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Abstract 

This paper presents a framework for front tracking of 

shock waves from high-speed video recordings. The 

video was corrupted with noise and artifact that made 

front tracking a challenging task. To our knowledge, 

the implementation of Unnormalized Optimal 

Transport for determination of velocity is novel. 

 An Unnormalized Optimal Transport framework was 

implemented in Python to determine the route of 

propagation from the recorded high-speed video. The 

obtained route was further computed for front tracking 

by two methods; Divergence and Transport method. 

These methods were investigated with both synthetic 

images and the recorded high-speed video frames. For 

both, the Transport method provided better results than 

the Divergence method. Therefore, the shock wave 

velocity and the shock angles were calculated from 

Unnormalized Optimal Transport combined with the 

Transport method. Preliminary results indicate that our 

findings are in good agreement with sensor-based 

measurements.  

This framework verified that the triple point height is 

increasing, and the oblique shockwave moves faster 

than the normal shock wave. 

 Keywords:     Unnormalized Optimal Transport, Front 

Tracking, Image Processing 

1 Introduction 

Combustion and shock waves propagate at high speed 

which makes challenging to find the velocity and shape 

of the flame and shock wave. In lab experiments, state-

of-the-art has been to use of sensors like pressure 

transducers to estimate velocities. One drawback of 

that technique is the limited number of sensors placed 

inside a test rig. An alternative to these sensor-based 

measurements is to use a high-speed camera whereon 

the position, shape, and velocity can be found from the 

recorded high-speed images. Video recording can be 

analyzed frame by frame to track wave. Even though 

humans can comfortably identify and track such waves 

in a video, it is challenging to design robust algorithms 

for automatic tracking. Also, the presence of noise and 

artifact made the task more challenging. Although 

various algorithms, such as Level set (Osher & 

Sethian, 1988), Splines (Maharjan et al., 2019), etc. 

have been proposed, we are evaluating unnormalized 

optimal transport for tracking waves.  

The French mathematician Gaspard Monge pioneered 

on optimal transport in 1781. Later, the Russian 

Mathematician Leonid Vitaliyevich Kantorovich stated 

and proved the problem through the additional 

functional tools known as duality theorem. Monge 

explained optimal transport as distance covered to 

transfer a pile of sand from one location to another 

with minimum transport cost. If this cost is a function 

of distance, the distance from optimal transport is 

called the Kantorovich-Rubinstein distance or 

Wasserstein distance (Villani, 2008). Optimal transport 

gained popularity in inverse problems and machine 

learning. 

The above classical approach from Monge and 

Kantrovich is in the normalized density space, i.e., the 

masses of two density functions or histogram is equal. 

Gangbo et al. (2019) have described a formulation in 

which the masses of two density functions are unequal, 

refer to it as unnormalized or unbalanced optimal 

transport. With this approach, it is possible to examine 

two images with different intensities.  Therefore, the 

high-speed video was analyzed with unnormalized 

optimal transport. 

  
(a) (b) 

Figure 1. Schematic diagram of bifurcated shock wave a) 

Incident shock wave b) Reflected shock wave 

The high-speed video images provided the shock wave 

position. A shock wave is a thin compression wave 

across which the gas changes its thermodynamic 

properties such as density and pressure (Bjerketvedt et 

al., 1997). When a normal incident shock wave hits the 

end wall, it is reflected.  The reflected shock wave is 

bifurcated due to the boundary layer.  Figure 1 shows 

the bifurcation of the reflected shock wave. This occurs 

if stagnation pressure in the boundary layer is less than 



the pressure behind the normal reflected shock wave 

(Damazo et al., 2012). 

2 Methods 

The Test rig of the experiment is described in Siljan et 

al. (2017). The high-speed video from this experiment 

was analyzed with methods below:    

2.1 Image conversion 

Image conversion is pre-processing for optimal 

transport. The input for optimal transport is in densities 

space.  The pixel values were converted into densities 

and must be non-negative values. The obtained images 

were resizing into the same scale. 

