an Ω ⊆ Tm1

Σ

is called an equality/identity determinant for A, if ΩA
D is injective (cf. [20]), and so

one for a class M of Σ-matrices, if it is so for each member of M.

Theorem 3.16. Let M be a class of Σ-matrices and ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ ,

(img ϕ̄). Suppose, for all A ∈ M, π0(A)�Σ+ is a distributive lattice with set of its
prime filters π1[M ∩ π−1

0 [{π0(A)}]]. Then, Ξ is an equality determinant for M iff
fϕ̄

V1
is an implicative system for (IS[>1]{PU})π0[M] ([in which case its members

are simple]).

Proof. Let A = 〈A, D〉 ∈ M, ā ∈ A2 and, for any b̄ ∈ A2, hb̄ , [xi/ai, x2+i/bi]i∈2.
First, assume Ξ is an equality determinant for M. Consider any b̄ ∈ A2. Assume
A 6|= εj,x0

ϕ̄,∆[hb̄], for some j ∈ 2 and ∆ ⊆ Ξ, in which case, by the Prime Ideal
Theorem, ∃B = 〈A, D′〉 ∈ M : ∀k ∈ 2 : ∆ = ΞA

D′(ak), and so a0 = a1. Then,
by Lemma 3.14 with Ω = Ξ, fϕ̄

V1
is an implicative system for A. Conversely,

assume fϕ̄
V1r is an implicative system for A and ∆ , ΞA

D(a0) = ΞA
D(a1). Take any

b̄ ∈ (D × (A \ D)) 6= ∅, in which case, as ∆ ⊆ Ξ 3 x0, A 6|= ε0,x0
ϕ̄,∆ [hb̄], for D is

a prime filter of A�Σ+, and so a0 = a1. (Finally, Corollary 3.15 completes the
argument.) �

3.2. Disjunctivity. Unless otherwise specified, fix any f ⊆ Eq4
Σ.

3.2.1. Disjunctivity versus finite subdirect irreducibility and congruence-distributi-
vity.

Lemma 3.17. Any f-disjunctive /finite non-one-element A ∈ AΣ is finitely/ sub-
directly-irreducible. In particular, any disjunctive pre-variety is (relatively) finitely
subdirectly-representable.

Proof. Consider any θ, ϑ ∈ (Co(A)\{∆A}) and take any (ā|b̄) ∈ ((θ|ϑ)\{∆A}) 6= ∅,
in which case the Σ-identities in f[x1|3/x0|2], being true in A, are so in A/(θ|ϑ) (in
particular, under [x0|2/νθ|ϑ((a|b)0), x(2|0)+i/νθ|ϑ((b|a)i)]i∈2), and so ∆A + {〈φA[xi/

ai, x2+i/bi]i∈2, φ
A[xi/ai, x2+i/bi]i∈2〉 | (φ ≈ ψ) ∈ f} ⊆ (θ∩ϑ). Then, (θ∩ϑ) 6= ∆A.

Thus, induction on the cardinality of finite subsets of Co(A) ends the proof. �

Lemma 3.18. Let P ⊆ AΣ 3 A be a f-disjunctive pre-variety and X,Y, Z ⊆ A2.
Then, CgA

P (fA(X,Y ) ∪ Z) = (CgA
P (X ∪ Z) ∩ CgA

P (Y ∪ Z)).
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Proof. In that case, P is generated by K , Pf = ISK, so, by Remark 2.2 and (2.8),
CoK(A) is a basis of CoP(A). Then, for any θ ∈ CoK(A), A/θ is f-disjunctive, in
which case (fA(X,Y ) ∪ Z) ⊆ θ iff either (X ∪ Z) ⊆ θ or (Y ∪ Z) ⊆ θ, and so, for
any ā ∈ A2, (ā ∈ CgA

P (fA(X,Y ) ∪ Z)) ⇔ (∀θ ∈ CoK(A) : ((fA(X,Y ) ∪ Z) ⊆ θ) ⇒
(ā ∈ θ)) ⇔ ((∀θ ∈ CoK(A) : (X ∪ Z) ⊆ θ) ⇒ (ā ∈ θ))&(∀θ ∈ CoK(A) : ((Y ∪ Z) ⊆
θ) ⇒ (ā ∈ θ)) ⇔ (ā ∈ (CgA

P (X ∪ Z) ∩ CgA
P (Y ∪ Z))), as required. �

Corollary 3.19. Any f-disjunctive [pre-]variety P ⊆ AΣ is [relatively] congruence-
distributive, and so is any [quasi-equational/finitely] implicative one.

Proof. Then, by Lemma 3.18, for any A ∈ P and θ, ϑ, η ∈ CoP(A), we have (CgA
P (θ∪

η)∩CgA
P (ϑ∪ η)) = CgA

P (fA(θ, ϑ)∪ η) = CgA
P (CgA

P (fA(θ, ϑ))∪ η) = CgA
P ((CgA

P (θ)∩
CgA

P (ϑ)) ∪ η) = CgA
P ((θ ∩ ϑ) ∪ η), as required. �

Lemma 3.20. Let P ⊆ AΣ be a f-implicative pre-variety and f′ a disjunctive
system for Pf. Then, every f′-disjunctive member of P is f-implicative.

Proof. In that case, f, being is an identity implication scheme for Pf, is so for
P = ISPPf, while the Σ-identities in

⋃
{f′[x2+i/ϕi]i∈2 | ϕ̄ ∈ f}, being true in Pf,

are so in P, and so f′-disjunctive members of P are f-implicative, as required. �

Corollary 3.21. For any f-disjunctive [pre-]variety P ⊆ AΣ, Pf = (SIω[P](P) ∪
A=1

Σ ). In particular, any [quasi-equational/finitely] implicative [pre-]variety is [rel-
atively] finitely semi-simple.

Proof. Then, any one-element Σ-algebra is f-disjunctive, while, for any A ∈ SIω[P](P)
and ā, b̄ ∈ (A2 \ ∆A), since CgA

[P](ā|b̄) ∈ (Co[P](A) \ {∆A}), whereas, by Lemma
3.18, (CgA

[P](ā) ∩ CgA
[P](b̄)) = CgA

[P](fA(ā|b̄)), we have fA(ā|b̄) 6= ∆A = CgA
[P](∆A),

i.e., A 6|= (
∧

f)[xi/ai, x2+i/bi]i∈2, in which case A is f-disjunctive, because the
Σ-identities in

⋃
j∈2 f[x(2·j)/x(2·j)+1], being true in Pf, are so in ISPPf = P 3 A,

and so Lemmas 3.4, 3.17, 3.20 and [21, Remark 2.4] complete the argument. �

Theorem 3.22. Any [pre-]variety P ⊆ AΣ is disjunctive iff it is [relatively both]
congruence-distributive [and finitely-subdirectly-representable] with SIω[P](P) ∪ A=1

Σ

being “a universal (infinitary) model class”/hereditary.

Proof. The “only if” part is by Lemma 3.2.1 and Corollary 3.21. Conversely, assume
P is [relatively both] congruence-distributive [and finitely-subdirectly-representable]
with hereditary SIω[P](P) ∪ A=1

Σ , in which case, by Remark 2.4, it is [relatively]
finitely-subdirectly-representable, while, by (2.5), Co[P](Tm4

Σ) ∩ ℘(θ,Eq4
Σ), where

θ , (Eq4
Σ ∩(

⋂
CoSIω

[P](P)(Tm4
Σ))) ∈ Co[P](Tm4

Σ), is distributive, for Co[P](Tm4
Σ/θ) is

so. Let ∀j ∈ 2 : ϑj , CgTm4
Σ

[P] (θ ∪ {〈x2·j , x(2·j)+1〉}) ∈ (Co[P](Tm4
Σ) ∩ ℘(θ,Eq4

Σ)) 3
f , (ϑ0 ∩ ϑ1) ⊆ Eq4

Σ. Consider any A ∈ SIω[P](P) and any ā ∈ A4. Let h ∈
hom(Tm4

Σ,A) extend {〈xi, ai〉 | i ∈ 4}, in which case B , (A�(img h)) ∈ (SIω[P](P)∪
A=1

Σ ), and so (({〈a0, a1〉, 〈a2, a3〉} ∩ ∆A) 6= ∅) &|⇔ (A |= Φ4
f[h�V4]), unless B ∈

SIω[P](P). Otherwise, by (2.5) and the Homomorphism Theorem, θ ⊆ η , (kerh) ∈
MIω(Co[P](Tm4

Σ)), in which case we have:

(A |= Φ4
f[h�V4]) ⇔ ((ϑ0 ∩ ϑ1) = f ⊆ η) ⇔ (η = CgTm4

Σ
[P] (η ∪ (ϑ0 ∩ ϑ1)) =

(CgTm4
Σ

[P] (η ∪ ϑ0) ∩ CgTm4
Σ

[P] (η ∪ ϑ1)) ⇔ (∃j ∈ 2 : η = CgTm4
Σ

[P] (η ∪ ϑj)) ⇔
(∃j ∈ 2 : ϑj ⊆ η) ⇔ (∃j ∈ 2 : 〈x2·j , x(2·j)+1〉 ∈ η) ⇔ (∃j ∈ 2 : a2·j = a(2·j)+1),

and so f is a disjunctive system for SIω[P](P). Thus, P, being [relatively] finitely-
subdirectly-representable, is f-disjunctive, as required. �
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This, by Remark 2.4 and Corollary 3.21 (as well as the Compactness Theorem
for ultra-multiplicative classes; cf., e.g., [15]), immediately yields:

Corollary 3.23. Any [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive iff it is [rel-
atively] congruence-distributive with SIω[Q](Q)∪A=1

Σ being “a universal (first-order)
model class”/“hereditary (and ultra-multiplicative)”.

This, in its turn, by Footnote 1, Corollary 2.11 and Lemma 2.12, immediately
yields:

Corollary 3.24. Any locally-finite [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive
iff it is [relatively] congruence-distributive with SIω[Q](Q) ∪ A=1

Σ being “a universal
{infinitary} model class”/hereditary.

Finally, this, by the congruence-distributivity of lattice expansions (cf., e.g., [17])
and Corollary 2.7, immediately yields:

Corollary 3.25. Suppose Σ+ ⊆ Σ. Then, any finitely-generated variety V ⊆ AΣ

of lattice expansions with non-trivially-hereditary SI(ω)(V) is finitely disjunctive.

This provides an immediate (though far from being constructive) insight into
the finite disjunctivity of the finitely-generated variety of distributive/Stone|“De
Morgan” lattices/algebras|algebras‖lattices, a constructive one being given by [19,
Example 1/2] and [20, Lemma 11].
3.2.1.1. Implicativity versus finite semi-simplicity and disjunctivity. By Footnote
1, Theorem 3.13, Corollaries 2.8, 2.11, 2.13, 3.21, 3.23, 3.24, Lemma 2.12 and [21,
Remark 2.4], we eventually get:

Theorem 3.26. Any locally-finite/ [quasi-]variety Q ⊆ AΣ is implicative iff it
is /finitely both disjunctive and [relatively] semi-simple iff it is [relatively] both
congruence-distributive and semi-simple with Si[Q](Q) ∪ A=1

Σ being “a universal
/first-order model class”|“hereditary /“and ultra-multiplicative””.

This, by the congruence-distributivity of lattice expansions (cf., e.g., [17]), Corol-
laries 2.7, 3.4 and Footnote 1, immediately yields:

Corollary 3.27. Suppose Σ+ ⊆ Σ. Then, any locally-finite variety V ⊆ AΣ of lat-
tice expansions is implicative iff it is semi-simple “and (finitely) disjunctive”|“with
non-trivially-hereditary (Si |SI)(V)”.

Corollary 3.28. Suppose Σ+ ⊆ Σ. Let K ⊆ AΣ be a finite set of finite lattice
expansions without non-simple non-one-element subalgebras and V the variety gen-
erated by K. Then, V is implicative with (Si |SI)(V) = IS>1K.

These provide an immediate /{though far from being constructive} insight into
the not/ implicativity of (and so not/ REDPC for; cf. Theorem 3.7) the not/ semi-
simple finitely-generated variety of Stone/distributive|“De Morgan” algebras/latti-
ces|algebras‖lattices /(cf. [9]|[22]‖) /“a constructive one being given by Theorem
3.16 and [19, Example 1]|“Remark 4.3””.

Whether the /-alternative stipulations are necessary in Theorem 3.26 remains
an open issue. On the other hand, the necessity of the “[relative] congruence-
distributivity”//“lattice expansion” stipulation therein// as well as in Corollaries
3.23, 3.24, 3.25, 3.27, 3.28 and Theorem 3.22 is demonstrated by:

Example 3.29. Let Σ = {∧} and SL the variety of semi-lattices, in which case,
for any filter F 6= A of any A ∈ SL, χF

A is a surjective homomorphism from A

onto S2 ∈ SL with S2 , 2 and ∧A , (∩�22), and so, by (2.8), SL = IPSDS2.
Now, assume |A| > 2, in which case, providing A is a chain, for any ā ∈ A3 with
| img ā| = 3 such that a0 6A a1 6A a2 and i ∈ 2, ∆A 6= θi , ([ai, ai+1]2A ∪
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∆A) = CgA({〈ai, ai+1〉}) ∈ Co(A), while (θ0 ∩ θ1) = ∆A, and so A is not finitely-
sibdirectly-irreducible. Otherwise, take any b̄ ∈ A2 such that c , (b0 ∧A b1) 6∈
(img b̄), in which case, for each j ∈ 2, ϑj , ((

⋃
{[c∧A d, bj ∧A d]2A | d ∈ A})∪∆A) )

∆A is symmetric and forms a subalgebra of A2, and so the transitive closure ηj =
CgA({〈c, bj〉}) ⊇ ϑj of ϑj is a congruence of A distinct from ∆A. By contradiction,
prove that (η0 ∩ η1) ⊆ ∆A. For suppose (η0 ∩ η1) * ∆A. Take any ē ∈ ((η0 ∩ η1) \
∆A) 6= ∅, in which case, for all k, l ∈ 2, 〈ek, e1−k〉 ∈ (θl \ ∆A), that is, there are
some ml ∈ ω, f̄ l ∈ Aml+2 and ḡl ∈ Aml+1 such that f l

0 = ek, f l
ml+1 = e1−k and,

for every n ∈ (ml + 1), f l
n[+1] ∈ [c ∧A gl

n, bl ∧A gl
n]A, and so ek 6A c, when taking

n = 0, because {l, 1− l} = 2, while ek = f
l|(1−l)
0 6A (bl|(1−l) ∧A g

l|(1−l)
0 ) 6A bl|(1−l).

By induction on any ` ∈ (ml + 2), show that ek 6A f l
`. The case ` = 0 is by the

equality ek = f l
0. Otherwise, (ml + 2) 3 (` − 1) < `, in which case, by induction

hypothesis, we have c >A ek 6A f l
`−1 6A (bl ∧A gl

`−1) 6A gl
`−1, and so we get

ek 6A (c ∧A gl
`−1) 6A f l

`. In particular, ek 6A e1−k, when taking ` = (ml + 1),
since f l

ml+1 = e1−k. Then, e0 = e1, in which case this contradiction shows that
(η0 ∩ η1) = ∆A, and so A is not finitely-sibdirectly-irreducible. Thus, by (2.10)
as well as the simplicity of two-element algebras and absence of their proper non-
one-element subalgebras, ((SI(ω) |Si)(SL){∪A=1

Σ }) = (IS2{∪A=1
Σ }) is the class of

{no-more-than-}two-element semi-lattices {that is, the universal first-order model
subclass of SL relatively axiomatized by the single universal first-order sentence
∀ı∈3xı((x2 ≈ x1) ∨ (x2 ≈ x0) ∨ (x1 ≈ x0))}, while SL, being finitely-semi-simple
and finitely-generated, is semi-simple and locally-finite. On the other hand, since
Fi(2) = {℘(N, 2) | N ⊆ 2}, the set {∆22 , (22)2} ∪ {ker(π�22) |  ∈ 2} of filtral
congruences of S2

2 does not contain its congruence ∆22∪{〈〈0,k〉, 〈0, 1− k〉〉 | k ∈ 2},
in which case, by Theorem 3.13, SL, not being filtral, is not implicative, and so, by
Theorem 3.26, is neither congruence-distributive nor disjunctive. �

3.2.2. Disjunctivity versus distributivity of lattices of sub-varieties.

Lemma 3.30. Let K be a class of Σ-algebras with a disjunctive system f ⊆ Eq4
Σ

as well as R and S are relative sub-varieties of K. Then, so is R ∩ ‖ ∪ S. In
particular, relative sub-varieties of K form a distributive lattice.

Proof. Take any I, J ⊆ Tmω
Σ with (R|S) = (K∩Mod(I|J)), in which case (R ∩ ‖ ∪ S)

= (K ∩Mod((I ∪ J)‖
⋃
{f[xi/φi, x2+i/ψi]i∈2 | (φ̄|ψ̄) ∈ ((I|J)[xj/x(2·j)+(0|1)]j∈ω)})),

and so the distributivity of unions with intersections completes the argument. �

This, by (2.10), (2.9) and Lemma 3.17, immediately yields:

Corollary 3.31. Let K be a [finite] class of finite Σ-algebras with a disjunctive
system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a variety.
Then, SI(P) = IS>1K, in which case S 7→ (S∩S{>1}K) and R 7→ IPSDR are inverse
to one another isomorphisms between the lattices of sub-varieties of P and relative
ones of S{>1}K, and so they are distributive [and finite].

Likewise, by (2.10), (2.9), Theorem 3.7 (as well as [21, Remark 2.4] and Lemma
3.30), we immediately have:

Corollary 3.32. Let K be a [finite] class of [finite] Σ-algebras with a (finite) im-
plicative system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a
variety. Then, (SI |Si)(P) = P>1

f = IS>1K, in which case S 7→ (S ∩ S{>1}K) and
R 7→ IPSDR are inverse to one another isomorphisms between the [finite] (distribu-
tive) lattices of sub-varieties of P and relative ones of S{>1}K.
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4. Morgan-Stone lattices versus distributive ones

From now on, we deal with the signatures Σ(−)
+[,01] , (Σ+(∪{¬})[∪{⊥,>}]),

[bounded] {distributive} lattices being supposed to be Σ+[,01]-algebras with their
variety denoted by [B]{D}L and the chain [bounded] distributive lattice with car-
rier n ∈ (ω \ 2) and the natural ordering on this denoted by Dn[,01], in which case
εn2 , {〈0, 0〉, 〈1, n− 1〉} is an embedding of D2[,01] into Dn[,01], while, for each i ∈ 2,
ε43:i , (χ3\(2−i)

3 ×χ3\(1+i)
3 ) is an embedding of D3[,01] into D2

2[,01]. First, taking the
Prime Ideal Theorem, (2.8), (2.10) and Corollary 3.14 into account, we immediately
have the following well-known fact (cf. [9] as to REDPC for [B]DL):

Lemma 4.1. Let A ∈ [B]L and F ⊆ A. Suppose F is either a prime filter of A

or in {∅, A}. Then, [unless F ∈ {∅, A}] h , χF
A ∈ hom(A,D2[,01]) [and h[A] = 2],

in which case [B]DL = IPSDD2[,01], and so [B]DL is the semi-simple [pre-/quasi-
]variety generated by D2[,01] with (Si |SI)([B]DL) = ID2[,01] and REDPC scheme
f〈x0〉

V1
.

A [bounded] (De) Morgan-Stone {(D)MS} lattice is any Σ−
+[,01]-algebra, who-

se Σ+[,01]-reduct is a [bounded] distributive lattice and which satisfies the Σ−
+-

identities:

¬(x0 ∧ x1) ≈ (¬x0 ∨ ¬x1),(4.1)
x0 / ¬¬x0,(4.2)

in which case, by (4.1) [and (4.2)[x0/>]], it satisfies the Σ−
+-quasi-identity [and the

Σ−
+[,01]-identity]:

(x0 / x1) → (¬x1 / ¬x0)[,(4.3)
¬¬> ≈ >],(4.4)

and so the Σ−
+[,01]-identities:

¬(x0 ∨ x1) ≈ (¬x0 ∧ ¬x1),(4.5)
¬¬¬x0 ≈ ¬x0[,(4.6)

¬⊥ ≈ >],(4.7)

their variety being denoted by [B](D)MSL. Then, bounded Morgan-Stone lattices,
satisfying the Σ−

+,01-identity:

(4.8) ¬> ≈ ⊥,
are nothing but (De) Morgan-Stone {MS} algebras [3] 〈cf. [24]〉, their variety being
denoted by (D)MSA. An a ∈ A is called {a} (negatively-)idempotent {element of
an A ∈ MSL}, if {(¬A)a} forms a subalgebra of A[�Σ−

+], i.e., ¬A(¬A)a = (¬A)a,
with their set denoted by =A

(¬), [bounded] Morgan-Stone lattices with carrier of car-
dinality no less than 2({−1}) and with({out non-}negatively-)idempotent elements
being said to be ( {totally} negatively-)idempotent.

