ﬁ EasyChair Preprint

Ne 3030

Supervised Machine Learning Algorithms for
Arrhythmia Classification and Diagnosis

Avishek Choudhury and Nikhli Shetty

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 22, 2020



Supervised Machine Learning Algorithms for Arrhythmia
Classification and Diagnosis

Avishek Choudhury'® and Nikhil Shetty?

IStevens Institute of Technology, Hoboken, N.J
laachoudh7@stevens.edu

Abstract

Preventing arrhythmic risks in patients with cardiac ailment has been a global concern. No reliable method
for diagnosing Arrhythmia exist. Machine learning techniques can be used to predict the advent of arrhythmic
risk and recommend appropriate measures to ensure patient safety. In this paper, we implement seven machine
learning algorithms to predict Arrhythmia. Our model promises to produce better results than the existing VF15
algorithm and cardiologists.

Additionally, our study also advocates that machine learning in arrhythmia identification can reduce diagnos-
tic expenses by minimizing type-I and type-II errors. Our study implements a random forest, gradient boosted
trees, artificial neural networks, support vector machine, XG-boost, logistic regression, and ensemble method. All
the models in this study have been evaluated using classification accuracy, precision, recall, F1 score, gain, lift,
ROC, and confusion matrix. A comparative analysis of all the models highlights the strengths and weaknesses
of individual algorithms. The ensemble method yields the highest accuracy (0.84), gain (0.31), F1 score (0.81),
and ROC (0.87). It produces moderately high false-negative (14%), whereas, support vector machine with an
accuracy of 0.71, generates the highest recall value of 0.91 (sensitivity) and a minimum false-negative (11%).
The best performing model in this study outperforms the accuracy exiting VF15(62%) technique by more than
20% margin and sensitivity of cardiologist (0.78) by 13%.
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1 Introduction

Arrhythmia is a cardiac disorder indicating an irregular heartbeat rhythm. In this ailment, the normal beating
in the heart’s upper atrium gets distorted [1], affecting the flow of blood to the lower chambers of the heart.
Arrhythmia is a leading cause of death every year. The number of patients susceptible to arrhythmic risk
with a Sudden Cardiac Death (SCD) is increasing |2, B]. According to the Centers for Disease Control and
Prevention (CDC), an estimated amount of $2.7-$6.1 million has been spent on treating people with Arrhythmia
in the USA. Moreover, Arrhythmia has been responsible for death of about 130,000 USA residents and 750,000
hospitalizations every year. Sudden cardiac death (SCD) cause due to Arrhythmia represent a global public
health concern, accounting for 15-20 % of all deaths [4].

Most traditional diagnosis methods are flawed and often result in delayed treatment or misdiagnosis. Due to
the complexity of arrhythmia [5], no single test reliably predicts arrhythmic risk in patients with heart failure [6].
A combination of tests improves risk stratification and helps identify patients at higher risk of SCD [6]. However,
multiple tests increase diagnostic expenses. Electrocardiogram (ECG) is one of the most common procedures
used to diagnose this disease. However, this method has many drawbacks [7]. The errors in the diagnosis of
Arrhythmia and other disorders accounted for about 178 cases or 86.4% of all the errors [§].

AT can help in facilitating timely resuscitation and defibrillation. Machine learning, a component of Al, is
an approach of exploring and developing algorithms that enable computers to learn and adapt to the various
range of inputs from the ECG machine. Data sets arising from the ECG machines contain various types of
data that pile up to form a large quantity of clinical information. In such a case, the systematic organization of
these outputs becomes the key aspect for effective diagnosis. The algorithms implemented in this study helps
us understand the hidden patterns in the ECG readings and automate the diagnostic process of Arrhythmia. In
this process, machine learning algorithms help in the early stage identification of an Arrhythmia.
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To address these concerns, In this paper, we implement machine learning algorithms to classify and predict
Arrhythmia.

2 Methods

Our study uses the ECG dataset collected by Bilkent University, Turkey [9]. The data consists of 279 attributes
and 452 observations, of which 44% are male, and 56% are female patients, with an average heart rate of
74.04dbpm and 74.78bpm, respectively. The average age and weight of males are 45years/72.51kg and females
47years/63.82kg, respectively. The data has 16 classes (response variables) in which Class 01 refers to 'normal’
ECG. classes 02 to 15 refers to different classes of arrhythmia and class 16 refers to the rest of unclassified
ones. To better understand the data, we grouped the data into 712 sections based on their channel through
which they where recorded. These 12 channels are named as D1-D3, V1-V6, AVR, AVL, and AVF. Each of these
channels represents different waves (millisecond) and electric signals (millivolts) of the heart rhythm. Out of all
the attributes, the first 9 are age, sex, height, weight, average QRS duration (ms), the average duration between
P and Q waves (ms), average duration between onset of Q and the offset of T waves (ms), average duration
between two consecutive T waves (ms), and average duration of two consecutive P waves (ms). Other attributes
in the data represent vector angles in degrees on the front plane of QRS, T, P, QRST, and J, respectively. The
remaining measurements from 12 distinct channels are illustrated in Figure [I]
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Figure 1: Information collected through 12 different channels

To simplify our model, we grouped the response variable into two sections, where 0 denotes the absence of
arrhythmia, and 1 denotes arrhythmia. To minimize bias and variance in the dataset, we conducted a k-fold cross-
validation technique on 80% of the raw data (training set). As Illustrated in figure |2 in k-fold cross-validation,
the original data sample is randomly partitioned into k proportional sub-samples with one sub-sample retained
for model validation, and the remaining k-1 sub-samples used as training data. The cross-validation process is
then reiterated k times, with the k results obtained from the k-folds averaged to produce a single estimation.
Typical values for k range between 5 and 10 depending on study [10] in this analysis, we used k=5.