2.2 Unnormalized Optimal Transport 

The unnormalized optimal transport was implemented 

to determine the route of the traveling wave.  𝐿1-norm 

was used as a distance function in the unnormalized 

optimal transport as it requires less computation time 

and is simple for implementation compared to the 𝐿2-

norm (Li et al., 2018). So, implemented optimal 

transport is 𝐿1- unnormalized optimal transport. The 

algorithm for 𝐿1- unnormalized optimal transport is 

mention below (Osher, 2019): 

 

𝑚𝑘+1 =
𝑚𝑘+𝜏1∙𝛻𝛷

|𝑚𝑘+𝜏1∙𝛻𝛷|
(|𝑚𝑘 + 𝜏1 ∙ 𝛻𝛷| − 𝜏1) 

(1) 

𝛷𝑘+1 = 𝛷𝑘 + 𝜏2(𝛻 ∙ 𝑚𝑘+1 − 𝛻 ∙ 𝑚𝑘 + 𝜇1 − 𝜇0

+ 𝑐). 
(2) 

Where, 

𝑐 =
1

𝑟𝑜𝑤 ×𝑐𝑜𝑙 
(𝑠𝑢𝑚 𝑜𝑓 𝜇1 − 𝑠𝑢𝑚 𝑜𝑓 𝜇0), 

𝑟𝑜𝑤 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑜𝑓 𝜇1𝑜𝑟 𝜇0, 

𝑐𝑜𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝜇1𝑜𝑟 𝜇0. 
Here, 𝜇1 and 𝜇0 are input images that display the 

movement of an object. 𝜏1 and 𝜏2 are step sizes. 𝑐 is 

constant for compensation of change of intensities 

between images.  

The solution obtained is 𝑚 that is a vector, and 𝛷 is the 

Lagrange multiplier. The  𝑚 consists of two 

components represented as 𝑚𝑥 and 𝑚𝑦.  It was found 

that 𝑚𝑥 and 𝑚𝑦 are responsible for the horizontal 

movement and vertical movement, respectively. 

Initially, the value of 𝑚 and 𝛷 is zero. Iteration 

continued until the solution converged. The iteration 

time depends upon grid size or pixel size of images, 

i.e., smaller grid sizes mean more data that increases 

the execution time. So, multilevel unnormalized 

transport is implemented for faster calculation (Liu et 

al., 2019). 

A detailed study of this method can be found in 

(Gangbo et al., 2019) (Chambolle & Pock, 2011) and 

(Li et al., 2018). 

2.3 Post-processing 

The outcomes from unnormalized optimal transport are 

used as input to the front tracking. This process is 

accomplished by using the Transport and Divergence 

method.  

2.3.1  Transport method 

The resultant from these two components are 

calculated using the formula below: 

𝑟𝑒𝑠𝑢𝑙𝑡𝑚 = √𝑚𝑥
2 + 𝑚𝑦

22 . (3) 

The obtained result has proceeded for edge detection 

after Total Variation (TV) denoising. TV denoising is 

used to filter 𝑟𝑒𝑠𝑢𝑙𝑡𝑚 (from above equation) as it 

preserves the edge better  (Chambolle & Pock, 2011). 

Edge detection is accomplished by the Sobel Operator 

(Bovik, 2009). The maximum of each row from the 

initial column to the middle of the unnormalized 

optimal transport route is used as a tracked front from 

edge detected images. 

   

Figure 2. Images presenting the propagation of shock 

wave. 

  
(a) (b) 

Figure 3. a) Unnormalized optimal transport outcome b) 

Edge detection of a)  

Consider Figure 2 as inputs for unnormalized optimal 

transport to demonstrate this method. The obtained 

solution 𝑚 is formulated with (3) is in Figure 3(a). 

This figure undergoes TV denoising due to noise 

caused by turbulence from the shock wave movement. 

The denoised result is used for edge detection with the 

Sobel operator in Figure 3(b). The data extracted as 

maximum from the left edge from  Figure 3(b) as the 

right edge is disturbed by the rear limb in Figure 1(b). 