Remark 4.2. By (4.1), (4.5), (4.6), Corollary 3.14 and Theorem 3.5, f〈x0,¬x0,¬¬x0〉
{x0,¬x0,{¬¬x0}

is an REDPC scheme for [B]MS(L[/A]). �

4.1. Subdirectly-irreducibles. Let MS6 be the Σ−
+-algebra with (MS6�Σ−

+) ,
((D2

2�(2
2 \ {〈1, 0〉})) ×D2) and ¬MS6 ā , 〈1 − a2, 1 − a2, 1 − a1〉, for all ā ∈ MS6

(the Hasse diagram of its lattice reduct with its [non-]idempotent elements marked
by [non-]solid circles and arrows reflecting action of its operation ¬ on its non-
idempotent elements is depicted at Figure 1), in which case it is routine to check
to be a Morgan-Stone lattice, and so are both MS5(:0) , (MS6�(MS6 \{〈0, 0, 1〉})



18 A. P. PYNKO

�
�

�

@
@

@
@

@

C
C
C
C
C
C
CCW ?
C
C
C
C
C
C
CCO

�
�

�
�

�
�

@
@

@
@

@

@
@I

r r
b

b
bb〈1, 1, 1〉

〈0, 0, 0〉

〈1, 1, 0〉

〈0, 0, 1〉〈0, 1, 0〉

〈0, 1, 1〉

Figure 1. The Morgan-Stone lattice MS6.

and MS2(:0) , (MS5�{〈i, 1, 0〉 | i ∈ 2}) as well as, for each j ∈ 2, MS4:j ,
(MS5+j�(MS5+j \ (((j+1)×{1})×{1− j}))). Likewise, let (((D)M)|S)4|3 be the

Σ−
+-algebra with (((M|S)4|3�Σ

−
+) , D

2|
2|3 and ¬(M|S)4|3 , ((((π1�2) ◦ (22 \∆2)) ×

((π0�2)◦ (22 \∆2)))|χ1
3), in which case ε6|54|3 , ((((π0�22)× (π0�22))× (π1�22))|(ε43:0×

χ
3\1
3 )) is an embedding of (DM|S)4|3 into (MS|MS)6|5. Finally, for any n ∈

({3, 4}|{2}), let (K|B)n be the Σ−
+-algebra with ((K|B)n�Σ−

+) , Dn and ¬(K|B)n ,

{〈m,n− 1−m〉 | m ∈ n}, in which case ε3‖42 is an embedding of B2 into K3‖4,
while, for every l ∈ 2, ε43:l is an embedding of K3 into DM4, and so ε43:l ◦ ε64 is that
into MS4:(1−l). Moreover, {MS6,MS5,MS2, img(ε32 ◦ ε53)}∪ (

⋃
{{MS4:k, img(ε43:k ◦

ε64)} | k ∈ 2}) are exactly the carriers of members of S>1MS6, in which case
these are isomorphic to those of the skeleton MS , ({MS` | ` ∈ {6, 5, 2}} ∪
{MS4:k | k ∈ 2} ∪ {DM4,K3,S3,B2}), and so this is that of IS>1MS6 with the
embeddability partial ordering � between members of MS, for these are all finite.
And what is more, D6 , (MS6 ∩ π−1

0 [{1}]) is a prime filter of MS6�Σ+, while
Ω , {x0,¬x0,¬¬x0} is an equality determinant for 〈MS6, D6〉, in which case, by
[20, Lemma 11], fΩ , {(τ(xı) ∧ ρ(x2+)) / (τ(x1−ı) ∨ ρ(x3−)) | ı,  ∈ 2, τ, ρ ∈ Ω}
is a disjunctive system for MS6, and so, for ISMS6.

Remark 4.3. Elements of PF4 , {22 ∩ π−1
i [{1}] | i ∈ 2} are exactly all prime filters

of D2
2, while {x0,¬x0} is an equality determinant for M , ({DM4}×PF4), in which

case, by Theorem 3.16, f〈x0,¬x0〉
V1

is an implicative system for IS{>1}DM4 {and so,
by Corollary 3.15, its members are simple, as it is well-known but shown directly
in a more cumbersome way}. �

Theorem 4.4. For any prime filter F of the Σ+-reduct of any A ∈ MSL there is an
h ∈ hom(A,MS6) with (kerh) ⊆ (kerχF

A), in which case MSL is the [pre-/quasi-
]variety generated by MS6 with REDPC scheme f〈x0,¬x0,¬¬x0〉

Ω , and so SI(MSL) =
IMS.

Proof. Let f , χF
A, G , (¬A)−1[(¬A)−1[F ]], H , (A \ (¬A)−1[F ]) and h , (f �

χG
A) � χH

A ), in which case, by (2.1) and (4.6), (ker f) ⊇ (((ker f) ∩ (kerχG
A)) ∩

(kerχH
A )) = (kerh) ⊆ (¬A ◦ h), while, by (4.1) and (4.5), G|H is either a prime

filter of A�Σ+ or in {∅, A}, whereas, by (4.2), F ⊆ G, and so, by (2.2), π0(h(a)) 6
π1(h(a)), for all a ∈ A. Then, by (2.7), Lemma 4.1 and the Homomorphism
Theorem, h is a surjective homomorphism from A onto the Σ−

+-algebra B with
(B�Σ+) , (D3

2�h[A]) as well as ¬B , (h−1 ◦ ¬A ◦ h), in which case B ⊆ MS6,
since π0(h(a)) 6 π1(h(a)), for all a ∈ A, and so B = (MS6�h[A]), as, for all
a ∈ A, (¬Aa ∈ G) ⇔ (¬Aa ∈ F ) ⇔ (a 6∈ H), in view of (4.6), as well as (¬Aa ∈
H) ⇔ (¬A¬Aa 6∈ F ) ⇔ (a 6∈ G). Hence, h ∈ hom(A,MS6) and (kerh) ⊆ (ker f).
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Thus, the Prime Ideal Theorem, (2.8), Corollary 3.31 and Remark 4.2 complete the
argument. �

The Σ−
+-reduct of any A ∈ MS, being a finite lattice, has zero/unit a/b, in

which case we have the bounded Morgan-Stone lattice A01 with (A01�Σ−
+) , A

and (⊥/>)A01 , (a/b), and so, for all C ∈ MS01 , {B01 | B ∈ MS} and D ∈
MS−2,01 , (MS01 \ {MS2,01}), ((D�Σ−

+) � (C�Σ−
+)) ⇒ (D � C). Then, since

MS2,01 6∈ MSA ⊇ (ISMS6,01) ⊇ MS−2,01, while surjective lattice homomorphisms
preserve lattice bounds (if any), whereas expansions by constants alone preserve
congruences, by (2.8), (2.9) and Theorem 4.4, we immediately get:

Corollary 4.5. Let K , (∅|{MS2,01}. Then, V , (BMSL|MSA) is the [pre-/quasi-
]variety generated by {MS6,01,MS2,01}\K with SI(V) = I(MS01 \K) and REDPC
scheme f〈x0,¬x0,¬¬x0〉

Ω .

This subsumes [3] and also yields a uniform insight into REDPC for Stone and
De Morgan algebras, originally given by separate distinct schemes in [13, 22] and a
bit enhanced in Corollary 4.7.

4.2. The lattice of sub-varieties. [Bounded/] Morgan-Stone lattices[/algebras],
satisfying either of the following equivalent — in view of (4.2) — Σ−

+-identities:

(4.9) (¬¬x0(∨¬x0)) ≈ ‖ / (x0(∨¬x0)),

are called [bounded/] (nearly) {De} Morgan lattices[/algebraas], their variety being
denoted by [B/](N){D}M(L[/A]). Likewise, those, satisfying the Σ−

+-identity:

(4.10) (x0 ∧ ¬x0) / x1,

are nothing but [bounded/] Stone lattices[/algebras] [cf., e.g., [8]], their variety
being denoted by [B/]S(L[/A]). Then, members of [[B/]B(L[/A]) , ([B]DM(L[/A])∩
[B]S(L[/A])) are exactly [bounded/] Boolean lattices[/algebras]. Further, [bounded/]
Morgan-Stone lattices[/algebras], satisfying “either of the former”|“the latter” of
the following Σ−

+-identities:

(¬¬x0 ∧ ¬x0) ≈ ‖ / (x0 ∧ ¬x0),(4.11)
¬¬x0 / (x0 ∨ (¬¬x1 ∨ ¬x1)),(4.12)

“in which case they satisfy the Σ−
+[,01]-quasi-identities [(4.8) and]:

(4.13) {(¬x0{∧x1}) / (¬¬x0{∨x2})(, (¬x0 ∨ ¬¬x0) ≈ (¬x0 ∨ x0))} →
((¬x0{∧x1}) / ((x0{∨x2})),

[in view of (4.7)]”| are said to be quasi-|pseudo-strong, their variety being denoted
by [B/](Q|P)SMS(L[/A]). Then, members of

[B/]SMS(L[/A]) , ([B/]QSMS(L[/A]) ∩ [B/]PSMS(L[/A])) ⊇
([B/]DM(L[/A]) ∪ [B/]S(L[/A]))

are said to be strong. Next, [bounded/] (( bdquasi-|pseudo-estrongc) {weakly} Klee-
ne〈-Morgan〉(-Stone) lattices [/algebras] are [bounded/] (bdquasi-|pseudo-estrongc)
De-Morgan(-Stone) lattices[/algebras] satisfying the following Σ−

+-identity:

K
{W}
〈M〉 , ((〈¬¬x2∧〉(x0 ∧ ¬x0)) / (〈x2∨〉(¬x1 ∨ {¬¬}x1))),

their variety being denoted by

[B/](bdQ|PeSc){W}K〈M〉(S)(L[/A]) ⊇ (∅(∪([B/]S(L[/A])))

{∪[B/](bdQ|PeSc)K(〈M〉S)(L[/A])}
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(〈[B/]DM(L[/A]) ∪ [B/](bdQ|PeSc){W}K(S)(L[/A])〉))

{in view of (4.2)}. Likewise, members of

[B/]NK(L[/A]) , ([B/]{W}KS(L[/A]) ∩ [B/]NDM(L[/A]))

are called [bounded/] nearly Kleene lattices[/algebras]. Further, the variety of to-
tally negatively-idempotent [bounded] Morgan-Stone lattices, being relatively ax-
iomatized by the Σ−

+-identity:

(4.14) ¬¬x0 ≈ ¬x0,

is denoted by [B]TNIMSL. Likewise, the variety of one-element [bounded/] Morgan-
Stone lattices[/algebras], being (relatively) axiomatized by the Σ−

+-identity:

(4.15) x0 ≈ x1,

is denoted by [B/]OMS(L[/A]). Furthermore, members of [B/](M|{W}K)S(L[/A]),
satisfying the following Σ−

+-identity:

(4.16) ((¬x0 ∧ ¬¬x0) ∧ ¬¬x1) / ((¬x0 ∧ x0) ∨ ¬x1),

are said to be almost quasi-strong, their variety being denoted by

[B/]AQS(M|{W}K)S(L[/A]) ⊇ ([B/]QS(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅])).

Then, members of

[B/]AS(M|{W}K)S(L[/A]) , ([B/]AQS(M|{W}K)S(L[/A])∩
[B/]PS(M|{W}K)S(L[/A])) ⊇ ([B/]S(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅]))

are said to be almost strong, in which case, due to the truth of the Σ+-quasi-identity

(4.17) {((x0 ∧ x2)(∧x3)) / ((x1 ∧ x2)(∨x4)), (x0 ∨ x2) / (x1 ∨ x2)} →
((x0(∧x3)) / (x1(∨x4)))

in distributive lattices:

(4.18) ([B](A){Q}SMSL ∩ [B]NDML) = [B](A)DML.

Likewise, members of [B/](M|{W}K)S(L[/A]), satisfying the following Σ−
+-identity:

(4.19) (¬¬x0 ∧ ¬¬x1) / (x0 ∨ ¬x1),

are called [bounded/] almost “De Morgan”|“ {weakly} Kleene” lattices[/algebras],
their variety being denoted by [B/]A(DM|{W}K)(L[/A]) ⊇ ([B/](DM|{W}K)(L[/A])
∪ ([B]TNIMSL[/∅])). Finally, [bounded/] Morgan-Stone lattices[/algebras], satisfy-
ing the optional|non-optional version of the following Σ−

+-identity:

(4.20) (¬x0 ∨ d¬¬ex0) ' x1,

are called [bounded/] almost Stone|Boolean lattices[/algebras], their variety being
denoted by [B/]A(S|B)(L[/A]).

Let2

MS[01]b(A)c , ({[(4.8), ](4.9), ((4.9)), (4.10), (4.11), (4.12),K,KW,

KM,K
W
M , (4.16), (4.19), (4.20), d(4.20)e, (4.14)}b∩E(A)c)

bwhere A ∈ MS[01]c.

2From now on, to unify equation environment references, those <not> incorporated into option
brackets mean corresponding <non->optional versions of referred quasi-identities.
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Figure 2. The poset 〈MS[01],�〉 [with merely thick lines].

Lemma 4.6. For any A ∈ MS[01], MS[01](A) is given by Table 1, in which case
the poset 〈MS[01],�〉 is given by Figure 2 with (non-)simple/f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}-
implicative members marking (non-)solid circles-nodes [and merely thick lines], and
so, for any B ∈ MS[01], (MS[01] ∩HB) ⊆ ISB. In particular, relative sub-varieties
of MS[01] are exactly its relatively both abstract and hereditary subclasses.

Proof. Clearly, for any line of Table 1, the identities of the second column of it are
true in the algebra of the first one. Conversely,

MS(5|6)[,01] 6|= K
|W
‖M[xi/〈1−min(1, i), 1|max(1− i, i− 1),min(1, i)〉]i∈(2‖3),

S3[,01] 6|= ((((4.9))‖(4.9))|((4.19)‖(4.20)))[xi/(1 + i)]i∈(1|2),

DM(4[,01] 6|= K{W}[xi/(〈i, i, 1− i〉]i∈2,

MS4:1[,01] 6|= (4.12)[x0/〈0, 1, 1〉, x1/〈0, 0, 1〉],

Table 1. Identities of MS[01] true in members of MS[01].

MS6[,01] ∅[∪{(4.8)}]
MS5[,01] {[(4.8), ](4.12),KW,KW

M}
MS4:0[,01] {[(4.8), ]((4.9)), (4.12),K,KW,KM,K

W
M}

MS4:1[,01] {[(4.8), ](4.11),K,KM,KM,K
W
M , (4.16)}

DM4[,01] MS[01] \ {K,KW, (4.10), (4.20), d(4.20)e, (4.14)}
MS2[,01] MS[01] \ {[(4.8), ](4.9), (4.11), (4.10)}
K3[,01] MS[01] \ {(4.10), (4.20), d(4.20)e, (4.14)}
S3[,01] MS[01] \ {(4.9), ((4.9)), (4.19), (4.20), (4.14)}
B2[,01] MS[01] \ {(4.14)}
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MS4:0[,01] 6|= (4.16)[xi/〈i, 1, i〉]i∈2,

K3[,01] 6|= ((4.10)|(d(4.20)e‖(4.20)))[x0/1, x1/(0|2)],
(B|MS)2[,01] 6|= (4.14|(4.9‖4.11))[x0/(0|〈0, 1, 0〉)][,

MS2,01 6|= (4.8)].

Moreover, by Remark 4.2, f〈x0,¬x0,¬¬x0〉
Ω is an REDPC scheme for [B]MSL ⊇ MS[01],

in which case, by Corollary 3.4, any simple member A of it is f〈x0,¬x0,¬¬x0〉
Ω -

implicative, and so all those members of MS, which are embeddable into A, being
then f〈x0,¬x0,¬¬x0〉

Ω -implicative as well, are simple too. On the other hand,

(4.21) χ
3\1
3 = (ε53 ◦ π2) ∈ homS(S3[,01],B2[,01]),

in which case (kerχ3\1
3 ) ∈ (Co(S3[,01]) \ {∆3, 32}), and so S3[,01] is not simple.

Likewise,

(4.22) }0 , {〈ā, [a0 + a1 + a2 + 1
2

]〉 | ā ∈MS4:0} ∈ homS(MS4:0[,01],K3[,01]),

in which case (ker }0) ∈ (Co(MS4:0[,01])\{∆MS4:0 ,MS2
4:0}), and so MS4:0[,01] is not

simple. Thus, the fact that varieties are abstract, image-closed and hereditary, the
simplicity of two-element algebras, the equality (4.11) = ((4.10)[x0/¬x0, x1/(x0 ∧
¬x0)], Lemma 3.17, Theorem 4.4, Corollary 4.5, Remarks 4.2, 4.3 and the truth of
the identity (4.9)|(¬x0 ≈ ¬x1) in (DM|MS)4|2 complete the argument. �

Corollary 4.7. Sub-varieties of [B/]MS(L[/A]) form the non-chain distributive
lattice with 29[(+11)/(−9)] elements, whose Hasse diagram with [both thick and]
thin lines is depicted at Figure 3, any (non-)solid circle-node of it being marked by
a (non-)semi-simple|filtral |〈f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}−〉implicative variety V ⊆ [B/]MS(L

[/A]), numbered from 1[+(0/20)] to 29[+11] according to Table 2 with k , (9 ·
(1[/0])) [as well as ` , (29 · (0/1))] and MSV[,01] , max�((MS[−2,01][∪K]) ∩ V),

Table 2. Maximal subdirectly-irreducibles of varieties of [bound-
ed/] Morgan-Stone lattices[/algebras].

1[+`] [B]MS(L[/A]) {MS6[,01]}[∪K]
2[+`] [B]PS〈WK〉MS(L[/A]) {MS5[,01],DM4[,01]}[∪K]

3d+1e[+`] [B]WKdMeS(L[/A]) {MS5[,01],MS4:1[,01]d,DM4[,01]e}[∪K]
5[+`] [B]PSWKS(L[/A]) {MS5[,01]}[∪K]

6d+1e[+`] [B]KdMeS(L[/A]) {MS4:i[,01] | i ∈ 2}d∪{DM4[,01]}e[∪K]
8d+1e[+`] [B]PSKdMeS(L[/A]) {MS4:0[,01],S3[,01]d,DM4[,01]e}[∪K]

10[+`] [B]NDM(L[/A]) {MS4:0[,01],DM4[,01]}[∪K]
11[+`] [B]NK(L[/A]) {MS4:0[,01]}[∪K]

12 [B]TNIMSL {MS2[,01]}
22b−kc [B/]bAcQSMS(L[/A]) {MS4:1[,01],DM4[,01]}b∪Kc
23b−kc [B/]bAcQS{W}KS(L[/A]) {MS4:1[,01]}b∪Kc
24b−kc [B/]bAcSMS(L[/A]) {S3[,01],DM4[,01]}b∪Kc
25b−kc [B/]bAcDM(L[/A]) {DM4[,01]}b∪Kc
26b−kc [B/]bAcS{W}KS(L[/A]) {S3[,01],K3[,01]}b∪Kc
27b−kc [B/]bAc{W}K(L[/A]) {K3[,01]}b∪Kc
28b−kc [B/]bAcS(L[/A]) {S3[,01]}b∪Kc
29b−kc [B/]bAcB(L[/A]) {B2[,01]}b∪Kc

21 [B/]OMS(L[/A]) ∅
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Figure 3. The lattice of varieties of [bounded/] Morgan-Stone lattices[/algebras].

where K , ({MS2[,01]}[/∅]), given by the third column, in which case SI(V) =
IS>1MSV[,01], and so V is the (pre-‖quasi-)variety generated by MSV[,01], while
[B]SMSL is that generated by {SI}([B]DML ∪ [B]SL) with REDPC scheme f〈x0,¬x0〉

{x0,¬x0},
whereas any disjunctive sub-pre-variety of [B/]MS(L[/A]) is equational, and so is
any quasi-equational//finitely implicative one.