The tracked front is in Figure 4. 



 

Figure 4. Tracked front from Figure 2 

2.3.2 Divergence method 

The dynamic constraint for unnormalized optimal 

transport is integrated with the time variable (Gangbo 

et al., 2019). We obtain the following equation: 

∇ ∙ 𝑚 = 𝜇0 − 𝜇1 + 𝑐. (4) 

Here, the initial image (𝜇0) refers to an object's initial 

position in an image, and the final image (𝜇1) refers to 

the moved position object in the next one during 

movement. The divergence of m incorporates initial 

image and final images, and 𝑐 is constant to deal with 

intensities change. If the final images (𝜇1) is zero, then 

the remaining will only be initial images and difference 

between initial and final images intensities, i.e., ∇ ∙
𝑚 = 𝜇0 + 𝑐. So, image from ∇ ∙ 𝑚 is used for front 

tracking. This method is illustrated using the same 

example as above. 

  
(a) (b) 

Figure 5. a) Divergence of unnormalized optimal 

transport result(m) b) Tracked front from Figure 5(a) 

Figure 5(a) is the divergence of 𝑚 with 𝜇1 = 0. The 

obtained image is similar to the second image in Figure 

2, but the shock wave is more distinct. The maximum 

of each row is extracted and presented in Figure 5(b). 

3 Result and Discussion  

3.1 Comparing methods 

The unnormalized optimal transport outcome was 

further analyzed to calculate velocity by using the two 

methods mentioned above. These two methods are 

compared with noisy and noise-free synthetic images 

and experimental video images below. 

3.1.1 Synthetic images 

The developed series of images displays a slender's 

horizontal movement in Figure 6 as the shock wave 

movement in the video.  

  

  

  

Figure 6. Series of the synthetic image showing slight 

movement. 

The transport and divergence method applied to the 

solution of unnormalized optimal transport shown in 

Figure 6. The results from these methods are in Figure 

7(a) and Figure 7(b), respectively. The transport 

method results in Figure 7(a) tracked slender more 

accurately than the divergence method results in Figure 

7(b). Even though the transport method shows a better 

result, it cannot find the first row of each slender's 

position in images.    

  

(a) (b) 

Figure 7. Tracked slender from noise-free images a) 

Transport method b) Divergence method 



The images from Figure 6 are added with noise. Noise 

is a normal distribution whose mean is zero and the 

standard deviation is 10. The remaining assumption is 

of these images are equivalent to noise-free synthetic 

images. The slender is tracked based on the above 

mention methods, illustrated in Figure 8. The Transport 

method cannot determine the front of the first and last 

row, but the remaining portion of the tracked slender 

shown in Figure 8(a) is exact as input. The determined 

slender by divergence method is zigzag shown in 

Figure 8(b). The transport method is better than the 

divergence method displayed in Figure 8. 

  

 

(a) (b)  

Figure 8. Tracked slender from noisy images a) Transport 

method b) Divergence method. 

3.1.2 High-speed video  

The high-speed video from the experiment includes a 

series of images displaying the shock wave movement, 

i.e., incident shock and reflected shock wave. The 

video was broken into images, and a single image 

refers to the frame. Images from frame number 80 to 

frame number 175 of video are input for analysis. The 

unnormalized optimal transport was implemented at an 

interval of 5 frames. The outcome of unnormalized 

optimal transport is the data for tracking front using the 

divergence and transport method illustrated in Figure 

9.   

Visually, the front tracking with the transport method 

is better than the divergence method from Figure 9. 

Although the tracked fronts are bend at the bottom with 

the transport method, it has a smoother transition 

between tracked points for wave than the divergence 

method. The problem might be the data extraction 

procedure in the divergence method. So, the results are 

favoring the transport method. Hence, we are 

proceeding with the transport method. 

 
(a) 

 
(b) 

Figure 9. Tracked front from reflected shock wave with 

unnormalized optimal transport at an interval of 5 frames 

a) Transport method b) Divergence method. 