Proof. We use Lemma 4.6 tacitly. Then, the intersections of MS[−2,01][∪K] with
the 29[(+11)/(−9)] sub-varieties of [B/]MS(L[/A]) involved are exactly all lower
cones of the poset 〈MS[−2,01][∪K],�〉, i.e., the sets appearing in the third column
of Table 2 are exactly all anti-chains of the poset. So, (2.8), (2.9), (4.1), (4.5),
Theorems 3.7, 3.13, 4.4, Corollaries 3.14, 4.5, Lemmas 3.17, 3.30, [21, Remark 2.4],
the truth of the Σ−

+-quasi-identities in {(
⋃

i∈2{(x2 ∧ xi) / (x1−i ∨ x3), (x2 ∧¬xi) /
(¬x1−i ∨ x3)}) → ((x2 ∧ ¬¬xj) / (¬¬x1−j ∨ x3)) | j ∈ 2} in {DM4,S3} and the
fact that pre-varieties are abstract and hereditary complete the argument. �

It is in this sense that [B]SMSL is the implicational/[quasi-]equational join of
[B]DML and [B]SL. Likewise, QSMSL is the greatest sub-variety of MSL not con-
taining MS2, in which case it is that containing the Σ−

+-reduct of no member of
BMSL \MSA, and so it is in this sense that it is viewed as “an equational unbounded
approximation of MSA” due to absence of any class of Σ−

+-implications axiomatiz-
ing MSA relatively to BMSL, simply because any sub-pre-variety of MSL including
K′ , (MS \ {MS2}) contains MS2 ∈ SK′ (this is why the node 30 at Figure 3
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corresponds to no sub-variety of MSL). The finite lattice of its sub-quasi-varieties
is found in the next Section. This task (as well as that solved in [18]) cannot be
solved with using tools elaborated in [21] because of Proposition 5.11 therein. And
what is more, despite of implicativity of {sub-varieties of} [B](A)DML and Remark
3.1, we have:

Remark 4.8. Clearly, θ , (∆3 ∪ ({1}× 3)) ⊆ (32 \ ({0, 2}2 \∆{0,2})) forms a subal-
gebra of K2

3[,01], in which case, if K3[,01] had a dual discriminator δ, then we would
have 2 = δK3[,01](1, 0, 2) θ δK3[,01](0, 0, 2) = 0, and so, by Theorem 4.4 and Corollary
2.7, no sub-variety of [B]MSL containing |“the non-simple subdirectly-irreducible”
K|S3[,01] (viz., including [B](K|S)L; cf. Corollary 4.7) is {dual} discriminator. �

On the other hand, the majority term µ+ for the variety of lattices, being a dual
discriminator for D2, is that for {B2[,01],MS2[,01]}, in which case, by Corollary
4.7, sub-varieties of [B]ABL are dual µ+-discriminator, and so, by Remark 4.8,
these are exactly all dual (µ+-)discriminator sub-varieties of [B]MSL. Nevertheless,
since ¬x0 ≈ > is true in MS2,01, its isomorphic copy by π0�MS2 is term-wise-
definitionally equivalent to D2,01 generating the variety BDL (cf., e.g., [2] or Lemma
4.1), in its turn, being well-known (e.g., due to [5] {cf. [21, Lemma 2.10]} and
existence of a three-element subdirect square of D2,01 with carrier 22 \ {〈0, 1〉},
though 3 6= 1 is odd), in which case MS2[,01] has no congruence-permutation term,
for, otherwise, D2,01 would have one, and so, by Corollaries 2.7 and 4.7, [B]BL is
the only discriminator sub-variety of [B]MSL.

5. Quasi-varieties of almost quasi-strong Morgan-Stone lattices

5.1. Non-idempotencity versus two-valued Boolean homomorphisms. Gi-
ven any K ⊆ [B]MSL, (N)IK stands for the class of (non-)idempotent members of
K (in which case it is the relative sub-quasi-variety of K, relatively axiomatized by
the Σ−

+-quasi-identity:

(5.1) (¬x0 ≈ x0) → (x0 ≈ x1),

and so a quasi-variety, whenever K is so).
Given any K′,K′′ ⊆ [B]MSL, set (K′ ⊗ K′′) , {A×B | (A|B) ∈ (K′|K′′)}.
Let µ , (¬x0∨¬¬x0) ∈ Tm1

Σ−
+

and π , ((x0∨¬x1)∧x1) ∈ Tm2
Σ−

+
. Then, given

any τ ∈ Tm1
Σ−

+
, [by induction on any i ∈ ω] put

ιτ,1[+i+1] , ((x0[[x0/π]])[x0/(τ [x0/x0[+i+1]])[, x1/ιτ,i+1]]) ∈ Tm1[+i+1]

Σ−
+

.

Finally, for any n ∈ (ω \ 1), set ιn , ιµ,n ∈ Tmn
Σ−

+
.

Lemma 5.1. Any (non-one-element finitely-generated) A ∈ [B]MSL is non-id-
empotent if(f) hom(A,B2[,01]) 6= ∅, in which case I[B]SMSL ⊆ [B]DML, and so
[B]S(M|K)SL = (NI[B]S(M|K)SL ∪ [B](M|K)L). In particular, (NI[B]SMSL ∪ [B]KL)
= (NI[B]SMSL ∪ [B]SKSL), while NIMS[01] = {S3[,01],B2[,01]}, whereas any variety
V ⊆ [B]MSL with NIV * [B]OMSL contains B2[,01].

Proof. The “if” part is by the fact that B2[,01] has no idempotent element. (Con-
versely, assume hom(A,B2[,01]) = ∅, in which case, by (4.21), hom(A,S3[,01]) = ∅,
and so (hom(A, {MS6[,01][,MS2,01]}) ∩ (img ε53)

A) = ∅. Then, by (2.8), Theorem
4.4 [resp., Corollary 4.5] and the right alternative of the following claim, A, being
non-one-element, is idempotent:)

Claim 5.2. Let B ∈ [B]MSL, n ∈ (ω \ 1), b̄ ∈ Bn, C ∈ {MS6[,01][,MS2,01]},
h ∈ (hom(B,C) \ (∅|(img ε53)

B)) and τ ∈ (Tm1
Σ−

+
|{µ}). Suppose “for each i ∈ n,
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h(¬BτB(bi)) 6C h(¬B¬BτB(bi))”|“B is generated by img b̄”. Then, h(¬BιB
τ,n(b̄))

6C | = h(¬B¬BιB
τ,n(b̄)), in which case ¬BιB

τ,n(b̄) 6B ¬B¬BιB
ι,n(b̄), and so the Σ−

+-
(quasi-)identity ({¬xj / ¬¬xj | j ∈ n} →)(¬ι(τ,)n / ¬¬ι(τ,)n) of rank n is true in
[B]MSL.

Proof. By induction on n, (2.8), Theorem 4.4 [resp., Corollary 4.5], the equality
(C \ (img ε53)) = =C

¬ as well as the truth of the Σ−
+-quasi-identities

∅‖{¬x0 ≈ ¬¬x0}) → (¬µ / ‖ ≈ ¬¬µ),(5.2)
{¬xj / ‖ ≈ ¬¬xj ,¬x1−j / ¬¬x1−j} → (¬π / ‖ ≈ ¬¬π),(5.3)

where j ∈ 2, in [B]MSL, in their turn, being due to that of (4.1), (4.5) and (4.6). �

Finally, (2.8), (4.21), Corollary 4.7 and absence of proper subalgebras of B2[,01]

complete the argument. �

Lemma 5.3. K3[,01]�({0, 2}(∪{1})) is embeddable into any A ∈ ([MSA ∩ B]MSL) \
((NI[B]MSL∪)[B]TNIMSL))[= ((I)MSA \ OMSA)] ⊇ ((I)([MSA ∩ B]QSMSL) \
[B]OMSL).

Proof. Then, we have some (a, )b ∈ A such that (¬Aa =)((a∨A)((a∧A)¬A¬Ab)) 6=
¬Ab, in which case, by (4.1), (4.3), (4.5) and (4.6) [as well as (4.7) and (4.8)],
c , (([⊥A∧A](a∧A)(¬Ab ∧A ¬A¬Ab))) = ¬A¬Ac 6A (a 6A)d , ¬Ac, while ¬Ad =
c(6= a, for, otherwise, we would have ¬Ab >A a 6A ¬A¬Ab, the latter imply-
ing, by (4.3) and (4.6), ¬Ab 6A a), whereas d 6∈ {c(, a)}, for, otherwise, we
would get ((c∨A)((c∧A)([⊥A∧A]¬A¬Ab))) = ((a∨A)((a∧A)([>A∨A]¬Ab))), and so
{〈0, c〉, (〈1, a〉, )〈2, d〉} is an embedding of K3[,01]�({0, 2}(∪{1})) into A, as required,
for, by Corollary 4.7, ([B]QSMSL ∩ [B]TNIMSL) = [B]OMSL ⊆ NI[B]MSL. �

The stipulation of quasi-strength [resp., MS-algebraicity] here can be neither
omitted nor replaced by the one of pseudo-strength nor, even, weakened with re-
placing it by that of almost quasi-strength, when taking A = MS2[,01].

The above two lemmas, by (2.1), (2.7) with I = 2, (2.8), (2.10), Corollary 4.7, the
locality of quasi-varieties, the quasi-equationality of finitely-generated pre-varieties,
the simplicity of two-element algebras and the equality NI[B]TNIMSL = [B]OMSL,
immediately yield:

Corollary 5.4. Let K ⊆ [B]MSL and P , PV(K). Suppose either B2[,01] ∈ | �
(P|K) (more specifically, either [B]OMSL + (K‖P) ⊆ [B]QSMSL or both [B]OMSL +
NI(K‖P) and P is equational) or IK = ∅. Then, NIP = PV((IK ⊗ ({B2[,01]} ∩
(P|(ISK))))∪NIK), in which case, for any variety V ⊆ [B]MSL {such that [B]BL ⊆ V
(i.e., [B]TNIMMSL + V)}, NIV = (P//Q)V(∅{∪((MSV[,01] \ {S3[,01],B2[,01]}) ⊗
{B2[,01]})}∪(MSV[,01]∩{S3[,01],B2[,01]})), and so NI[B/]{(PSM)|(WK〈M〉)|(PSWK)
}S(L[/A]) is the pre-//quasi-variety generated by ({MS(6{−1})[,01]}{∪({DM4[,01]}|
{MS(4:1)[,01]〈,DM4[,01]〉}|∅)}[∪({MS2,01}/∅)])⊗{B2[,01]}, while NI[B/]{(PS)|(〈A
〉bQcS)}({|M‖}(KdMe))S(L[/A]) is the one generated by (({MS(4:i)[,01] | i ∈ (2{\({1
}|(2b∩1c))})} ∪ ({|{DM4[,01]}‖}(∅ ∪ (∅|(∅ ∪ ({K3[,01]}d∩∅e)))d∪{DM4[,01]}e)) ∪
((∅[∪({MS2,01}/∅)])|(∅〈∪({MS2[,01]}[/∅])〉)))⊗{B2[,01]})∪({S3[,01]}|({S3[,01]}b
\{S3[,01]}c)), whereas NI[B/]{N}(M|K)(L[/A]) is that generated by (({((DM)|
K)(4|3)[,01]}{\(∅|{K3[,01]})}){∪{MS(4:0)[,01]}[∪({MS2,01}/∅)]})⊗{B2[,01]}. In pa-
rticular, any (non-one-element) A ∈ [B]MSL is non-idempotent if(f) hom(A,B2[,01]

) 6= ∅.

Corollary 5.5. NI[B]MSL ∪ [B]TNIMSL is the sub-quasi-variety of [B]MSL rela-
tively axiomatized by the Σ−

+-quasi-identity:

(5.4) (¬x0 ≈ x0) → (x0 ≈ ¬x1)
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and is the pre-/quasi-variety generated by {MS6[,01] ×B2[,01],MS2[,01]}.

Proof. Clearly, (5.4) = (5.1[x1/¬x1]) is true in both NI[B]MSL and MS2[,01]. Con-
versely, any A ∈ I[B]MSL, satisfying (5.4), has an idempotent element a, in which
case, for any b ∈ A, as A |= (5.4)[x0/a, x1/(¬A)b], we have ¬Ab = a(= ¬A¬Ab), and
so A ∈ [B]TNIMSL. Then, Corollaries 4.7 and 5.4 complete the argument. �

Likewise, we have:

Corollary 5.6. For any (equational) /quasi-equational pre-variety P ⊆ [B]MSL,
the class NIP∪(P ∩ [B]{W}KSL) is the relative/ sub-quasi-variety of P relatively
axiomatized by the Σ−

+-quasi-identity:

(5.5) (¬x0 ≈ x0) → (x0 / ({¬¬}x1 ∨ ¬x1))

(and is the pre-|quasi-variety generated by MSP∩[B]{W}KSL)[,01]∪((MSV[,01] \{S3[,01],
B2[,01]})⊗{B2[,01]})). In particular, NI[B]bAc(D〈‖dQeS〉)M〈S〉L ∪ bAc〈dQeS〉K〈S〉L
is the sub-quasi-variety of [B]bAc(D〈‖dQeS〉)M〈S〉L relatively axiomatized by either
version of (5.5) and is the pre-|quasi-variety generated by

({DM4[,01]b,MS2[,01]c} ⊗B2[,01]) ∪ ({K3[,01]〈,S3[,01]〉}〈d∩∅e)〈d∪{K4:1[,01]}e〉.

Proof. Clearly, (5.5) is satisfied in NIP ∪ (P ∩ [B]{W}KSL). Conversely, consider
any A ∈ IP satisfying (5.5) and any a, b ∈ A, in which case there is some c ∈ A
such that ¬Ac = c, and so, as A(5.5)[x0/c, x1/(a|b)], we have c 6A (¬A(a‖b) ∨A

{¬A¬A}(a‖b)). Then, by (4.2), (4.3) and (4.5) {as well as (4.6)}, we get (a ∧A

¬Aa) 6A c, in which case A ∈ (P ∩ [B]{W}KSL), and so Corollaries 4.7, 5.3 and 5.4
complete the argument. �

More generally, we, clearly, have:

Lemma 5.7. For any α ∈ (∞ \ 1), any I ⊆ (℘(Eqα
Σ−

+[,01]
) × Eqα

Σ−
+[,01]

) and any

K ⊆ AΣ−
+[,01]

, (K ∩ (Mod(I) ∪ Mod((5.1))) = (K ∩ Mod({({¬xα ≈ xα} ∪ Γ) → Φ |
(Γ → Φ) ∈ I})).

This, by Corollaries 4.7, 5.4 and Lemma 4.6, immediately yields:

Corollary 5.8. Let V , [B]<dAeQS>MSL. Then,

(NIV{〈∩[B]KSL〉} ∪ ([B](A)bQScMbScL{ ∩ [B]KSL}< ∩ V>)

is the sub-quasi-variety of V relatively axiomatized by the Σ−
+-quasi-identity:

(5.6) {¬x1(+1) ≈ x1(+1)b, x0 / ¬x0c} → (((¬¬x0(∧¬¬x1)) ≈ (x0(∨¬x1)))

{collectively with the one ({¬x2 ≈ x2}〈∩∅〉) → K} <and is the pre-/quasi-variety
generated by {MS4:1[,01] × B

b0c
2[,01]d,MS2[,01] × B

(0)
2[,01]e,DM

{〈0〉}
4[,01] × B

0{+1〈−1〉}
2[,01] {,

K
b0c
3[,01]}}>.

5.2. Regularizations versus regularity.

Definition 5.9 (cf. [18, Definition 4.6] for the non-otional case). Members of any
/quasi-equational K ⊆ [B]MSL, satisfying the Σ−

+-quasi-identity of rank 2{+1}:

R
(W)
{M} , (({¬x0 / x0, (x0 ∧ ¬x1) / ((¬x0 ∨ x1)}) →

((¬x1{∧¬¬x2}) / ((¬¬)x1{∨x2}))

are called (weakly-){Morgan-}regular, their relative/ sub-quasi-variety of K being
denoted by ((W){M}RK. �
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Given any [bounded] {quasi-strong} 〈(weakly) Kleene〉 MS lattice A, by (4.1),
(4.2), (4.3) and (4.5) (as well as (4.6)) 〈together with K(W)〉 {collectively with
(4.13)}, (I|F)A

(W) , {a ∈ A | (¬A¬A)a(6 | >)A¬Aa} ⊇ {b(∧|∨)A¬Ab | b ∈ A} 6= ∅,
for A 6= ∅, is a|an lower|upper cone of the poset 〈A,6A〉 〈being an|a ideal|filter
of A�Σ+〉 such that ¬A[(I|F)A

(W)] ⊆ (F|I)A
(W)(= ((F|I)A ∪ ((FA

W{∩∅})|∅))) 〈in
which case <A

(W) , ((FA
(W) × {1}) ∪ (IA

(W) × {0}))({= <A}) forms a subalgebra
of A×B2[,01] such that, for every d̄ ∈ <A

(W), (d1 = 1) ⇒ (d0 ∈ FA
(W)), and so the

(weak) regularization <(W)(A) , ((A×B2[,01])�<A
(W))({= <(A)}) of A is (weakly)

regular〉. Then, (π0�<S3[,01]) ∈ hom(<(S3[,01]),S3[,01]) is bijective, so, by Corol-
lary 4.7, S3[,01] ∈ R[B]SKSL. Likewise, (ε42‖{〈i, 〈χ

4\3
4 (i) + χ

4\1
4 (i), χ4\2

4 (i)〉〉 | i ∈
4}) ∈ hom((B‖K)(2‖4)[,01],K4[,01]‖<(K3[,01])) is injective‖bijective, so, by Corollary
4.7, (B‖K)(2‖4)[,01] ∈ R[B]KL.

Lemma 5.10. Any ((weakly) {Morgan-}regular [bounded/] MS lattice[/algebra] A
is a [bounded/] (weakly) Kleene-{Morgan-}Stone lattice[/algebra].

Proof. Consider any a, b{, c} ∈ A. Let d , (a ∨A ¬Aa) and e , ((b ∨A ¬Ab) ∧A d),
in which case, by (4.5), we have ¬Ad = (¬Aa∧A ¬A¬Aa) 6A ¬Aa 6A d, and so, by
(4.1) and (4.5), we get (d∧A¬Ae) = ((d∧A (¬Ab∧A¬A¬Ab))∨A¬Ad) 6A ((¬Ad∨A

(b∨A¬Ab))∧Ad) = (¬Ad∨Ae). Then, since A |= R
(W)
{R}[x0/d, x1/e{, x2/c}], by (4.1),

(4.2) and (4.5) (as well as (4.6)), we eventually get ((a ∧A ¬Aa){∧A¬A¬Ac}) 6A

((¬Aa ∧A ¬A¬Aa){∧A¬A¬Ac}) = (¬Ad{∧A¬A¬Ac}) 6A (((¬Ab ∧A ¬A¬Ab) ∨A

¬Ad){∧A¬A¬Ac}) = (¬Ae{∧A¬A¬Ac}) 6A ((¬A¬A)e{∨Ac}) = ((((¬A¬A)b ∨A

¬Ab) ∧A (¬A¬A)d){∨Ac}) 6A (((¬A¬A)b ∨A ¬Ab){∨Ac}), as required. �

Corollary 5.11. (∅{∪{S3[,01]〈,DM4[,01]〉(,MS2[,01])}}) ⊆ (W)〈M〉R[B]M{S}L ⊆
(NI[B]K{〈M〉S}L(∪[B]TNIMSL)〈∪[B](A)DML〉). In particular, [B](A)〈{S}M〉{S}L ⊆
[B](W)〈M〉RSMSL.