The unnormalized optimal transport was implemented 

at an interval of 3 frames, and shock wave tracking 

accomplished using the transport method as illustrated 

in Figure 10. In comparison between Figure 9(a) and 

Figure 10, it was found that unnormalized optimal 

transport at the interval of 5 frames is providing better 

results than at the intervals of 3 frames. The further 

analysis uses the unnormalized optimal transport at the 

intervals of 5 frames and the transport method.  

 

Figure 10. Tracked front from reflected shock wave with 

unnormalized optimal transport at an interval of 3 frames 

and Transport method  

3.2 Velocity Determination 

Assume two fronts shown in Figure 11 for the 

calculation of the velocity of the shockwave. Let us 

denote 𝑑1(𝑥, 𝑦) as a pixel position on the front (𝑓) and 

𝑑2(𝑥, 𝑦) as a pixel position on the consecutive front 

(𝑓 + 1)  shown in Figure 9. Here, 𝑥 and 𝑦 represent 

row and column in images as per Python. 

 

Figure 11. Schematic sketch of two consecutive shock 

waves. 

The distance between the fronts is calculated as 𝑑 =
|𝑑1 − 𝑑2|. The obtained difference undergoes 

mathematical operation of the scaling factor and the 

high-speed camera frame rate for computation of actual 



velocity. The scaling factor for an image from the high-

speed video is 1 𝑚𝑚 = 9.528 ± 0.079 𝑝𝑖𝑥𝑒𝑙. The 

frame rate of the high-speed camera is 500000 frames 

per second (FPS). The velocity is calculated with (5) 

for images at the interval of 5 frames. 

𝑣 =
𝑑

5
×

500000

9528
[
𝑚

𝑠
] (5) 

The velocity (𝑢) represented the normal shock wave, 

and (𝑣) represented the oblique shock wave. The 

oblique shock wave is tilted with angle (𝛽), which is 

known as the shock angle. The oblique shock wave 

velocity is divided into normal and parallel 

components. The normal component of velocity (𝑣) is 

represented as 𝑣1. 
𝑣1 = 𝑣 ∙ cos(90 − 𝛽) = 𝑣 ∙ sin 𝛽 (6) 

The 20 points from the upper portion of each tracked 

fronts from row number 1 to row number 21 were used 

to calculate the normal shock wave's average velocity. 

Similarly, 20 points starting from row number 195 to 

215 are extracted to calculate the oblique shock wave's 

average velocity. The normal velocity for the oblique 

shock wave can only be calculated after the calculation 

of shock angles. 

Figure 12, oblique shock wave crossed by the upper 

and lower boundary, is data for estimating shock 

angles. This figure illustrated that the upper and lower 

boundary crosses tracked oblique shock. The lower 

boundary is straight, but the upper boundary is not 

because the oblique shock length increases (the 

elevation of the triple point is increasing) as shock 

wave propagates. The data is extracted from the upper 

to lower boundary for each front separately. The 

extracted data trend is a straight line, and the straight 

line equation is fitted with extracted data by the least-

squares method. The inclination of the obtained 

straight-line reference to the bottom side of images is 

shock angles. These angles and oblique shock wave 

velocities are required to calculate the oblique shock 

wave's normal velocity with (6). 

 

Figure 12. The region selected for calculation of shock 

angles from tracked fronts with transport method 

The velocities calculated above are presented in Figure 

13. The x-axis in this figure is the distance from the 

shock reflected wall. It is estimated from 10 points 

from upper tracked fronts.  

 

Figure 13. Average velocities of normal and oblique 

shockwave, and normal component of an oblique shock 

wave with unnormalized optimal transport with 5 frames 

and transport method.  

Figure 13 displays that the oblique shock wave moves 

faster than a normal shock wave as in the high-speed 

video. This result is obtained without filtering inputs 

for unnormalized optimal transport. 

 

Figure 14. Tracked fronts from reflected shock wave with 

unnormalized optimal transport at an interval of 5 frames 

in which series of operations performed in input images 

for denoising and transport method.  

The images from the given high-speed video are noisy. 

Hence, images are denoised before the implementation 

of unnormalized optimal transport. In this process, 

background subtraction, morphological operation 

(closing), and TV denoising proceed in a sequence. 

Firstly, the first image from the given video subtracted 

from noisy images displaying shock propagation. 

Successively, the morphological operation (closing) is 

performed in subtracted images as it fills a tiny gap 

near the edge (Maharjan et al., 2019) followed by TV 

denoising. The obtained images are input for 

unnormalized optimal transport followed by the 

transport method, and the result in Figure 14.  

Figure 14 exhibits a smoother curve of shock wave 

than in Figure 9(a) but there is not much change in 

tracked front with filtered and unfiltered inputs for 

unnormalized optimal transport. The velocities 

calculated for filter images from (5) and (6) are in 

Figure 15. Figure 13 shows higher oscillation in the 

velocities curve than in Figure 15 as denoising 

operations in input images. Although result from 

unfiltered images produces high oscillation velocities 

curves, the trend for normal shock wave velocity, 

oblique shock wave velocity, and normal velocity for 

filter and unfiltered input of unnormalized optimal 

transport similar.  



 

Figure 15. Average velocities of the normal and oblique 

shock wave, and normal component of the oblique shock 

wave with unnormalized optimal transport at an interval 

of 5 frames in which series of operation performs in input 

images denoising and transport method. 

Figure 16 demonstrates that trends of shock angles of 

unfiltered and filtered images are slightly different but 

fluctuate around 50°. The average shock angles of 

unfiltered and filtered images are 49.7° and 49.4°, 
respectively. 

 

Figure 16. Oblique shock angle from unnormalized 

optimal transport at an interval of 5 frames and transport 

method. 

If a tracked front deviates from one pixel, then it 

results in an error of 11 𝑚/𝑠 considering images as an 

input interval of 5 frames.  

3.3 Comparison with combustion, process 

safety, and explosion research group 

Researches had conducted simulation for computation 

of the velocity with the same high-speed video. The 

solution from pattern matching and segmented 

regression (Siljan et al., 2017), dynamic template 

matching (Maharjan, 2019), and snake model with 

gradient vector fields and watershed segmentation 

(Maharjan et al., 2019) and sensor-based calculations 

are in Table 1. The mentioned frameworks and 

experimental results for oblique shock wave velocities 

are within 5 m/s deviation but above 10m/s deviation 

for normal shock wave velocities. The pressure sensors 

are presented at the bottom, so the normal shock wave 

velocities are calculated from the oblique shock wave 

pressure. 

Similarly, the difference in shock angle between 

simulated results and experimental value is less than 

3º.  The results of unnormalized optimal transport and 

other frameworks are within 5 % fluctuation. 

Table 1. Comparison between results from different 

methods for reflected shock wave 

S.N

. 

Description Average 

velocity 

of normal 

shock 

wave[m/s

] 

Average 

velocity 

of 

oblique 

shock 

wave[m/s

] 

Averag

e shock 

angle 

1. Result from 

the pressure 

transducer 

(Maharjan 

et al., 2019) 

216 266 48º 

2. Result from 

template 

matching 

(Siljan et 

al., 2017) 

230 262 50º 

3. Result from 

snakes 

model 

(Maharjan 

et al., 2019) 

227 267 48.9º 

4. Result of 

optimal 

transport 

with filter 

images 

(here) 

230.8 265 49.4º 

5. Result of 

optimal 

transport 

with 

unfiltered 

images(here

) 

231.5 267 49.7º 

 

4 Conclusion 

 

The above section demonstrated that the present 

framework can estimate velocities and shock angles 

from experimental results and synthetic images from 

other algorithms. The velocity is obtained from a series 

of images representing an object's motion with 

unnormalized optimal transport.  

 



 

The transport method provided better front tracking of 

unnormalized optimal transport results than the 

divergence method. Moreover, Filtering the input to 

the unnormalized optimal transport had only minor 

impact on the results. 
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