Proof. The first inclusion is immediate. For proving the second one, consider any
A ∈ (W)〈M〉R[B]M{S}L and any a, b, c〈, d(, e)〉 ∈ A such that ¬Aa = a, in which
case, as A |= ((4.1)|R(W)

〈R〉 )[x0/a, x1/(c|(a∧Ac))〈|, x2/d〉] (and A |= (4.5)[x0/¬Aa, x1/

¬Ac]), we have (¬Ac〈∧A¬A¬Ad〉) 6A ((¬Aa ∨A ¬Ac)〈∧A¬A¬Ad〉) = (¬A(a ∧A

c)〈∧A¬A¬Ad〉) 6A ((¬A¬A)(a∧A c)〈∨Ad〉) = ((a∧A (¬A¬A)c)〈∨Ad〉) 6A ((¬A¬A)c
〈∨Ad〉), and so, as A |= (4.2(‖4.6))[x0/b], we get both (b〈∧A¬A¬Ad〉) 6 (¬A¬Ab
〈∧A¬A¬Ad〉) 6A ((¬A¬A)¬Ab〈∨Ad〉) = (¬Ab〈∨Ad〉), when taking c = ¬Ab, and
(¬Ab〈∧A¬A¬Ad〉) 6A ((¬A¬A)b〈∨Ad〉), when taking c = b. Then, as, by Lemma
5.10, K

(W)
〈M〉 , being true in A, is so under [x0/(a‖(¬A)b), x1/(b‖a)〈, x2/d〉] 〈and

A |= (4.2)[x0/d]〉, we have both ((¬A)b〈∧A¬A¬Ad〉) 6A (a〈∨Ad〉) 〈in which case,
when taking b = ¬A¬Ad (resp., b = ¬Ae), we get (¬A¬Ad(∧A¬A¬Ae)) 6A (a ∨A

d(∨A¬Ae))〉 and (a〈∧A¬A¬Ad〉) 6A ((¬A)b〈∨Ad〉) 〈in which case, when taking
b = d (resp., b = e), we get (a ∧A ¬A¬Ad(∧A¬A¬Ae)) 6A (d(∨A¬Ae))〉, and so
eventually get a = (¬A)b 〈resp., (¬A¬Ad(∧A¬A¬Ae)) 6A (d(∨A¬Ae)), since the
Σ+-quasi-identity {(x0 ∧ x1) / x2, x1 / (x0 ∨ x2)} → (x1 / x2) is true in distribu-
tive lattices〉. This, by Corollary 4.7 (and 5.5) 〈as well as 5.8〉, ends the proof. �

Before pursuing, note that, for each i ∈ 2,

ε4i , ({〈3 · (1− i), 〈1− i, 1, 1− i, 1− i〉〉} ∪ {〈j, 〈ε43:0(j − i), i〉〉 | j ∈ ((3 + i) \ i)}),

being an isomorphism from D4[,01] onto MS4:i[,01]�Σ+[,01], is the one from K4:i[,01] ,

(ε4i )
−1[MS4:i[,01]] onto MS4:i[,01], in which case ε8i , (ε4i × ∆2) is that from

K4:i[,01] × B2[,01] onto MS4:i[,01] × B2[,01], and so ε5i , (ε8i �<K4:i[,01]) is so from
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<(K4:i[,01]) onto <(MS4:i[,01]), the former [bounded] MS lattices being preferably
used below due to their having more transparent representation/notation of ele-
ments than those of the latter ones. Likewise, ε5i , {k+ l | 〈k, l〉 ∈ <K4:i[,01]}, being
clearly injective, is an isomorphism from <(K4:1[,01]) onto K5:1[,01] , <(K4:1[,01]) with
(K5:1[,01]�Σ+[,01]) = D5[,01]. Finally, let K2(:0)[,01] , (π0�MS2)[MS2[,01]], in which
case ε44 , (((π0�22)(π0�MS2)

−1)× (π1�22)) is an isomorphism from K2[,01]×B2[,01]

onto MS2[,01] × B2[,01], and so ε33 , (ε44�<K2[,01]) is the one from <(K2[,01]) onto
<(MS2[,01]), (ε43:1)

−1 being that from <(K2[,01]) onto K3:0[,01] , (ε43:1)
−1[<(K2[,01])].

Theorem 5.12. Let V ⊆ [B/](W)K{M}SL[/A] be a variety and K , (MSV[,01] ∩
{B2[,01],S3[,01]{,DM4[,01],K3[,01]}(,K2[,01])}). Then, Q , (W){M}RV is the pre-
//quasi-variety generated by <(W)[MSV[,01]\K]∪K, b(W)oc{dMe|}((R[B/]bAoc({〈Q o P
〉S}(K{d‖Me}){S})b|S|Bc)(L[/A]) being the one generated by {K4{〈+1:1o0〉}[,01]|S3[,01]

|B2[,01]}{∪({S3[,01]}〈∩∅〉)〈∪(∅ o ({S3[,01]}[∪({K3:0,01}/∅)]))〉d∪({(K‖M)(3‖4)[,01]}|
∅|∅)e}b∪({K3(−1):0[,01]}[/∅])c.

Proof. Consider any finitely-generated

A ∈ (Q \ ([B]OMSL(∪[B]TNIMSL){d∪[B](A)DMLe}).

Take any ā ∈ A+ such that A is generated by img ā. Let n , (dom ā) ∈ (ω \ 1)
and b , ¬A¬AιA

n (ā), in which case, by (4.6) and the left alternative of Claim
5.2, we have ¬Ab 6A b. Consider any B ∈ K′ , ({MS6[,01]}[∪({MS2,01}/∅)])
and h ∈ hom(A,B) dsuch that (img h) 6⊆ (img ε64), in which case, for some i ∈ n,
h(ai) 6∈ (img ε64), and so π0(h(ai)) = 0 = (1−π0(h(¬A¬Aai)))e. Let (I|J) , {j ∈ n |
h(aj) 6∈ (F|I)B

(W)}, (ı|) = |(I|J)| and k̄|¯̀ any bijection from ı| onto I|J . We prove,
by contradiction, that there is some g ∈ hom(A,B2[,01]) such that g[img((k̄|¯̀)◦ā)] =
{0|1}. For suppose that, for every g ∈ hom(A,B2[,01]), there is either some i′ ∈ ı
or some j′ ∈  such that g(a(k|`)i′|j′

)) = (1|0), in which case, as, by Lemma 5.1 and
Corollary 5.11, hom(A,B2[,01]) 6= ∅, we have (I ∪J) 6= ∅, and so we are allowed to
put c , (∨A

+((k̄◦ ā(◦¬A ◦¬A))∗(¯̀◦ ā◦¬A))). Then, π0o2(h((¬A¬A)c)) = 0, in which
case (by (4.6)) π0(h(¬Ac)) = 1, and so (¬Acd∧A¬A¬Aaie) 
A ((¬A¬A)cd∨Aaie),
for (h ◦ π0) ∈ hom(A�Σ+,D2). Now, consider any C ∈ K′, f ∈ hom(A,C) and the
following complementary cases:

• (img f) ⊆ (img ε53),
in which case, by (4.21), e , (f ◦ (ε53)

−1 ◦ χ3\2
3 ) ∈ hom(A,B2[,01]), while

(img f) * MS2, for (MS2 ∩ (img ε53)) = ∅ 6= (img f), as A 6= ∅, and so
[C = MS6,01, whereas], by the assumption to be disproved, π1o2(f(c)) =
e(c) = 1. Then, f(b ∧A ¬Ac) = 〈0, 0, 0〉 6C f(¬Ab ∨A c).

• (img f) * (img ε53),
in which case, by (4.6) and the right alternative of Claim 5.2, f(b∧A¬Ac) 6C

f(b) = f(¬Ab) 6C f(¬Ab ∨A c).
Thus, anyway, f(b∧A¬Ac) 6C f(¬Ab∨Ac), in which case, by (2.8) and Theorem 4.4
[resp., Corollary 4.5], (b ∧A ¬Ac) 6A (¬Ab ∨A c), and so A 6|= R

(W)
dMe[x0/b, x1/cd, x2/

aie]. This contradiction to the (weak) dMorgan-eregularity of A definitely shows
that, for each D ∈ ((MSV[,01] \ K) ⊆ ISK′ and every h′ ∈ hom(A,D), there is some
g′ ∈ hom(A,B2) such that (img f ′) ⊆ <D

(W), where f ′ , (h′ � g′), in which case,
by (2.7), f ′ ∈ hom(A,<(W)(D)), while, by (2.1), (ker f ′) ⊆ (kerh′), and so the
locality of quasi-varieties, (2.8), (4.2), (4.13), Corollaries 4.7 and 5.11 das well as
the injectivity of ε64e complete the argument. �

This, by Lemma 5.1 and Corollary 5.4, immediately yields:
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Corollary 5.13. NIMR[B]QS(M|K)SL is the pre-/quasi-variety generated by
{K5:1[,01], (M|K)(4|3)[,01] ×B2[,01]}.

This, in it turn, by Corollaries 4.7, 5.4, 5.6, 5.8, 5.11 and Theorem 5.12, imme-
diately yields:

Corollary 5.14. NIMR[B]QSMSL ∪ (MR)[B](QS){W}K(S)L is the sub-quasi-variety
of MR[B]QSMSL relatively axiomatized by either {(5.6), (¬x2 ≈ x2) → K} or either
version of (5.5) and is the pre-/quasi-variety generated by {K5:1[,01],K3[,01],DM4[,01]

×B2[,01]}.

Thus, the apparatus of (weak) regularizations of [bounded] (weakly) Kleene-
Stone lattices involved in proving Theorem 5.12 yields a more transparent and
immediate insight/proof into/to [21, Proposition 4.7]. And what is more, it is
involving ¬¬ιn instead of ∧+〈µ(xi)〉i∈n, like therein, that has proved crucial for
proving the de-optional version of Theorem 5.12 {though the former choice would
suffice for proving the non-optional one, in its turn, sufficient within the framework
of [B]SMSL; cf. the final inclusion in Corollary 5.11}, in its turn, yielding axiom-
atizations of the quasi-equational joins of RQSKSL and all sub-quasi-varieties of
DML not subsumed by RKL ⊆ RQSKSL (cf. [18] for latter ones), and so eventual
finding the lattice of quasi-varieties of quasi-strong MS lattices, being equally due
to the series of “embedability” lemmas presented in Subsection 5.4 (aside from the
above basic one 5.3 and that 5.23 to be presented before, in the next subsection,
because of its extra meaning related to “nearly De Morgan” framework) as well as
“generation/axiomatization” corollaries|theorems presented above|below.

5.3. “Virtually” versus “almost”. Almost {“〈quasi-〉strong ”|}“Morgan/Kle-
ene{-Stone}”|“Stone‖Boolean” lattices, satisfying the {}-non-optional version of
(the ()-optional one of) the Σ−

+-quasi-identity (4.13), are called (practically) virtu-
ally {“〈quasi-〉strong ”|}“Morgan/Kleene{-Stone}”|“Stone‖Boolean” lattices, their
quasi-variety being denoted by

(P)V{〈Q〉S|}((((dDeM)/K){S})|(S‖B))L ⊇
(V{〈Q〉S|}((((dDeM)/K){S})|(S‖B))L ⊇)

{〈Q〉S|}((((dDeM)/K){S})|(S‖B))L.

Note that neither version of

(5.7) {¬¬x0 ≈ ¬x0(, (x0 ∨ ¬¬x0) ≈ (¬¬x0 ∨ ¬x0))} → (x0 ≈ ¬x0).

is true in K2(:0)[,01] under [x0/0]. On the other hand, by (4.2), we immediately have:

(5.8) ([B]MSL ∩Mod(((5.7)))) = ([B]MSL ∩Mod((5.7))).

Likewise, by (4.1), we have:

(5.9) ([B]TNIMSL ∩Mod((5.7))) = [B]OMSL.

Lemma 5.15. Let K ⊆ [B]MSL and S|R its relative sub-quasi-variety relatively ax-
iomatized by (the ()-optional version of) “the {}-non-optional version of”| ((4.13)|
(5.7)). Then, R = (NIK ∪ S).

Proof. First, the fact that (the optional version of) (5.7) is equal to (a logical con-
sequence of) (5.1)[xi/¬1−ix0]i∈2 yields the inclusion NIK ⊆ R. Likewise, consider
any A ∈ S and any a ∈ =A

¬ (such that (a ∨A ¬Aa) = (¬A¬Aa ∨A ¬Aa)), in which
case ¬Aa 6A ¬A¬Aa, and so both ¬Aa 6A a and, by (4.2), a 6A ¬Aa. Then,
¬Aa = a, in which case A ∈ R, and so S ⊆ R. Conversely, consider any B ∈ IR
and any b ∈ B such that ¬Bb 6B ¬B¬Bb. Take any c ∈ =B 6= ∅, in which case,
by (4.1), (4.5) and (4.6) (as well as (4.2)), (d‖e) , ((c ∨B ¬Bb) ∧B (¬0‖2)Bb) =
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(d‖¬B(d/e)(= (d‖((¬0/2)Bd∨B¬Bd))), and so ¬Bb 6B e = d 6B b. Thus, B ∈ S,
as required. �

Given any A ∈ ([QS]MSL[{\OMSL}]) with {zero a and} any ideal I of A�Σ+

[disjoint with FA
(W)], (A ] I) , (({1} × A) ∪ ({0} × I)) forms a subalgebra of

K2 × A, in which case [by Corollary 4.7] A � (A ] I) , ((K2 × A)�(A ] I)) is a
[virtually quasi-strong] MS-lattice, because, by (2.1) and (2.7), (A × {1}) × ∆A

is an embedding of A into A ] I, as 1 ∈ =K2 [while (4.13) is true in A] {and
so is (A ⊕ 1) , (A ] {a}) ∈ S(A ] I), since I 3 a[6∈ FA, for, otherwise, for all
b ∈ A, by (4.2), (4.3) and the inequality a 6A ¬Ab, we would have a 6A b 6A

¬A¬Ab 6A ¬Aa 6A a implying b = a, contrary to the assumption |A| 6= 1]},
whereas K2 ∈ H(A ] I), for π0[A ] I] = 2, as I 6= ∅. Then, A is said to be
normal, if (A \ FA

W)[= (A \ FA)] is an ideal of the lattice A�Σ+ [{with zero}], in
which case [{(A ⊕ 1) ∈ S}](A 	 `) , (A ] (A \ FA

W)) ∈ [VQS]MSL, the class of all
normal members of any K ⊆ MSL being denoted by ℵK, and so this is a relatively
abstract subclass of K including K ∩ ((MS \ {MS2}) ∪ <W[WKSL]), because, for
any B ∈ (MS \ {MS2}), B \ FB

W is the singleton constituted by the zero of the
finite lattice B�Σ+ that implies (B 	 `) = (B ⊕ 1), while, for any C ∈ WKSL,
(<C

W \ F
<W(C)
W ) = (IC

W × 1) that, by (2.1) and (2.7), implies:

(5.10) ((π1⊗(π0×(π1◦π1)))�(<W(C)	`)) ∈ homI(<W(C)	`,<W(C)×(B2⊕1)).

And what is more, by Corollary 4.7, (5.9) and Lemma 5.15, we immediately have:

Corollary 5.16. (B2⊕1) ∈ (VBL \ BL), in which case VBL, BL, ABL, TNIMSL and
OMSL form a pentagon of the lattice of quasi-varieties of almost Boolean lattices,
and so this is not distributive.

Likewise, by Corollary 4.7, S3 � MS5:1 , ((K2 × S3)�((2 × 3) \ {〈0, 2〉})) ∈
(PVSL \ VSL), for K2 ∈ ASL 3 S3 � (S3 ⊕ 1) ∈ SMS5:1, while (4.13) is true in
S3⊕ 1, whereas MS5:1 6|= ((4.9))[x0/〈0, 1〉] as well as (MS5:1 \ (S3⊕ 1)) = {〈0, 1〉},
but MS5:1 6|= (4.13)[x0/〈0, 1〉].

Theorem 5.17. Let K ⊆ (ℵMSL(∩IS((MS ∩ QSMSL)⊗{Bj
2 | j ∈ 2}))), (P)VP the

relative sub-quasi-variety of P , PV(K ∪ {K2}), relatively axiomatized by the {}-
non-optional version of (the ()-optional one of) the Σ−

+-quasi-identity (4.13), and
K′ , (((K(\{S3}))	`)(∪{MS5:1 | S3 � K})). Suppose both K and all its members
are finite [while P * TNIMSL]. bIn particular, K = MSV, where V , {〈Q〉S|}((M
/K){S})|(S‖B))L, in which case K′ = (((K(\{S3})) ⊕ 1)(∪{MS5:1 | S3 � K})),
while P = AV, and so (P)VP = (P)VVc. Then, (P)VP[∪NIP] is the pre-//quasi-
variety generated by K′[∪{K2 ×B2}].

Proof. Consider any non-one-element finitely-generated A ∈ (P)VP and any g ∈
hom(A,K2), in which case A is finite, for MSL 3 A, being finitely-generated, in
view of Theorem 4.4, is locally-finite, and so is Co(A) ⊇ C , ker[hom(A,K)], while,
by (2.8), (5.9), Corollary 4.7 and Lemma 5.15, C 6= ∅, for:

(5.11) ∆A = (A2 ∩ (
⋂

(ker[hom(A,K2)] ∪ C)),

and so there are some bijections ā from k , |A| ∈ (ω \ 1) onto A and θ̄ from
n , |C| ∈ (ω\1) onto C as well as both some B ∈ Kn and some h̄ ∈

∏
i∈n hom(A,Bi)

such that θ̄ = (h̄ ◦ ker). Let us prove, by contradiction, that A , (
∏

j∈n(g−1[1] ∩
h−1

j [FBj

W (∩{c ∈ Bj | (c ∨Bj ¬Bjc) = (¬Bj¬Bjc ∨Bj ¬Bjc), hj [A] ∈ IS3})])) = ∅.
For suppose A 6= ∅, in which case, by its finiteness, ensuing from that of A and the
inclusion A ⊆ An, there is a bijection ā from m , |A| ∈ (ω \ 1) onto A, and so we
have b̄ , 〈∨A

+ak〉k∈m ∈ Am such that (b̄ ◦ g) = (m× 1). Then, by induction on any
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l ∈ ((m+ 1) \ 1) 3 m, we get g(ιA
x0,l(b̄�l)) = 0, in which case d , ιA

x0,m(b̄) ∈ g−1[1],
and so ¬Ad 
A d, for g(d) = 0 � 1 = g(¬Ad). On the other hand, for all ı ∈ n

and  ∈ m, πı(a) 6A b, in which case FBı

W 3 hı(πı(a)) 6Bı hı(b), and so,
applying (4.3) twice, we get hı(b) ∈ FBı

W . Hence, by the truth of (4.14) in K2

and (5.11), b ∈ FA
W, in which case, by Claim 5.2, d ∈ FA

W(3 d′ , ιk(ā)), and so
A 6|= (4.13)[x0/d] (as well as, by (5.3), g′ , πA(d′, d) ∈ FA

W. Consider any ı ∈ n

and the following complementary cases, putting C , hı[A]:

• C � S3,
in which case there is an injective e ∈ hom(hı[A],S3), while f , (hı ◦ e) ∈
hom(A,S3), whereas, by induction on any ` ∈ ((k + 1) \ 1) 3 k, we have
f(ιA

` (ā�`) = 2, and so, in particular, when ` = k, we get f(d′) = 2. Consider
the following complementary subcases:

– (img e) = 3,
in which case, for each  ∈ m, by the injectivity of e, we have (3 \ 1) 3
f(πı(a)) 6= 1, and so, since πı(a) 6A b, we get 2 = f(πı(a)) 6
f(b) 6 2. Then, by induction on any l ∈ ((m + 1) \ 1) 3 m, we get
f(ιA

x0,l(b̄�l) = 2, for (b̄ ◦ f) = (m × {2}), in which case f(d) = 2, and
so f(g′) = 2. Therefore, f(g′ ∨A ¬Ag′) = f(¬A¬Ag′ ∨A ¬Ag′).

– (img e) 6= 3,
in which case 1 6∈ (img e) = (img f) 3 f(g′), for (¬1o2)S31 = (0 o 2),
and so f(g′ ∨A ¬Ag′) = f(¬A¬Ag′ ∨A ¬Ag′).

Thus, in any case, f(g′ ∨A ¬Ag′) = f(¬A¬Ag′ ∨A ¬Ag′), and so, by the
injectivity of e, hı(g′ ∨A ¬Ag′) = hı(¬A¬Ag′ ∨A ¬Ag′).

• C � S3,
in which case there are some D ∈ SMS6 with a′ , 〈0, 1, 0〉 6∈ D and some
j ∈ 2 such that C � (D×Bj

2), and so E , (π0�C)[C] = f ′[A] � S3, where
f ′ , (hı ◦ π0) ∈ hom(A,MS6), for, otherwise, as (D × B0

2) ∈ ID, while
B2 � S3, whereas (π0o1�C) ∈ hom(C,D oBj

2), by (2.1) and (2.7), we would
have C ∈ S(E×Bj

2) � S3. Then, (img f ′) = E * (img ε53), for, otherwise,
(ε53)

−1
�E would be an embedding of E into S3, in which case, by the right

alternative of Claim 5.2, f ′(d′) ∈ =MS6
¬ , and so, since f ′(d) ∈ FMS6

W , for
d ∈ FA

W, by (5.3), f ′(g′) ∈ (=MS6
¬ \ {a′}) = =MS6 , for a′ 6∈ D ⊇ E =

(img f ′) 3 f ′(g′). In that case, f ′(g′ ∨A ¬Ag′) = f ′(¬A¬Ag′ ∨A ¬Ag′), and
so, by the truth of ((4.9)) in Bj

2, hı(g′ ∨A ¬Ag′) = hı(¬A¬Ag′ ∨A ¬Ag′).

Thus, anyway, hı(g′ ∨A ¬Ag′) = hı(¬A¬Ag′ ∨A ¬Ag′), in which case, by the truth
of ((4.9)) in K2 and (5.11), (g′ ∨A ¬Ag′) = (¬A¬Ag′ ∨A ¬Ag′), and so A 6|=
((4.13))[x0/g

′], for ¬Ag′ 
A g′, because g(g′) = 0 � 1 = g(¬Ag′), as g(d) = 0.)
This contradiction shows that there is some i ∈ n such that (providing there is
some e′′ ∈ homS

I (hi[A],S3)), for all b′ ∈ A, either g(b′) = 0 or hi(b′) 6∈ FBi

F (i.e.,
e′′(hi(b′) = 0, or (hi(b′)∨Bi¬Bihi(b′) 6= (¬Bihi(b′)∨Bi¬Bihi(b′)), i. e. e′′(hi(b′) =
1), while, by (2.7), h′ , (g � (hi(◦e′′)) ∈ hom(A, {K2} ⊗ (({Ci}(∩∅))(∪{S3})),
in which case (img h′) ⊆ (((Ci 	 `)(∩∅))(∪MS5:1)) (whereas S3 � K), and so
h′ ∈ hom(A,K′(∪(S3⊕1))), as well as, by (2.1), (kerh′) ⊆ (ker g). In this way, (2.8),
Corollary 4.7, the inclusion(s) K ⊆ IS(K′) (and {S3⊕1} ⊆ S{MS5:1}), the locality
of quasi-varieties and the quasi-equationality of finitely-generated pre-varieties [as
well as Lemmas 5.3, 5.7, 5.15 and Corollary 5.4] complete the argument. �

5.3.1. Enhanced generation. Recall the following immediate observation:
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Lemma 5.18. Let A ∈ A∧ be a semi-lattice with bound b ∈ A (i.e., b = (a ∧A b),
for all a ∈ A) and h : A → (img h). Suppose (kerh) ∈ Co(A). Then, h[A] is a
semi-lattice with bound h(b).

Given any (A|B) ∈ MSL with zero a|b of (A|B)�Σ+ and any h ∈ hom[S]
(I)(A,B)

such that [resp., in which case, by Lemma 5.18] h(a) = b, [and so] we have:

(5.12) (h⊕ 1) , ((π0�(A⊕ 1))� ((π1 ◦ h)�(A⊕ 1))) ∈ hom[S]
(I)(A⊕ 1,B⊕ 1).

On the other hand,

(5.13) }1 , {〈i,min(2, i)〉 | i ∈ 4} ∈ homS(K(4:1[,01],K3[,01]),

in which case, by (2.1), (2.7) and (5.12):

(5.14) ((}1 ⊕ 1)� (π1�(4⊕ 1))) ∈ homI(K4:1 ⊕ 1, (K3 ⊕ 1)× K4:1),

and so, by Lemma 4.6, Corollary 4.7, (5.12) and Theorem 5.17, we immediately get
the following quite useful enhancement of the latter:

Corollary 5.19. ([NIA{QS}(M|K){S}L∪]〈P〉V{QS}(M|K){S}L) is the pre-/quasi-
variety generated by {(M|K)4|3 ⊕ 1{,K4:1〈,MS5:1〉}[,K2 ×B2]}.

Likewise, by (2.1), (2.7), (4.21) and (5.12), we have:

(5.15) ((χ3\1
3 ⊕ 1)� (π1�(3⊕ 1))) ∈ homI(S3 ⊕ 1, (B2 ⊕ 1)×S3),

and so, by Lemma 4.6, Corollary 4.7, (5.12) and Theorem 5.17, we also get one
more equally useful enhancement of the latter:

Corollary 5.20. ([NIA(S|B)L∪]〈P〉V(S|B)L) = (P/Q)V(({〈M〉S3〈+2:1〉}|∅)∪{(B2

⊕ 1)1〈−(1|0)〉[,K2 ×B2]}).

It is Corollary 5.19|5.20 that releases us from proving “embedability lemma” for
((K|S)(4:1)|3⊕1)[×B2|] in finding the lattice of quasi-varieties of almost quasi-strong
Kleene-Stone lattices.

5.3.2. Regularity versus virtuality. First, by (4.2), we clearly have:

(5.16) (WRMSL ∩Mod((4.2))) = (RMSL ∩Mod((4.2))).

However, this can not be extended to neither ((4.2)) nor Morgan regularity, even
within the framework of AQSKSL, because of the instances of (MS5:1|(K3 ⊕ 1)) ∈
((S(K2 × (S|K)3) \ | ∩ Mod((4.2))) ∩ Mod(((4.2)))), being weakly Morgan regular
almost quasi-strong Kleene-Stone lattices, for both K2 and (S|K)3 are so, but not
satisfying R[M] under [xi/〈1−min(i, 1), 1− (0|min(i, 1))〉]i∈(2[+1]). Nevertheless,

(5.17) <(K2) = (B2 ⊕ 1),

in which case, by Theorem 5.12, we get:

(5.18) [M]RAQSK[M]SL ⊆ (P)VQSK[M]SL,

while, by Lemmas 5.11, 5.15 and (5.9) (as well as (5.8)), we have:

(5.19) WR(P)VQSMSL ⊆ NIMSL,

whereas, by (5.12), we also have:

(5.20) (ε32 ⊕ 1) ∈ homI(B2 ⊕ 1,S|K3 ⊕ 1) ⊆ (homI(B2 ⊕ 1,MS5:1|(K3 ⊕ 1)),

in which case, by (2.1) and (2.7), we get:

(5.21) ((ε32 ⊕ 1)� (π1�(B2 ⊕ 1)) ∈ homI(B2 ⊕ 1, (K3 ⊕ 1)×B2),

and so, as {〈i, i+ (2 ·min(i, 1))〉 | i ∈ 3} is an embedding of S3 into K5:1, by (5.10),
(5.15), Theorems 5.12, 5.17, Corollaries 4.7, 5.4 and Lemma 5.3, eventually get:
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Corollary 5.21. W[〈M|〉]R(P)V(([{Q}S](K[〈‖M〉])[S])|(S/B))L = (P oQ)V({B2 ⊕
1}∪((∅[∪{(M)S3(+2:1)}])|({(M)S3(+2:1)}/∅))∪({K[〈0{+1}〉]

4[{+1:1}][〈, (K‖M)3‖4⊕1〉]}|∅)).
In particular, {NI}WR[M](P)V〈Q〉SKSL = (P|Q)V(({(M)S3(+2:1)}〈∩{MS5:1}〉)〈∪
{K5:1}〉 ∪ (({K(4[−1]}〈∩{K3}〉)[⊕1])[{⊗{B2}}]) ∪ ({B2 ⊕ 1}[∩∅](∩∅))).

5.3.2.1. Quasi-strong regularity. MS lattices satisfying the Σ−
+-quasi-identity R

QS
[N]

, ((π0(R)[∪{((4.9))[x0/(x0 ∧ x1)]}]) → ((¬x1 ∧ ¬¬x1) / x1)) are called [nearly]
quasi-strongly regular, the class of such members of any K ⊆ MSL being denoted by
[N]QSRK[⊇ QSRK], in which case:

(5.22) NQSRNDML = QSRNDML,

and so this term is justified by the following analogue of Corollary 5.11, immediately
ensuing from the fact that, due to the idempotence identity for ∨, we have:

(5.23) (MSL ∩Mod(RM[x2/x1])) = (MSL ∩Mod(RQS))

[and the truth of the Σ−
+-quasi-identity:

(5.24) {¬x1 ≈ x1, x0 / x1} → ((4.9)),

in MS lattices, in its turn, being due to that of (4.2) and (4.3)]:

Lemma 5.22. (MRMSL ∪ QSMSL) ⊆ [N]QSRMSL ⊆ (NIMSL ∪ QSMSL).

Likewise, by (4.1), (4.2), (4.5), (4.6) and (4.18), we immediately have:

Lemma 5.23. Let A ∈ MSL, a ∈ A, c , (a ∨A ¬Aa) and d , (¬A¬Aa ∨A ¬Aa).
(Suppose c 6= d.) Then, (c 6=)b , ¬Ac = ¬Ad 6A c 6A d = ¬Ab(6= c) (in which
case {〈0, b〉, 〈1, c〉, 〈2, d〉} is an embedding of S3 into A), and so S3 is embeddable
into any member of (MSL \ NDML) ⊇ ([A]QSMSL \ [A]DML).

Theorem 5.24. Let K ⊆ (ℵ)QSMSL and P = PV(K ∪ {K2}). Suppose both K
and all members of it are finite, while S3 � | � K |“whereas K * OMSL”. Then,
Q , [N]QSRP is the pre-/quasi-variety generated by K′ , (K ∪ {((K2 ×S3)�((S3 ⊕
1)[∪MS5:1]))|(B2 ⊕ 1)}) ⊆ (ℵ)[P]VQSMSL. In particular, WR[P]V{Q}SKSL =
[N]QSRWR[P]V{Q}SKSL.

Proof. Consider any finitely-generated A ∈ (Q \ QSMSL), in which case, by Lemma
5.22 and the local finiteness of MSL, for this is finitely-generated, in view of Theorem
4.4, A is both finite, non-one-element and non-idempotent, and so “as B2 � S3”|,
by Lemma 5.1, H , hom(A, (S|B)3|2) is both non-empty and finite. Then, there
are some bijections ā from n , |A| ∈ (ω \ 1) onto A and h̄ from m , |H| ∈ (ω \ 1).
Let b , ¬A¬AιA

n (ā), in which case, by (4.6) and the left alternative of Claim
5.2, ¬Ab 6A b. Consider any g ∈ hom(A,K2). By contradiction, we prove that
A , (

∏
i∈n(g−1[1] ∩ h−1

i [(3|2) \ ((1[+1])|1)])) = ∅. For suppose there is some
c̄ ∈ A. Put d , (∨A

+c̄), in which case g(d) = 0, and so (¬Ad ∧A ¬A¬Ad) 
 d, for
g(¬Ad∧A¬A¬Ad) = 1 
 0. Now, consider any f ∈ hom(A,MS6) and the following
complementary cases:

• (img f) ⊆ (img ε53),
in which case |“by (4.21)” e , (f ◦ (ε53)

−1 ◦ (∆3|χ3\1
3 )) ∈ hom(A, (S|B)3|2),

and so e = hj , for some j ∈ n. Then, as cj 6A d, ((1[+1])|1) 6 e(cj) 6 e(d),
in which case e(¬Ad) = 0, and so f(¬Ad ∧A b) = 〈0, 0, 0〉 6MS6 f(¬Ab ∨A

d). [And what is more, by induction on any k ∈ ((n + 1) \ 1) 3 n, we
have f(ιA

k (ā�k)) = 〈1, 1, 1〉, in which case f(b) = 〈1, 1, 1〉 = f(d), and so
f((b ∧A d) ∨A ¬A(b ∧A d)) = 〈1, 1, 1〉 = f(¬A¬A(b ∧A d) ∨A ¬A(b ∧A d)).]|
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• (img f) * (img ε53),
in which case, by (4.6) and the right alternative of Claim 5.2, f(¬Ab) = f(b),
and so f(¬Ad ∧A b) 6MS6 f(b) = f(¬Ab) 6MS6 f(¬Ab ∨A d) [while, by
(5.24), f((b ∧A d) ∨A ¬A(b ∧A d)) = f(¬A¬A(b ∧A d) ∨A ¬A(b ∧A d)).]|

Thus, anyway, by (2.8) and Theorem 4.4 |[as well as Lemma 5.23 and the truth of
((4.9)) in K2], we conclude that [both ((b∧A d)∨A ¬A(b∧A d)) = (¬A¬A(b∧A d)∨A

¬A(b ∧A d)) and] (¬Ad ∧A b) 6A (¬Ab ∨A d), in which case A 6|= R
QS
[N][x0/b, x1/d],

and so this contradiction to the [nearly] quasi-strong regularity of A shows that
A = ∅. In this way, there is some l ∈ n such that hl[g−1[1]] ⊆ ((1[+1])|1), in which
case, by (2.7), ~ , (g � hl) ∈ hom(A,K′), while, by (2.1), (ker ~) ⊆ (ker g), and
so (2.8), the locality of quasi-varieties, the quasi-equationality of finitely-generated
pre-varieties, Corollary 5.21, Lemma 5.22 and “the [nearly] quasi-strong regularity
of (K2 × S3)�((S3 ⊕ 1)[∪MS5:1]) to be checked immediately”|“Lemma 5.3 as well
as (5.17)” complete the argument. �

Theorem 5.25. Q , NQSRVQSMSL = QSRVQSMSL. In particular, (dNIe(N)QSR
[P]VVb∪(NIUd∩∅e)c) = (P oQ)V({((dIeMSVd⊗{B2}e)d∪NIMSVe) ∪ (({B2 ⊕ 1}[(∩
((MSL{∩∅}|(∅‖MSL)))])[(∪((∅{∪{MS5:1}})|({MS5:1}‖∅)))]))bd∅∩e((IMSU⊗B2

)∪NIMSU)c), where V , (({〈Q〉S}(M/K){S})|(S‖B))b and U ⊇ AV is a sub-variety
of MSLc.

Proof. The inclusion from right to left is trivial, for R
QS
N is a logical consequence of

RQS. Conversely, consider any finitely-generated A ∈ (Q \ QSMSL) ⊆ AQSMSL and
any a, b ∈ A such that a ∈ FA but (¬Ab ∧A ¬A¬Ab) 
A b, in which case, by (2.8)
and Corollary 4.7, there are some B ∈ (QSMSL ∪ {K2}) and some g ∈ hom(A,B)
such that (¬Bg(b) ∧B ¬B¬Bg(b)) 
B g(b), and so B = K2 as well as g(b) = 0.
Likewise, by Lemmas 5.1 and 5.22, there is some e ∈ hom(A,B2) 6= ∅. Let
K , ((QSMSL ∩ S>1MS6)), in which case H , hom(A,K) 3 h , (e ◦ ε32 ◦ ε53)
is non-empty as well as finite, for both K and all its members are so, in view of
the finiteness of MS6 = 23, and so there is a bijection h̄ from n , |H| ∈ (ω \ 1)
onto H such that h0 = h. By contradiction, we prove that A , (

∏
j∈n((g−1[1] ∩

h−1
j [FMS6

W ]) ∪ h−1
j [=MS6

¬ ])) = ∅. For suppose there is some c̄ ∈ A ⊆ An. Let
d , ιA

x0,n(c̄), in which case, as =MS6
¬ = (23 \ (img ε53)) is disjoint with (img ε53) ⊇

(img h[0]), g(c0) = 0, and so, by induction on any k ∈ ((n+ 1) \ 1) 3 n, we see that
g(ιA

x0,k(c̄�k)) = 0. In particular, when taking k = n, we conclude that g(d) = 0, in
which case d 6∈ FA, for g(¬Ab) = 1 
 0, and so, since A |= (4.13)[x0/d], d 6∈ FA

W.
On the other hand, for every l ∈ n, hl(cl) ∈ (FMS6

W ∪ =MS6
¬ ) = FMS6

W , in which
case, by the left alternative of Claim 5.2, hl(d) ∈ FMS6

W , and so, by the total
negative idempotence of K2, (2.8) and Corollary 4.7, d ∈ FA

W. This contradiction
shows that A = ∅, in which case there is some m ∈ n such that hm[g−1[1]|A] is
disjoint with FMS6

W |=MS6
¬ , i.e., is subsumed by {〈0, 0, 0〉}|(img ε53), and so, by (4.21),

f , (hm ◦ (ε53)
−1 ◦ χ3\1

3 ) ∈ hom(A,B2), while f [g−1[1]] ⊆ 1. Thus, f(a‖b) = (1‖0),
in which case f(a∧A¬Ab) = 1 
 0 = f(b∨A¬Aa), and so (a∧A¬Ab) 
A (b∨A¬Aa).
Then, Corollaries 4.7, 5.4, (5.15), Lemmas 5.7, 5.22, Theorem 5.24 and the locality
of quasi-varieties complete the argument. �

5.4. Embaddibility lemmas.

Lemma 5.26. K3{[〈+1:1〉]}×B2 is embedable into any A ∈ ((NI(A){[Q]S}K〈M〉{S}L
(∪TNIMSL)〈∪(A)DML〉) \ (W)〈M〉RMSL).

Proof. Then, there are some a, b〈, c〉 ∈ A such that ¬Aa 6A a, (a ∧A ¬Ab) 6A

(¬Aa∨A b) but (¬Ab〈∧A¬A¬Ac〉) 
A ((¬A¬A)b〈∨Ac〉), in which case, by (4.2), (4.5)
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and (4.6), we have ((d|e){[〈‖f〉]}) , (¬A¬A(a|b){[〈‖(c ∨A ¬Ac ∨A d〉]}) = {[〈‖ >A

〉]}(¬A¬A(d|e){[〈‖(¬Af/d)〉]})(>A ¬Ad| ‖), while, applying (4.3) twice, by (4.1) and
(4.5), we get (d∧A¬Ae) 6A (¬Ad∨Ae), whereas, by (2.8) and Corollary 5.4 (and 5.5)
〈as well as 5.8〉, there are some C ∈ {K3{[+1:1]}×B2{,S3}〈,DM4〉(,K2)} and some
h ∈ hom(A,C) such that (¬Ch(b)〈∧C¬C¬Ch(c)〉) 
C ((¬C¬C)h(b)〈∨Ch(c)〉), and so
C , (K3{[〈+1:1〉]} ×B2) and h((a‖d)|(b‖e){[〈|f〉]}) = 〈1|0{[〈|2〉]}, 1〉, for ¬Ch(a) 6C

h(a) and (h(a) ∧C ¬Ch(b)) 6C (¬Ch(a) ∨C h(b)). In that case, using (4.1), (4.2),
(4.5) and (4.6), it is routine checking that the mapping g : ((3{[〈+1〉]})× 2) → A,
given by:

g(〈0|1, 1〉) , ((d ∧A (e ∨A (e|¬Ad))){[〈∨A¬Af〉]}),
g(〈(2{[〈+1〉]})|1, 0〉) , ¬Ag(〈0|1, 1〉),

g(〈0|(2{[〈+1〉]}), 0|1〉) , (g(〈0, 1〉)(∧|∨)Ag(〈2{[+1]}, 0〉)),
{[〈g(〈2, 1〉) , (((d ∧A e) ∨A ¬A(d ∧A e)) ∧A f), 〉]}

is a homomorphism from K3{[〈+1:1〉]} ×B2 to A such that (g ◦ h) = ∆(3{[〈+1〉]})×2,
and so it is injective, as required. �

Lemma 5.27. K4 is embeddable into any A ∈ (NIQSMSL \ ASL) ⊇ (RQSKSL \ SL)
⊇ (RKL \ BL).

Proof. Then, by (4.2), there are some a, b ∈ A such that c , (¬Aa ∨A ¬A¬Aa) 6=
d , (¬A¬Ab∨A c) >A c, in which case, by (4.1), (4.3), (4.5) and (4.6), we have both
¬A¬Ad = d and ¬Ad 6A ¬Ac 6A c = ¬A¬Ac 6= ¬Ac, for A is neither idempotent
nor one-element, and so ¬Ac 6= ¬Ad. In this way, {〈0,¬Ad〉, 〈1,¬Ac〉, 〈2, c〉, 〈3, d〉}
is an embedding of K4 into A. Finally, Corollary 5.11 completes the argument. �

Lemma 5.28. DM4 is embeddable into any A ∈ (SMSL \ (NISMSL∪WKSL)) ⊇
(AQSMSL \ (NIAQSMSL ∪ AQSKSL)).

Proof. In that case, by (4.2) and Corollary 5.6, there are some a, b ∈ A such
that A 6|= {(5.5)}[x0/¬Aa, x1/b], and so (5.5) is not true in the subalgebra B
of A generated by {¬Aa,¬Ab} under [x0/¬Aa, x1/¬Ab]. On the other hand, by
(4.1), (4.5), (4.6) and induction on construction of any ϕ ∈ Tm2

Σ−
+
, we have

¬A¬AϕA(¬Aa,¬Ab) = ϕA(¬Aa,¬Ab), in which case B is a De Morgan lattice,
and so DM4, being embedable into B, in view of [18, Case 8 of Proof of Theorem
4.8], is so into A, as required, because, by Corollary 4.7, AQWKSL = AQSKSL. �

Lemma 5.29. DM4×B2 is embeddable into an arbitrary A ∈ (NIMSL \WKSL) ⊇
(NIAQSMSL \ AQSKSL).

Proof. Then, there are some a, b ∈ A such that, by (4.2), c , ¬A¬A(a∧A ¬Aa) 
A

d , (¬Ab ∨A ¬A¬Ab), in which case, by (4.1), (4.5) and (4.6), we have both
¬A(c|d)(> | 6)A(c|d) = ¬A¬A(c|d), and so, by induction on construction of any ϕ ∈
Tm2

Σ−
+
, we get ¬A¬AϕA(c, d) = ϕA(c, d). Thus, the subalgebra B of A generated

by {c, d} is a non-idempotent De Morgan lattice such that B 6|= K[x0/c, x1/d], in
which case DM4×B2 being embeddable into B, in view of the proof of [18, Lemma
4.10], is so into A, as required, because, by Corollary 4.7, AQWKSL = AQSKSL. �

Lemma 5.30. Let A ∈ ([PS]MSL \ (NIMSL ∪ NDML)). Then, {MS(4[+1]):i | i ∈
(2[−1])})) ∩ ISA) 6= ∅. In particular, K4:(0|1) is embeddable into any member of
((P|({A}Q))SMSL \ (NIMSL ∪ (N|{N‖A})DML)).

Proof. Then, by (4.1), (4.5) and (4.6), there are some a, e ∈ A such that ¬Ae = e
and c 6= d 6= b, where b, c, d ∈ A are as in Lemma 5.23, in which case b 6A

(f |g) , ((e ∧A (c|d)) ∨A b) = (g ∧A (c|d)), and so, by (4.1) and (4.5), we have
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b 6= f 6A g = ¬A(f |g) 6∈ {c, d}, for, otherwise, we would get b = g = d. Consider
the following complementary cases:

• g 6A c,
in which case {〈0, b〉, 〈1, g〉, 〈2, c〉, 〈3, d〉} is an embedding of K4:1 into A,
and so the latter is not pseudo-strong, for the former is not so, in view of
Lemma 4.6.

• g 
A c,
in which case, by (4.3), we have c 
A g, and so {f, g, c, g ∨A c} is a
non-degenerated diamond of A�Σ+. Then, [as (g ∨A c) = d, for A |=
(4.12)[x0/c, x1/e]] by (4.1) and (4.5),

{〈0, 0, 0, b〉, 〈0, 1, 0, f〉, [〈0, 1, 1, c〉, ]〈1, 1, 0, g〉, 〈1, 1, 1, d〉}
is an embedding of MS(4[+1]):0 into A.

In this way, (4.18) and Lemma 4.6 complete the argument. �

Lemma 5.31. K5:1 is embeddable into an arbitrary A ∈ ((NI(A)QSMSL ∪ (W)MR
(A)QSMSL) \ PSMSL).

Proof. Take any a, e ∈ A such that A 6|= (4.12)[x0/a, x1/e], in which case ¬A¬Aa �A

(a ∨A f), where f , (¬Ae ∨A ¬A¬Ae)) >A ¬Af , in view of (4.5), and so ¬A¬Aa 6=
a. On the other hand, by Lemmas 4.6, 5.7, Corollary 5.4 and Theorem 5.12,
NI(A)QSMSL ∪ (W)MR(A)QSMSL is the pre-variety generated by K , {K4:1 ×
B2,DM4(,K2)}, in which case, by (2.8), there are some C ∈ K and h ∈ hom(A,C)
such that h(¬A¬Aa) 
C h(a ∨A f), and so C = (K4:1 × B2), while π1(h(f)) = 1,
whereas π0(h((a|e)) = (2|1). Let b, c, d ∈ A be as in Lemma 5.23 and g ,
{〈0, 0, b ∧A ¬Af〉, 〈1, 0,¬Af〉, 〈1, 1, f〉, 〈2, 1, c ∨A f〉, 〈3, 1, d ∨A f〉} : <K4:1 → A, in
which case, for all ı̄, ̄ ∈ <K4:1 , (̄ı 6D4×D2 ̄) ⇒ (g(̄ı) 6A g(̄)) as well as h(g(̄ı)) = ı̄,
and so, since <(K4:1)�Σ+ is a chain lattice, by (4.1), (4.5) and (4.6), g is an embed-
ding of <(K4:1) ∈ I(K5:1) into A, as required. �

Lemma 5.32. K2 is embeddable into any A ∈ MSL not satisfying (5.7).

Proof. Take any a ∈ (=A
¬ \ =A) 6= ∅, in which case, by (4.2), a 6A ¬Aa, and so

{〈i, (¬i)Aa〉 | i ∈ 2} is an embedding of K2 into A, as required. �

This, by (5.9), immediately yields:

Corollary 5.33. K2 is embeddable into any A ∈ (TNIMSL \ OMSL).

This, in its turn, by Corollary 4.7, immediately yields:

Corollary 5.34. TNIMSL has no proper non-trivial sub-[pre-/quasi-]variety.

Lemma 5.35. K2 × B2 is embeddable into any A ∈ (NIMSL \ Mod(((4.13)))) ⊇
(NINDML \Mod((4.13))) ⊇ (NIADML \ VDML).

Proof. Then, there is some a ∈ A such that (a ∨A ¬Aa) = ¬A¬Aa but ¬Aa 
A a,
in which case ¬A¬Aa 6∈ {a,¬Aa}, and so a 
A ¬Aa, Thus, by (4.1) and (4.6),
{〈0, 1, a〉, 〈1, 0,¬Aa〉, 〈0, 0, a ∧A ¬Aa〉, 〈1, 1,¬A¬Aa〉} is an embedding of K2 × B2

into A, as required, in view of Corollary 4.7, due to which ADML ⊆ NDML. �

Lemma 5.36. B2⊕1 (resp., K3⊕1) is embedable into any A ∈ (((I)MSL \ QSMSL)∩
Mod((5.7))).

Proof. Then, we have some a(, b) ∈ A such that (¬Ab = b but) c , (a ∧A

¬Aa) 6= d , (¬A¬Aa ∧A ¬Aa), in which case, by (4.1), (4.2) and (4.6), c 6 d =
¬A¬Ac 6A (e , ((b ∨A d) ∧A ¬Ac) = ¬Ae) 6A f , ¬Ac = ¬Ad, and so c 6= f ,
for c 6= d. Hence, as A |= (5.7)[x0/c], d 6= f (in which case e 6∈ {d, f}), and so



MORGAN-STONE LATTICES 37

{〈0, 0, c〉, 〈1, 0, d〉, (〈1, 1, e〉, )〈1, 1(+1), f〉} is an embedding of B2⊕ 1 (resp., K3⊕ 1)
into A, as required. �

On the other hand, both K2 and B2⊕1, being finite, are expandable to bounded
MS lattices, in which case neither of these is an MS algebra, and so, by Lemmas 5.32
and 5.36, we eventually conclude that QSMSL is the infinitary universal unbounded
approximation of MSA in the following sense:

Corollary 5.37. QSMSL is the greatest infinitary universal (viz., abstract heredi-
tary) subclass of MSL disjoint with (BMSL \MSA)�Σ−

+.

Nevertheless, the stipulation “infinitary universal”/“abstract hereditary” can
be neither omitted nor replaced by the one “image-closed [ultra-]multiplicative”,
simply because, due to the truth of (4.7) in bounded MS lattices, MSA�Σ−

+ is
the subclass of MSL, relatively axiomatized by the single first-order positive Σ−

+-
equational ∃∀-sentence ∃x0∀x1((x1 / x0)&(¬x0 / x1)), in which case it is image-
closed (in particular, abstract) and [ultra-]multiplicative but is not hereditary, for
(MSA�Σ−

+) 63 MS2 � MS6 ∈ (MSA�Σ−
+), and so, by Lemma 2.9, is not sub-

multiplicative.

Lemma 5.38. MS5:1 is embedable into an arbitrary A ∈ ((MSL∩Mod(((4.13))))\
Mod((4.13))) ⊇ (NQSRPVQSKSL \ [N]QSRVQSKSL).

Proof. Then, there is some a ∈ (FA
W \ FA) such that (a ∨A ¬Aa) 6= ¬A¬Aa, in

which case, by (4.2) and (4.3), a 
A ¬Aa, and so, by (4.1), (4.2), (4.5) and (4.6),
{〈0, 0, a ∧A ¬Aa〉, 〈0, 1, a〉, 〈1, 0,¬Aa〉, 〈1, 1, a ∨A ¬Aa〉, 〈1, 2,¬A¬Aa〉} is an embed-
ding of MS5:1 into A, as required, in view of Theorems 5.24 and 5.25. �

Lemma 5.39. B , ((K3 ⊕ 1) × B2) is embeddable into any A ∈ (NIPVQSKSL \
NQSRMSL) ⊇ (NIVQSKSL \ [N]QSRVQSMSL).

Proof. Then, there are some a, b ∈ A such that ¬Aa 6A a, (a∧A¬Ab) 6A (¬Aa∨Ab)
and (c ∨A ¬Ac) = (f ∨A ¬Ac), where c , (a ∧A b) and (d|e|f) , ¬A¬A(a|b|c),
but (¬Ab ∧A e) 
A b, in which case, by (2.8) and Corollary 5.19, there are some
C ∈ (({K4:1,K3 ⊕ 1} ⊗ {B2}) ∪ {MS5:1}) and some h ∈ hom(A,C) such that
(¬Ch(b) ∧A h(e)) 
C h(b), and so, since ¬Ch(a) 6C h(a), (h(a) ∧C ¬Ch(b)) 6C

(¬Ch(a)∨C h(b)) and (h(c)∨C¬Ch(c)) = (h(f)∨C¬Ch(c)), by the quasi-strength of
K4:1 and the nearly quasi-strong regularity of MS5:1 (cf. Theorem 5.24), C = B,
while, by the truth of (4.13) in B, h((a|d)‖(b|e)‖(c|f)) = 〈1‖(0|1)|(0|1), 1‖0‖0, 1〉,
because ¬Bh(b) 
B h(e), for ¬Bh(b) 
 h(b). In that case, using (4.1), (4.2), (4.3),
(4.5) and (4.6), it is routine checking that the mapping g : B → A, given by:

g(0, 0, 0) , (c ∧A ¬Ac),

g(0, 0, 1) , c,

g(1, 0, 0) , (f ∧A ¬Af),

g(1, 0, 1) , f,

g(1, 2, 1) , (f ∨A ¬Af),

g(1, 2, 0) , ¬Af,

g(1, 1, 1) , ((e ∨A ¬Ad) ∧A d),

g(1, 1, 0) , ((d ∧A ¬Ae) ∨A ¬Ad),

is a homomorphism from B to A such that (g ◦ h) = ∆B , and so is injective, as
required, in view of Theorem 5.25. �
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5.5. Relative subdirect irreducibility of non-trivial subalgebras of gener-
ating algebras. First, by Footnote 1, (4.21), (4.22), (5.13), Lemma 2.14 and the
simplicity of (B|K)(2|3)[,01]) (cf., e.g., Remark 4.3), we immediately have:

Lemma 5.40. Congruences of A , (S|K)3|(4:(0‖1))[,01] form the three-element
chain ∆3|4 ( (kerh) ( (3|4)2, where h ∈ homS(A, (B|K)(2|3)[,01]) 6= ∅.

Lemma 5.41. Let A ∈ (MSL \ OMSL), B ∈ {B2,S3} and h ∈ hom(A,B). Then,
B2 � h[A] � A.

Proof. In that case, h[A] ∈ SB ⊆ ({S3} ∪ I(B2)), and so [unless |A| > 2], by
(4.21), Corollary 5.1, Lemmas 4.6, 5.3, 5.15 and (5.9), B2 � h[A][∈ IB2 ⊆ ISA].
[Otherwise, by Lemma 4.6, HA 3 h[A] = S3 6∈ NDML, in which case A 6∈ NDML,
and so Lemma 5.23 completes the argument.] �

Let K1 , (K2�{1}) ∈ OMSL.

Theorem 5.42. Let C ∈ ({B2}[∪({S3}(∩∅))]{∪({K3}[∩∅])}), P ⊆ MSL a pre-va-
riety, F ∈ (P∩(S>1(([(({K2}(∩∅))(∪{K3⊕1}))∪](IMS∩AQSMSL{∩{K2}}[∩∅])))[\
IS{K2×B2(,K3×B2,K3⊕1)}])) and [both] K , (π2

0�F )[F][, g , (χ3\1
3 �C) and G ,

((π2(+1)
0 �F )� ((π2(+1)

1(+1)�F )◦g))[F] (as well as H , ((π3
0�F )� (π3

1�F ))[F]); cf. (2.7)].
{Suppose F ∈ Mod((4.13))}. Then, (F ∈ SIP(P)) ⇐ | ⇒ ((((({K}[∩∅])[∪{G(,H)}
]) ∩ P) 6= ∅) ⇒ (F � (({K}[∩∅]) ∪ {C}))).

Proof. In that case, by (4.21), Corollary 5.4, Lemma 5.15 and (5.9), F, being non-
one-element, is not totally negatively idempotent, and so, by Lemma 5.3, B2, being
embedable into F, belongs to P [while, in the ()-non-optional case, F 6∈ TNIMSL ⊇
ISK2 ⊇ ISK].

We start from proving the right part. For suppose ((({K}[∩∅])[∪{G(,H)}])∩P) 6=
∅ but F � (({K}[∩∅])∪{C}), in which case F � {K,C} [(for K ∈ S(K3⊕1))], and so,
since (e/f) , (π2

0/1�F ) ∈ homS(F,K/C) is then not injective, for, otherwise, it would
be an embedding of F into K/C, (θ/ϑ) , ker(e/f) 6= ∆F = (θ ∩ ϑ), while, by (2.5)
and Lemma 5.41, ϑ ∈ CoP(F) {unless both C = K3 and 1 ∈ π2

1 [F ]}. {Otherwise,
F ∈ S(K2 ×K3}, in which case K ∈ SK2 = {K1,K2}, and so there are some a, b ∈ F
such that π2

0o1(a o b) = 1. Then, by (5.2) and (5.3), c , ¬FπF(µF(a),µF(b)) ∈ =F,
in which case, as F, being non-one-element, is idempotent but not totally negatively
idempotent, by Lemma 5.3, C ∈ ISF ⊆ P, and so, by (2.5), ϑ ∈ CoP(F).} Thus,
anyway, ϑ ∈ CoP(F). In particular, F 6∈ SIP(P), whenever K ∈ P, because, in that
case, by (2.5), θ ∈ CoP(F).

[Conversely, assume K 6∈ P, in which case ({G(,H)} ∩ P) 6= ∅, and so G ∈ P

(for H = K 6∈ P). (And what is more, F ∈ S((K2 × K3) ×B2) 3 I , ((K1 × K3) ×
B2) ∈ I(K3 ×B2), for K1 ∈ SK2 is one-element, in which case J , (F�(F ∩ I)) ∈
(S(F) ∩ S(I)) ⊆ (P ∩ IS(K3 × B2)), and so, since, by (2.7), f ′ , (((F × {1}) �
(π3

1�F )) � (π3
2�F )) ∈ hom(F, J) is then non-injective, by (2.5), we conclude that

∆F 6= ϑ′ , (ker f ′) ∈ CoP(F).) Then, by (4.21), S(K2 × B2) 3 G is disjoint with
IF, in which case e′ , ((π2(+1)

0 �F )� ((π2(+1)
1(+1)�F )◦g)) ∈ homS(F,G) is not injective,

and so, by (2.5), ∆F 6= θ′ , (ker e′) ∈ CoP(F). Hence, F 6∈ SIP(P), because, by
(2.1), ∆F ⊆ (θ′ ∩ ϑ(′)) ⊆ (

⋂
i∈(2(+1)) ker(π2(+1)

i �F )) = ∆E .]
Next, if F � (({K}[∩∅]) ∪ {C}), then, by Theorem 4.4, F ∈ (P ∩ IS>1MS}) ⊆

(I(MS ∩ P) = SI(P) ⊆ SIP(P).
Now, assume F � (({K}[∩∅]) ∪ {C}) but ((({K}[∩∅])[∪{G(,H)}]) ∩ P) = ∅.

Put A , (π2[(+1)]
0 �F )[F], both B , (K3‖B2‖K1) ∈ KL and h , (((χA\IA

A � χFA

A ) ◦
(ε43:0)

−1)‖χFA

A ‖(A × {1})) ∈ hom(A,B), whenever A ∈ (I{K4:1}‖I{S3}‖(MSL \
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I{K4:1,S3})) [as well as [(both E , K3 and) D , B2], in which case, by (2.7),
(2.5), (4.21), (5.13), Lemmas 4.6 and 5.40, both Co(A) = {∆A, A

2, kerh} and
Co(C) = {∆C , C

2[, ker g]} [while g ∈ hom(I)(C,D) (whereas Co(E) = {∆E , E
2})].

And what is more, A 6∈ P [because, otherwise, by (4.21), G ∈ S(A×B2) would be in
P, for B2 is so]. Finally, we prove that F � L , ((B[(×E)])×C), by contradiction.
For suppose F � L, in which case F is in SKSL 63 K4:1, for L is so, and so is
A ∈ HF. Hence, A 6∈ IK4:1. Then, in the []-optional case, A, being a subalgebra
of the two-element algebra K2, is not isomorphic to the three-element one S3, for
3 
 2, and so B = K1. Otherwise, C ∈ KL, in which case L ∈ KL, and so B = K1,
for A ∈ HSL ⊆ KL 63 S3 is not isomorphic to S3. Thus, B = K1, anyway, in
which case, by (2.7), (π2[(+1)]

0 [(×π2[(+1)]
1 )]) × (π2[(+1)]

1[(+1)] is an isomorphism from L

onto M , ([(K3×)]C), contrary to the assumption that F � M [(for C = B2)], and
so this contradiction shows that F � L. Then, by Corollary 3.12 and Remark 4.2,
F ∈ SIP(P), as required. �

This, by (2.10) and Footnote 1, does provide a comprehensive hierarchical char-
acterization of relative subdirectly-irreducibles of quasi-varieties studied in the next
subsection, for these are generated by subsets of QMS , (AQMS∪(AQMS⊗{B2})∪
{B2,S3,B2⊕1,MS5:1}), where AQMS , (((MS∩DML)\BL)∪{K2,K4:1,K3⊕1}).
To make it clearer, we present several almost immediate consequences of Theorem
5.42, immediately yielding the following two ones, in view of mutually embedable
finite algebras’ being isomorphic and Lemma 5.41/5.29 as well as absence of proper
/isomorphic subalgebras of B2/“finite algebras and the inequalities 8 > 4 > 2”:

Corollary 5.43. Let P ⊆ MSL be a pre-variety, F ∈ S>1((S|B)3|2 × B2) and
K , (π2

0�F )[F] � ‖ � | = ((S‖B)|B)(3‖2)|2. Then, (F ∈ SIP(P)) ⇔ (F ∈ I[S]K).

Corollary 5.44. Let P ⊆ MSL be a pre-variety, F ∈ (S>1(DM4 ×B2) \ IS(K3 ×
B2)) = {DM4 ×B2}. Then, (F ∈ SIP(P)) ⇔ (DM4 6∈ P).

Corollary 5.45. Let P ⊆ MSL be a pre-variety, C , (K|B)3|2, L ∈ ({C ⊕ 1} ∪
(∅|{K2 × C)) and F ∈ S>1L. Then, (F ∈ SIP(P)) ⇔ ((K2 ∈ P) ⇒ (F � C)). In
particular, (L ∈ SIP(P)) ⇔ (K2 6∈ P 3 L).

Proof. First, since K , (π0�F )[F] ∈ SK2 ⊆ TNIMSL, by Corollary 5.4, Lemma 5.15
and (5.9), F 6∈ TNIMSL ⊇ ISK, for |F | > 1, is not embedable into K. Next, if
0 ∈ K, then K = K2. Otherwise, K = K1 ∈ OMSL ⊆ P, in which case π1�F is an
embedding of F into C, and so Theorem 5.42 and the fact that |C| 6 3 < 4 = |L|
complete the argument. �

Corollary 5.46. Let P ⊆ MSL be a pre-variety, (C|L) , (B|K)2|(3[+1:1]), M ,

(L × C), K , {C[,K3,S3]}, F ∈ ((P ∩ S>1M) \ IS(K ⊗ {C})) and K , (π2
0�F )[F].

Then, (F ∈ SIP(P)) ⇔ ((F 6∈ I({C}[∩∅])) ⇒ ((L 6∈ P)&(F ∈ {M,<(L)}))).

Proof. The “if” part is by Theorem 5.42, the simplicity of two-element algebras, the
inclusions Si(P) ⊆ SI(P) ⊆ SIP(P) and the fact that (F ∈ {M,<(L)}) ⇒ (K = L).
Conversely, assume F ∈ SIP(P), in which case K ∈ ({L} ∪ ({K1}[∩∅])), and so
F = (K1 × C) ∈ IC, unless K = L. Otherwise, F ∈ {M,<(L)}, in which case
F � {K,C}, for |F | > (4[+1]) > ((3[+1])‖2) = |K‖C|, and so, by Theorem 5.42,
L 6∈ P. �

Corollary 5.47. Let P ⊆ MSL be a pre-variety, C , B2, I , (K3⊕1), J , (K3×C),
L , (K2 × C), M , (I × C), N , (C ⊕ 1), K , {J,N}, F ∈ (P ∩ (S>1(M) \ ISK),
G , ((π3

0�F ) � (π3
2�F ))[F] and H , ((π3

0�F ) � (π3
1�F ))[F] = (π2

0�F )[F] (cf. (2.7)).
Then, (F ∈ SIP(P)) ⇔ ((F = M)&(({L, I} ∩ P) = ∅)).
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Proof. First, if 0 was not in π3
0 [F ], then, by (2.1) and (2.7), (π3

1�F ) × (π3
2�F )

would be an embedding of F into J. Therefore, 0 ∈ π3
0 [F ], in which case (π3

0�F ) ∈
homS(F,K2), for ¬K20 = 1, and so F is not in QSMSL 3 C, for K2 is not so. Hence,
F � C, while, by Lemma 5.36, N ∈ ISF ⊆ P. Next, if there was any e ∈ homI(F, I),
then e[F] ∈ (I(F) ∩ S(I)) ⊆ S(K2 × K3) would be neither idempotent nor quasi-
strong, for F ∈ SM is so, in view of Lemma 5.1, in which case we would have
0 ∈ π0[e[F ]], for K1 ∈ OMSL ⊆ QSMSL 3 K3, but 1 6∈ π1[e[F ]], for, otherwise, we
would then get e[F] 6|= (5.1)[xi/〈1− i, 1− i〉]i∈2, and so, by (5.20), e ◦ (ε32 ⊕ 1)−1

would be an an embedding of F into N. Likewise, if there was any f ∈ homI(F,L),
then f [F] ∈ (I(F)∩S(L)) would be a model of (4.13), for F ∈ SM is so, in which case
〈0, 1〉 would not be in f [F ], i.e., f [F] would be a subalgebra of N, for, otherwise, we
would have f [F] 6|= (4.13)[x0/〈0, 1〉], and so e would be an an embedding of F into
N. Finally, (〈0, 0, 1〉 ∈ F ) ⇔ (F = M), for M is generated by 〈0, 0, 1〉. Consider the
corresponding complementary cases:

• F = M,
in which case G = L, for L is generated by 〈0, 1〉 ∈ G ⊆ L, while H = I.

• F 6= M,
in which case G = N, for N is generated by 〈0, 0〉 ∈ G ⊆ N , because
〈0, 1〉 6∈ G ⊆ L but 0 ∈ π3

0 [F ] = π2
0 [G].

Then, Theorem 5.42 completes the argument. �

Corollary 5.48. Let P ⊆ MSL be a pre-variety, C , S3, g , χ
3\1
3 , I , (K2×B2),

L , (C⊕1), M , MS5:1, N , (B2⊕1), F ∈ (P∩(S>1(M)\IS(N))), K , (π2
0�F )[F]

and G , ((π2
0�F )� ((π2

1�F ) ◦ g))[F] (cf. (2.7)). Then, (F ∈ SIP(P)) ⇔ ((G ∈ P) ⇒
(F � C)), in which case, providing F = | 6= M, (F ∈ SIP(P)) ⇔ ((I 6∈ P)|(F � C)),
and so L 6∈ SIP(P). In particular, (M ∈ SIP(P)) ⇔ (I 6∈ P).

Proof. First, if F was embedable into I ∈ ABL ⊆ NDML 63 C, then J ∈ (H(F)∩S(C))
would be distinct from C, i.e., 1 would not be in J , for C is generated by 1, in which
case g�J would be injective, and so, by (2.1), (2.7) and (4.21), (π2

0�F )�((π2
1�F )◦g)

would be an embedding of F into N, for 〈0, 1〉 6∈ F ⊆ MS5:1 63 〈0, 2〉. Likewise,
if F ∈ QSMSL 63 K2, then QSMSL ⊇ H(F) 3 K ∈ S(K2) = {K2,K1}, in which
case K = K1, and so π2

1 is an embedding of F into C. Finally, if F = | 6= N, then
(G ∈ ({I}|S{N}. Then, Lemmas 5.15, 5.36, (5.8), Theorem 5.42 and the fact that
|M‖L| = (5‖4) > 3 = |S3| complete the argument. �

5.6. Lattices of quasi-varieties of quasi-strong Morgan-Stone and almost
quasi-strong Kleene-Stone lattices.

Theorem 5.49. Pre-//quasi-varieties of /almost [ {quasi-}strong] | | Morgan-/Kle-
ene[-Stone] |Stone|Boolean lattices form the/a non-chain /non-distributive lattice

Table 3. Quasi-identities false/true in generating algebras and
embedability lemmas for them.

K2 (5.7) [x0/0] ∅ 5.32
K4:1 ((5.6)) [x0/2, x1/3, x2/1] ∅ 5.30

K2 × B2 ((4.13)) [x0/〈0, 1〉] {(5.1)} 5.35
S3 (4.19) [xi/(1 + i)]i∈2 {(4.16)} 5.23

(K|B)3|2 ⊕ 1 b(5.6)c|(4.11) [xi/〈i, i〉]i∈(2|1) {(5.7)} 5.36

K3〈+1:1〉 × B2 RW
〈M〉 [xi/〈(4 − i) mod 3, 1〉]i∈(2〈+1〉)) {KM, ((5.6))} 5.26

K5:1 (4.12) [x0/3, x1/1] {(4.16), (¬x2 ≈ x2) → RW} 5.31
(K|B)3|2 (5.4)|(4.14) [xi/(1 − i)]i∈(2|1) ∅ 5.3

(K3 ⊕ 1) × B2 R
QS
N [xi/〈1 − i, 1 − i, 1〉]i∈2 {(5.1),((4.13))} 5.39

MS5:1 (4.13) [x0/〈0, 1〉] {((4.13))} 5.38
K4 d(4.20)e [xi/(2 + i)]i∈2 {(5.1)) 5.27

DM4 (5.5) [xi/〈i, 1 − i〉]i∈2 {(4.16)} 5.28
DM4 × B2 K [xi/〈i, 1 − i, 1〉]i∈2 {(4.16),(5.1)} 5.29
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Figure 4. The lattice of quasi-varieties of quasi-strong Morgan-
Stone lattices.

with ((8[+({3·}7)])|3|2)/(([{50+}36+]21)|11|6) elements “as well as Hasse diagram
with [either both small and {either non-solid or} solid or] both solid and large
circles-nodes depicted at Figure 4, in which case it is embedable into [D2{+3}×](D5×
D3), and so is distributive”| |/ [{the list of which, numbered from 0/14 to 28/120,
is given by the first and second columns of Tables 4 and 5, in which case, for each
i ∈ 121, f(i) is generated by π1[g(i)], where f‖g is the function with domain 123
given by the first and second‖third columns of Tables 4 and 5, and so SIf(i)(f(i)) =
(I(((MS ∪ K′)∩ ISπ1[g(i)])∪ (S>1(π1[g(i)] \K′) \ IS({S3,B2} ⊗ {B2}))) \ I(

⋃
{K |

({K3,DM4,K3⊕1,K4:1}∩π1[g(i)]) 6= ∅})), where K , {K3×B2,K4} and K′ , (K∪
{K2×B2,B2⊕1,K3⊕1, (K3⊕1)×B2,MS5:1}), while, for every 〈j,A〉 ∈ g(i), both
f(j) = (f(i)∩Mod(e(A))) and (f(i)\f(j)) ⊆ Mod(t(A)) but A 6|= e(A)[h(A)], where
e o h o t is the function with domain QMS given by the first and second othird ofourth
columns of Table 3, in which case A 6∈ f(j) ⊆ f(i) 3 A, and so f(j) ( f(i). In
particular, f�(29/(121 \ 14)) is an isomorphism from the poset over 29/(121 \ 14)
with partial ordering, being the union of ∆29/(121\14) and the transitive closure of
(∅/{〈112, 29〉}) ∪ (

⋃
{π0[g(k)] × {k} | k ∈ (29/(121 \ 14)}), onto the lattice poset

involved.}] | |

Proof. We use Lemma 4.6 and Corollary 4.7 tacitly. Consider any i ∈ 121 and
any 〈j,A〉 ∈ g(i), in which case the falsity of e(A) in A under h(A) is immediate,
while the generation of f(i) by π1[g(i)] is by Corollaries 5.4, 5.5, 5.6, 5.8, 5.14,
5.19, 5.20, 5.21, 5.18, Theorems 5.12, 5.17, 5.24, 5.25 and Lemma 5.7, whereas
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Table 4. Quasi-varieties of /almost quasi-strong Morgan-/Klee-
ne-Stone lattices and their generating sets (part I: 0–79).

0 QSMSL {〈1, DM4〉, 〈2, K4:1〉}
1 NIQSMSL ∪ QSKSL {〈14, DM4 × B2〉, 〈3, K4:1〉}
2 NIQSMSL ∪ DML {〈3, DM4〉, 〈4, K4:1 × B2〉}
3 NIQSMSL ∪ KL {〈21, DM4 × B2〉, 〈5, K4:1 × B2〉, 〈6, K3〉}
4 MRQSMSL {〈5, DM4〉, 〈7, K5:1〉}
5 NIMRQSMSL ∪ KL {〈15, DM4 × B2〉, 〈8, K5:1〉, 〈9, K3〉}
6 NIQSMSL {〈9, K4:1 × B2〉, 〈25, DM4 × B2〉}
7 SMSL {〈8, DM4〉, 〈10, S3〉}
8 NISMSL ∪ SKSL {〈16, DM4 × B2〉, 〈12, K3〉, 〈11, S3〉}
9 NIMRQSMSL {〈17, DM4 × B2〉, 〈12, K5:1〉}
10 DML {〈11, DM4〉}
11 NIDML ∪ KL {〈18, DM4 × B2〉, 〈13, K3〉}
12 NISMSL {〈19, DM4 × B2〉, 〈13, S3〉}
13 NIDML {〈20, DM4 × B2〉}
14 QSKSL {〈21, K4:1〉}
15 MRQSKSL {〈17, K3〉, 〈16, K5:1〉}
16 SKSL {〈18, S3〉, 〈19, K3〉}
17 NIMRQSKSL {〈22, K3 × B2〉, 〈19, K5:1〉}
18 KL {〈20, K3〉}
19 NISKSL {〈20, S3〉, 〈23, K3 × B2〉}
20 NIKL {〈24, K3 × B2〉}
21 NIQSKSL ∪ KL {〈15, K4:1 × B2〉, 〈25, K3〉}
22 RQSKSL {〈23, K5:1〉}
23 RSKSL {〈24, S3〉, 〈26, K4〉}
24 RKL {〈27, K4〉}
25 NIQSKSL {〈17, K4:1 × B2〉}
26 SL {〈27, S3〉}
27 BL {〈28, B2〉}
28 OMSL ∅
29 AQSKSL {〈30, K2〉, 〈31, K4:1〉}
30 NIAQSKSL ∪ VQSKSL {〈32, K2 × B2〉, 〈33, K4:1〉, 〈34, K3 ⊕ 1〉}
31 NIAQSKSL ∪ AKL {〈33, K2〉, 〈35, K4:1 × B2〉, 〈36, K3〉}
32 PVQSKSL {〈37, MS5:1〉, 〈38, K4:1〉, 〈39, K3 ⊕ 1〉}
33 NIAQSKSL ∪ VKL {〈38, K2 × B2〉, 〈40, K4:1 × B2〉, 〈41, K3 ⊕ 1〉}
34 NIAQSKSL ∪ QSKSL {〈39, K2 × B2〉, 〈41, K4:1〉}
35 NIWMRAQSKSL ∪ AKL {〈40, K2〉, 〈42, K5:1〉, 〈43, K3〉}
36 NIAQSKSL ∪ TNIMSL {〈44, K2〉, 〈43, K4:1 × B2〉}
37 VQSKSL {〈45, K4:1〉, 〈46, K3 ⊕ 1〉}
38 NIPVQSKSL ∪ VKL {〈45, MS5:1〉, 〈47, K4:1 × B2〉, 〈48, K3 ⊕ 1〉}
39 NIPVQSKSL ∪ QSKSL {〈46, MS5:1〉, 〈48, K4:1〉, 〈49, (K3 ⊕ 1) × B2〉}
40 NIWMRAQSKSL ∪ VKL {〈47, K2 × B2〉, 〈50, K5:1〉, 〈51, K3 ⊕ 1〉}
41 NIAQSKSL ∪ KL {〈48, K2 × B2〉, 〈51, K4:1 × B2〉, 〈44, K3〉}
42 NIASKSL ∪ AKL {〈50, K2〉, 〈52, S3〉, 〈53, K3〉}
43 NIWMRAQSKSL ∪ TNIMSL {〈54, K2〉, 〈53, K5:1〉, 〈55, K3 × B2〉}
44 NIAQSKSL {〈56, K2 × B2〉, 〈54, K4:1 × B2〉}
45 NIVQSKSL ∪ VKL {〈58, K3 ⊕ 1〉, 〈57, K4:1 × B2〉}
46 NIVQSKSL ∪ QSKSL {〈59, (K3 ⊕ 1) × B2〉, 〈58, K4:1〉}
47 NIWMRPVQSKSL ∪ VKL {〈57, MS5:1〉, 〈60, K5:1〉, 〈61, K3 ⊕ 1〉}
48 NIPVQSKSL ∪ KL {〈58, MS5:1〉, 〈61, K4:1 × B2〉, 〈62, (K3 ⊕ 1) × B2〉, 〈56, K3〉}
49 NINQSRPVQSKSL ∪ QSKSL {〈59, MS5:1〉, 〈62, K4:1〉}
50 NIASKSL ∪ VKL {〈60, K2 × B2〉, 〈63, S3〉, 〈64, K3 ⊕ 1〉}
51 NIWMRAQSKSL ∪ KL {〈61, K2 × B2〉, 〈64, K5:1〉, 〈54, K3〉}
52 AKL {〈63, K2〉, 〈65, K3〉}
53 NIASKSL ∪ TNIMSL {〈66, K2〉, 〈65, S3〉, 〈67, K3 × B2〉}
54 NIWMRAQSKSL {〈68, K2 × B2〉, 〈66, K5:1〉, 〈69, K3 × B2〉}
55 WRAQSKSL {〈69, K2〉, 〈67, K5:1〉}
56 NIPVQSKSL {〈70, MS5:1〉, 〈68, K4:1 × B2〉, 〈71, (K3 ⊕ 1) × B2〉}
57 NIWMRVQSKSL ∪ VKL {〈72, K5:1〉, 〈73, K3 ⊕ 1〉}
58 NIVQSKSL ∪ KL {〈73, K4:1 × B2〉, 〈74, (K3 ⊕ 1) × B2〉, 〈70, K3〉}
59 NIQSRVQSKSL ∪ QSKSL {〈74, K4:1〉, 〈14, B2 ⊕ 1〉}
60 NIPVSKSL ∪ VKL {〈72, MS5:1〉, 〈75, K3 ⊕ 1〉}
61 NIWMRPVQSKSL ∪ KL {〈73, MS5:1〉, 〈75, K5:1〉, 〈76, (K3 ⊕ 1) × B2〉, 〈68, K3〉}
62 NINQSRPVQSKSL ∪ KL {〈74, MS5:1〉, 〈76, K4:1 × B2〉, 〈71, K3〉}
63 NIAKL ∪ VKL {〈77, K2 × B2〉, 〈78, K3 ⊕ 1〉}
64 NIASKSL ∪ KL {〈75, K2 × B2〉, 〈78, S3〉, 〈66, K3〉}
65 NIAKL ∪ TNIMSL {〈79, K2〉, 〈80, K3 × B2〉}
66 NIASKSL {〈81, K2 × B2〉, 〈79, S3〉, 〈82, K3 × B2〉}
67 WRASKSL {〈82, K2〉, 〈80, S3〉, 〈83, K4〉}
68 NIWMRPVQSKSL {〈84, MS5:1〉, 〈81, K5:1〉, 〈85, (K3 ⊕ 1) × B2〉}
69 NIWRAQSKSL {〈99, K2 × B2〉, 〈82, K5:1〉}
70 NIVQSKSL {〈88, (K3 ⊕ 1) × B2〉, 〈84, K4:1 × B2〉}
71 NINQSRPVQSKSL {〈88, MS5:1〉, 〈85, K4:1 × B2〉}
72 NIVSKSL ∪ VKL {〈77, S3〉, 〈89, K3 ⊕ 1〉}
73 NIWMRVQSKSL ∪ KL {〈89, K5:1〉, 〈90, (K3 ⊕ 1) × B2〉, 〈84, K3〉}
74 NIQSRVQSKSL ∪ KL {〈21, B2 ⊕ 1〉, 〈90, K4:1 × B2〉, 〈88, K3〉}
75 NIPVSKSL ∪ KL {〈89, MS5:1〉, 〈81, K3〉, 〈91, (K3 ⊕ 1) × B2〉}
76 NINQSRWMRPVQSKSL ∪ KL {〈90, MS5:1〉, 〈91, K5:1〉, 〈85, K3〉}
77 VKL {〈93, K3 ⊕ 1〉}
78 NIAKL ∪ KL {〈93, K2 × B2〉, 〈79, K3〉}
79 NIAKL {〈94, K2 × B2〉, 〈86, K3 × B2〉}



MORGAN-STONE LATTICES 43

the fact that both f(j) = (f(i) ∩ Mod(e(A))) and (f(i) \ f(j)) ⊆ Mod(t(A)) is
due to Lemmas 5.7, 5.15, 5.22, Theorems 5.24, 5.25, Corollaries 5.5, 5.6, 5.8, 5.11,
(4.18), (5.8), (5.9), (5.16), (5.19) and (5.18). Then, for any pre-variety P ⊆ f(i), by
Corollaries 5.5, 5.6, 5.8 as well as Lemmas 5.7, 5.15 and `(A), where the function `
with domain QMS is given by the first and fifth columns of Table 3, A ∈ P, unless
P ⊆ f(j). In particular, P = f(i), whenever P ⊆ f(k), for no k ∈ π0[g(i)], in which
case, img f , containing all varieties of almost/ quasi-strong Morgan-/Kleene-Stone
lattices, does exhaust all their pre-varieties, because these are subsumed by the
varieties they generate, and so Corollaries 5.16, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48,
Footnote 1, (2.10), Theorem 4.4 and Table 3 complete the argument. �

This subsumes [18, Theorem 4.8], in its turn, subsuming [1, Theorem 6.2], as
well as, by Corollaries 4.7, 5.4, 5.6 and Theorem 5.12, immediately yields:

Corollary 5.50. Any [pre-/-quasi-]variety P ⊆ SMSL such that P * DML is gen-
erated by (P ∩ DML) ∪ SL.

Though we have refrained from explicit presenting the Hasse diagram of the lat-
tice of quasi-varieties of almost quasi-strong Kleene-Stone lattices just because of
its being too expansive and complicated, Theorem 5.49 does provide its compre-
hensive description. The reason of restricting our consideration by merely almost
quasi-strong Kleene-Stone lattices is clarified by the next subsection.

Table 5. Quasi-varieties of /almost quasi-strong Morgan-/Klee-
ne-Stone lattices and their generating sets (part II: 80–120).

80 WRAKL {〈86, K2〉, 〈97, K4〉}
81 NIPVSKSL {〈95, MS5:1〉, 〈92, (K3 ⊕ 1) × B2〉}
82 NIWRASKSL {〈96, K2 × B2〉, 〈86, S3〉, 〈87, K4〉}
83 ASL {〈87, K2〉, 〈97, S3〉}
84 NIWMRVQSKSL {〈95, K5:1〉, 〈98, (K3 ⊕ 1) × B2〉}
85 NINQSRWMRPVQSKSL {〈98, MS5:1〉, 〈92, K5:1〉, 〈99, K3 × B2〉}
86 NIWRAKL {〈100, K2 × B2〉, 〈101, K4〉}
87 NIASL {〈102, K2 × B2〉, 〈101, S3〉}
88 NIQSRVQSKSL {〈25, B2 ⊕ 1〉, 〈98, K4:1 × B2〉}
89 NIVSKSL ∪ KL {〈93, S3〉, 〈95, K3〉, 〈103, (K3 ⊕ 1) × B2〉}
90 NIQSRWMRVQSKSL ∪ KL {〈15, B2 ⊕ 1〉, 〈103, K5:1〉, 〈98, K3〉}
91 NINQSRPVSKSL ∪ KL {〈103, MS5:1〉, 〈92, K3〉}
92 NINQSRPVSKSL {〈106, MS5:1〉, 〈96, K3 × B2〉}
93 NIVKL ∪ KL {〈94, K3〉, 〈104, (K3 ⊕ 1) × B2〉}
94 NIVKL {〈105, (K3 ⊕ 1) × B2〉}
95 NIVSKSL {〈94, S3〉, 〈106, (K3 ⊕ 1) × B2〉}
96 WRPVSKSL {〈107, MS5:1〉, 〈102, K4〉}
97 ABL {〈101, K2〉, 〈108, B2〉}
98 NIQSRWMRVQSKSL {〈109, K3 × B2〉, 〈106, K5:1〉, 〈17, B2 ⊕ 1〉}
99 WRPVQSKSL {〈109, MS5:1〉, 〈96, K5:1〉}
100 NIWRVKL {〈110, K4〉, 〈24, B2 ⊕ 1〉}
101 NIABL {〈110, K2 × B2〉}
102 PVSL {〈111, MS5:1〉}
103 NIQSRVSKSL ∪ KL {〈106, K3〉, 〈104, S3〉, 〈16, B2 ⊕ 1〉}
104 NIQSRVKL ∪ KL {〈105, K3〉, 〈18, B2 ⊕ 1〉}
105 NIQSRVKL {〈100, K3 × B2〉, 〈20, B2 ⊕ 1〉}
106 NIQSRVSKSL {〈107, K3 × B2〉, 〈105, S3〉, 〈19, B2 ⊕ 1〉}
107 WRVSKSL {〈111, K4〉, 〈100, S3〉, 〈23, B2 ⊕ 1〉}
108 TNIMSL {〈28, K2〉}
109 WRVQSKSL {〈107, K5:1〉, 〈22, B2 ⊕ 1〉}
110 VBL {〈27, B2 ⊕ 1〉}
111 VSL {〈110, S3〉, 〈26, B2 ⊕ 1〉}
112 ASKSL {〈53, K3〉, 〈52, S3〉, 〈113, K2〉}
113 NIASKSL ∪ VSKSL {〈114, K2 × B2〉, 〈63, S3〉, 〈115, K3 ⊕ 1〉}
114 PVSKSL {〈116, MS5:1〉, 〈117, K3 ⊕ 1〉}
115 NIASKSL ∪ SKSL {〈117, K2 × B2〉, 〈78, S3〉, 〈66, K3〉}
116 VSKSL {〈77, S3〉, 〈118, K3 ⊕ 1〉}
117 NIPVSKSL ∪ SKSL {〈119, (K3 ⊕ 1) × B2〉, 〈118, MS5:1〉, 〈81, K3〉}
118 NIVSKSL ∪ SKSL {〈120, (K3 ⊕ 1) × B2〉, 〈93, S3〉, 〈95, K3〉}
119 NINQSRPVSKSL ∪ SKSL {〈120, MS5:1〉, 〈92, K3〉}
120 NIQSRVSKSL ∪ SKSL {〈104, S3〉, 〈106, K3〉, 〈16, B2 ⊕ 1〉}



44 A. P. PYNKO

5.7. Infiniteness of the lattice of quasi-varieties of almost De Morgan
lattices. To avoid cumbersome couple notations, we use standard abbreviations:
(f|t) , 〈0|1, 0|1〉 and (n|b) , 〈0|1, 1|0〉.

Given any n ∈ (ω \ 1), let Qn , (({¬xi ≈ xi | i ∈ n} ∪ {¬xn ≈ (∨+〈xj〉j∈n)}) →
(¬¬xn ≈ xn)), in which case Mod(Q1) = Mod((5.7)), and so, by Lemma 5.15,

(5.25) (AV ∩Mod(Q1)) = (NIAV ∪ VV),

where V , (([{Q}S](M|K)[S])/(S‖B))L, while, for any K ⊆ MSL, (K ∩Mod(Qn)) =
(K ∩Mod(Qn+1[xn+k/x(n−1)+k]k∈2)), in which case:

(5.26) (K ∩Mod(Qn+1)) ⊆ (K ∩Mod(Qn)),

and so 〈K∩Mod(Ql)〉l∈(ω\1) is a decreasing denumerable chain of relative sub-quasi-
varieties of K with intersection, being that relatively axiomatized by Qω , {Qn |
n ∈ (ω \ 1)}.

Lemma 5.51. Let n ∈ (ω \ 2), ā , 〈{〈i, b〉} ∪ ((n \ {i}) × {n})〉i∈n and DM4:n

the subalgebra of DMn
4 generated by In , (img ā). Then, Q(n−1)[+1] is [not] true

in (DM4:n ⊕ 1) ∈ IVDML [under [xj/〈1, aj〉;xn/〈0, n× {f}〉]j∈n].

Proof. Clearly, A , DM4:n 3 b , (∨DMn
4

+ ā) = (n × {t}) = ¬DMn
4¬DMn

4 b, in
which case A 3 c , ¬DMn

4 b = (n × {f}), and so the []-optional part holds, for
In ⊆ =DMn

4 , while ¬K20 = 1 = (∨K2
+ (n× {1})) ∈ =K2 63 0. Now, given any B ⊆ A,

let (C|D)(B) , (∧|∨)DMn
4

+ [B+] ∈ ℘(B,A), in which case E , (C(In)\In) ⊆ {n, f}n,
and so D(E) ⊆ {n, f}n, while, for each k ∈ n and every d̄ ∈ E, either of dk = (n‖f)
holds, implying, resp., (ak ∨DMn

4 d̄) 3 ‖ = (〈k, t〉|ak) |“because ak[n \ {k}] = {n}”,
whereas, for all l ∈ (n \ {k}), πk/l(ak ∨DMn

4 al) = t. Then, by (4.1) and (4.5),
A = D(C(In)), in which case, since, by (4.3), the Σ−

+-quasi-identity ({¬xm ≈ xm |
m ∈ 2} ∪ {x0 / x1}) → (x1 ≈ x0) is true in MSL 3 DMn

4 , (=DM4:n \ In) ⊆ D(E),
and so In ⊆ J , =DM4:n ⊆ (In ∪ {n × {n}}). Finally, we prove the truth of Qn−1

in F , (DM4:n⊕ 1) by contradiction. For suppose there are some ē ∈ (=F)n−1 and
f ∈ F such that ¬Ff = (∨F

+ē) but ¬F¬F 6= f , in which case ḡ , (ē ◦ π1) ∈ Jn−1,
while f = 〈0, c〉, whereas (∨DM4:n

+ ḡ) = b, and so, for each ` ∈ n, there is some
k` ∈ (n − 1) such that π`(gk`

) = b. Then, gk`
= a`, in which case k̄ ∈ (n − 1)n is

injective, and so n 6 (n− 1). This contradiction completes the argument. �

This, by Corollary 4.7, Lemma 5.32, (4.18), (5.25), (5.26) and the Compactness
Theorem for ultra-multilicative classes (cf., e.g., [15]), immediately yields:

Theorem 5.52. 〈ADML∩Mod(Qn)〉n∈(ω\1) is a strictly decreasing countable chain
of proper sub-quasi-varieties of ADML = (AQSMSL ∩ NDML) ⊆ [PS]MSL, in which
case (ADML∩Mod(Qω)) = (ADML∩Mod(Qm)), for no m ∈ (ω \ 1), and so this is
not finitely-axiomatizable.

6. Relatively semi-simple quasi-varieties of Morgan-Stone lattices
and algebras

First, by (2.4) as well as Lemmas 4.6, due to which, for any i ∈ 2, K3[,01] �
K4:i[,01], and 5.40, we immediately get:

Corollary 6.1. Let P ⊆ [B]MSL be a pre-variety and i ∈ 2. Suppose K4:i[,01] ∈ P.
Then, K4:i[,01] ∈ (SIP(P) \ SiP(P)).

Lemma 6.2. Let P ⊆ A((DM)|K)L be a pre-variety containing (DM|K)4|3. Then,
K2 is embeddable into any A ∈ SiP(P \ DML).
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Proof. Take any a ∈ (A \ {¬A¬Aa}). Let (H‖G) , hom(A, (K‖(DM|K))2‖(4|3)) and
(θ‖ϑ) , (A2∩(

⋂
ker [H‖G])), in which case, by (2.8) and Corollary 4.7, (θ∩ϑ) = ∆A,

while, by (2.5) and the P-simplicity of A, ϑ ∈ CoP(A) = {A2,∆A}, whereas, by
Corollary 4.7, ∆A 63 〈a,¬A¬Aa〉 ∈ ϑ, and so ϑ = A2. Then, θ = ∆A, in which case,
by (2.8), Corollary 4.7 and the P-simplicity of A, A ∈ (TNIMSL \ OMSL), and so
Lemma 5.33 completes the argument. �

The P-simplicity of A cannot be neither omitted nor replaced by its idempo-
tence here, even if P is quasi-equational, when taking K2 6∈ P , (A((DM)|K)L ∩
Mod(Q1)) 3 [A ,](((DM)|K)4|3[⊕1])[∈ (IP \ DML), for ((DM)|K)4|3 is idempotent,
while 1 ∈ =K2 , whereas (π0�A)[A] = K2 6|= (4.9)[x0/0]].

Corollary 6.3. Let P ⊆ ([MSA ∩ B]MSL) be a pre-variety. Suppose K2 ∈ | 6∈
P(⊇ (∅|{DM4})) Then, K , SiP(NIP(∪([B]NDML ∩ P))) ⊆ I({B2[0,1]} ∪ (({K2}
[∩∅])|∅)(∪[B](A|)DML)) ⊆ [B](A|)DML.

Proof. Consider any A ∈ K ⊆ P, in which case |A| > 1, and so we have the following
2(+1)[−1] exhaustive cases [but the first one]:

(1) A ∈ TNIMSL,
in which case, by Lemma 5.33, K2, being enbeddable into A belongs to P,
while, as |A| > 1, whereas K2, being two-element, has no proper non-
one-element subalgebra, by (2.8) and Corollary 4.7, there is some h ∈
homS(A,K2), and so, by (2.5), h is injective, for (img h) = 2, being two-
element, is not a singleton.

(2) A ∈ (NIP \ (TNIMSL[∩∅])),
in which case, by Lemma 5.3, B2[,01], being embeddable into A, belongs
to P, while, as B2[,01] has no proper subalgebra, by Corollary 5.4, there is
some g ∈ homS(A,B2[,01]), and so, by (2.5), g is injective, for (img g) = 2,
being two-element, is not a singleton.

(3) A 6∈ (NIP ∪ (TNIMSL[∩∅])),
in which case, by Lemma 5.3, K3[,01], being embeddable into A, belongs to P,
while A ∈ ([B]NDML ∩ P). We prove that A ∈ [B]ADML, by contradiction.
For suppose A 6∈ [B]ADML, in which case there are some a, b ∈ A such
that (¬A¬Aa ∧A ¬A¬Ab) 
A (a ∨A ¬Ab), and so, by (2.8) and Corollary
4.7, there are some B ∈ {K4:0[,01],DM4[,01]} and some f ∈ hom(A,B) such
that (¬B¬Bf(a)∧B¬B¬Bf(b)) 
B (f(a)∨B¬Bf(b)). Then, ¬B¬Bf(a) 6=
f(a), in which case B 6= DM4[,01], and so B = K4:0[,01], while ¬B¬Bf(b) 6=
¬Bf(b), in which case f(b) 6∈ (3 \ 1), and so, by Lemma 5.40, e , (f ◦ h) ∈
hom(A,K3[,01]), where h ∈ hom(B,K3[,01]) 6= ∅, whereas, since =K3 = {1},
img e, forming a subalgebra of K3[,01], is not a singleton, i.e., e−1

∗ [∆3] =
(ker e) 6= A2. Thus, by (2.5), e is injective, in which case, by Corollary 4.7,
A, being embeddable into K3[,01] ∈ ADML, belongs to this variety, and so
Corollary 4.7, Lemma 6.2 and this contradiction complete the argument of
this ()-optional case.

In this way, Corollary 4.7 completes the argument. �

Given any [finite] A ∈ MSA, by (4.7) and (4.8), (A ⊕ 2) , ((A × {1}) ∪
{〈⊥A, 0〉, 〈>A, 2〉}) [being finite] forms a subalgebra of A × K3,01, in which case
(A⊕ 2) , ((A× K3,01)�(A⊕ 2)) ∈ MSA [is finite].

Lemma 6.4. Let P ⊆ BMSL be a pre-variety and A ∈ {I}MSA \ KA)〈 as well as
f ∈ hom(A,K3,01)〉. Suppose Co(A) = {∆A, A

2〈, ker f〉}, while F , (A ⊕ 2) ∈ P 63
A, whereas |A| ∈ ω. Then, F ∈ (SIP(P){\SiP(P)}).
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Proof. In that case, since (π0�F ) ∈ homS(F,A), F 6∈ KA 3 K3,01 is not embed-
dable into K2

3,01, and so, by Remark 4.2, the simplicity of K3,01 (cf. Remark
4.3) as well as the non-optional version of Corollary 3.12 with B = C = K3,01

and a unique h ∈ (((A × {1})〈∩∅〉)〈∪{f}〉), F ∈ SIP(P). {And what is more,
{〈0, 〈⊥A, 0〉〉, 〈1, 〈a, 1〉〉, 〈2, 〈>A, 2〉〉}, where a ∈ =A 6= ∅, is an embedding of K3,01

into F, in which case K3,01 ∈ P, and so, as e , (π1�F ) ∈ homS(F,K3,01), by (2.5),
(ker e) ∈ (CoP(F) \ {∆F , F

2}), for |F | = (|A|+ 2) > 3 6= 1, as ω 3 |A| > 1, because
A is idempotent.} �

Corollary 6.5. Let P ⊆ MSA be a relatively semi-simple pre-variety, A ∈ P, B ∈
({K4:i,01 | i ∈ 2} ∪ {DM4,01}) and e an embedding of B�Σ−

+ into A�Σ−
+. Then,

B ∈ P.

Proof. By contradiction. For suppose B 6∈ P, in which case e is not an embedding
of B into A, and so, by (4.7) and (4.8), both e((⊥|>)B) 6= (⊥|>)A. Then, by
(4.7) and (4.8), ((π0�(B × {1})) ◦ e) ∪ {〈⊥B, 0,⊥A〉, 〈>B, 2,>A〉} is an embedding
of B⊕2 into A, in which case (B⊕2) ∈ P, and so Lemmas 5.40, 6.4, the simplicity
of DM4,01 6∈ (MSA \ KA) (cf., e.g., Remark 4.3), its finiteness and idempotence as
well as those of K4:(0|1)[,01] 6∈ (MSA \ KA) contradict to the relative semi-simplicity
of P, as required. �

Theorem 6.6. Any relatively semi-simple relatively subdirectly-representable (mo-
re specifically, “relatively semi-simple quasi-equational”/implicative) pre-variety P
⊆ ([MSA ∩ B]MSL) is a sub-variety of [B]ADML, in which case it is fϕ̄

V1|Ω,℘(Ω)-
implicative, and so “ {relatively} 〈finitely-〉semi-simple”// bfϕ̄

V1‖Ω,℘(Ω)-cimplicative
sub-{quasi-//pre-}varieties of [MSA ∩ B]MSL are exactly sub-varieties of [B]ADML.

Proof. In that case, P is generated by K , SiP(P). If there was some A ∈
(P \ (NI[B]MSL ∪ [B]NDML)), then, by Lemma 5.30 [and Corollary 6.5], K4:i[,01]

would be in P, for some i ∈ 2, contrary to the relative semi-simplicity of P and
Corollary 6.1. Hence, K ⊆ P ⊆ (NI[B]MSL ∪ [B]NDML), in which case, by Corollary
6.3, K ⊆ [B]ADML, and so P ⊆ [B]ADML. Consider the following complementary
cases:

• K = ∅,
in which case P = [B]OMSL.

• K 6= ∅.
Consider the following complementary subcases:

– K ⊆ NI[B]MSL.
in which case, by Footnote 1 and Lemma 6.3, K = I((P ∩ {B2[,01]}) ∪
((P∩{K2})[∩∅])), and so, by Corollary 4.7, P = ([B](A|)BL‖([BOMSL∩
B]TNIMSL)|[B]OMSL), whenever K2 ∈ | 6∈ P 3 ‖ 63 B2[,01].

– K * NI[B]MSL.
Consider the following complementary subcases:

∗ K ⊆ ([B]KSL ∪ NI[B]MSL),
in which case IK ⊆ [B]AKL, and so, by Lemma 6.3, P ⊆ [B]AKL.
Conversely, take any A ∈ IK 6= ∅, in which case, by Lemma 5.3,
K3[,01] ∈ P, so, by Corollary 4.7 and Lemma 6.2, P = [B](A|)KL,
whenever K2 ∈ | 6∈ P.

∗ K * ([B]QSKSL ∪ NI[B]QSMSL.
Take any B ∈ (K \ ([B]QSKSL ∪ NI[B]QSMSL)) 6= ∅, in which
case, by Lemma 5.28 [and Corollary 6.5], DM4[,01] ∈ P, and
so, by Corollary 4.7 and Lemma 6.2, P = [B](A|)DML, whenever
K2 ∈ | 6∈ P.
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This, by Corollary 4.7 (and Remark/Corollary 2.4/3.4), completes the proof. �

This supersedes the reservation “quasi-equational/finitely” in Corollary 4.7 for
the unbounded case.

7. Conclusions

Perhaps, the most acute problems remained open concern the lattice of quasi-
varieties of all MS lattices. First of all, taking Subsection 5.7 and Corollary 5.16
into account, it would be especially valuable to find out whether varieties of MS
lattices including ADML ⊇ ABL — NDML and [(PS)|(AQS)]MSL — are Q-universal.
Likewise, it would be equally important to learn whether the lattices of other va-
rieties subsumed by neither QSMSL nor AQSKSL — NKL and [PS](W)KSL ⊇ NKL
— are finite. Such equally concerns extension of Section 6 beyond MS algebras in
the bounded case. After all, an interesting (though purely methodological) point
remained open is to find equational proofs (like that of (4.18)) of the rather curious
inclusions such as

[B/]NDM(L[/A]) ⊆ [B/]PSMS(L[/A]) ⊆ [B/]WKMS(L[/A])

and [B/]QSWKS(L[/A]) ⊆ [B/]QSKS(L[/A]) as well as both

(NIMR[B]QSMSL ∪MR[B](QS)KSL) ⊆ (NIMR[B]QSMSL ∪ [B]KL)

and NQSRVQSMSL ⊆ QSRVQSMSL, just ensuing from Corollaries 4.7, 5.14 and
Theorem 5.25. Likewise, the fact that abstract non-trivially-hereditary subclasses
of SI([B]MSL) are its relative sub-varieties looks too occasional to refrain from
raising the question whether such is the case, in general, for arbitrary varieties like
[B]MSL (e.g., disjunctive finitely-generated ones of lattice expansions with REDPC
{being the pre-varieties generated by the underlying algebras of finite matrices with
equality determinant and truth predicates being prime filters of their underlying
algebras}).
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