Typically, datasets are designated with several variables for practical model structure. Most of the predic-
tor’s relevance is unknown in advance. Several difficulties characterize the management of large datasets: (a)
processing high dimensional datasets hinders computational speed; (b) excessive number of predictors (higher
than optimal), impedes model accuracy. This problem, known as the minimal-optimal problem [11], has been
intensively analyzed in the existing literature. Nevertheless, this pursuit of the practical consideration results
in another problem, known as the all-relevant problem, which involves the identification of all attributes that
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Figure 2: K-Fold cross validation

are germane for classification. However, deriving all relevant attributes may prove beneficial in understanding
the fundamental mechanisms related to the subject of interest, rather than purely building a black box prog-
nostic model. For example, when engaged in the classification of an arrhythmia dataset, the identification of
all predictors related to the outcome (Healthy-0 or Arrhythmia-1) is necessary for a complete understanding of
the process. In contrast, a minimal-optimal set of predictors (variables) might be more useful as classification
markers. An honest discussion demarcating the importance of finding relevant attributes is detailed in [12} [11].
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Figure 3: (a) Shows the overall framework of the method. (b) Illustrates the detailed steps taken to process the
data, train different models and evaluate their classification performance

Our proposed framework consists of three main phases (a)pre-processing; (b)training; and (c)classification.
The pre-processing phase primarily deals with the process of converting the raw data into a suitable format as re-
quired by the machine learning algorithms. In this phase, we removed attributes contributing to multicollinearity
problems. We also handled the missing values, columns with more than 40% missing values were discarded from
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further analysis. The training phase phase uses 80% of the pre-processed supervised patient’s dataset to train
seven machine learning models. In the prediction phase of the framework, the trained model was used to predict
the presence or absence of arrhythmia on a new dataset (20% test set). During this process, the performance of
each model was evaluated primarily based on their ROC AUC, classification accuracy, and false-negatives. Other
important evaluation metric is also recorded and has been discussed in the Result section.

Taking the cardiologist as a gold standard we implement seven machine learning algorithms: (a)Random
Forest (RF), (b)Gradient Boosted Trees (GBT), (c)Logistic Regression (LR), (d)XG-Boost (XGB), (e)Artificial
Neural Network (ANN), (f)Support Vector Machine (SVM), and (g) Ensemble of all. Explaining the machine
learning models is not in the scope of this study.

All the model parameters were tuned to optimize the model’s performance for all analyses. All computations
were performed using Dataiku and Prism 8 for figure preparation. Figure [3]illustrates the method used in this
study.

3 Results and discussion

In this study, the proposed Ensemble model and Gradient Boosted Trees with an area under the curve (AUC)
of 0.87 and (0.87£0.08) respectively, outperformed other models with an AUC of 0.85(RF), 0.80 (LR), 0.86
(XGB), 0.78 (ANN), and 0.84 (SVM). Additionally, ensemble, logistic regression, and support vector machines
outperformed the cardiologist’s (recall 0.78) performance in arrhythmia diagnosis [13] and also outperforms the
exiting VF15 accuracy of 62% by more than 20% margin. Our model, Ensemble (recall 0.86; F1 Score 0.81)
and support vector machine (recall 0.91) also outperformed deep learning method (recall 0.78; F1 Score 0.776)
developed by Rajpurkars et al., in 2017 [5]. Table|l{shows the performance of all the machine learning algorithms
tested in this study. As reported in table 1} Ensemble model yielded the highest classification accuracy (0.84),
F1 Score (0.81), Cost-matrix gain (0.31), and ROC (0.87). Following closely, with a comparable performance,
Gradient Boosted Trees yielded the second-best classification accuracy of 0.8140.13, highest precision (0.77
+0.13), ROC (0.8740.08) and highest lift (1.954+0.52). ROC AUC of Random Forest and XG-Boost were also
near Ensemble and GBT. As a graphical illustration, the performance and decision cut-off (threshold) of the
Ensemble model is also shown in figure 4] Figure [5] illustrates the AUC for all k-fold for each machine learning
model.

Despite having a high-performance outcome, the Ensemble model fails to identify 14% of Arrhythmia, resulting
in false-negative (Table . A false-negative outcome in the healthcare industry can delay proper diagnosis.
Delayed or misdiagnosis can not only increase treatment cost but also can worsen patient health, safety, and
anxiety leading to undesirable consequences. Although the support vector machine performed poorly than the
other models, it has the least false-negative outcome of 11%.

Unlike false-negatives, false-positives have no deterring impact on patient health. However, it contributes
significantly to the diagnostic expenses and patient’s (patient family) anxiety and stress levels. The logistic
regression model in this study yielded the highest false-positive outcome (40%), followed by the support vector
machine (33%).

Table 1: Performance of all machine learning algorithm used in this study

Model Accuracy  Precision Recall F1 Score  Gain Log Loss ROC Lift
Ensemble 0.84 0.77 0.86 0.81 0.31 0.45 0.87 1.90

RF 0.7840.06 0.72+0.13 0.72£0.12 0.72£0.08 0.18+0.24 0.51+£0.04 0.85£0.06 1.86£0.27
GBT 0.81£0.13 0.77£0.13 0.76+0.21 0.76+£0.16  0.244+0.09 0.46(0.24) 0.87(0.08) 1.95+0.52
LR 0.66+0.06 0.54+0.10  0.83+0.08  0.66+0.08 0.20+0.15 0.54(0.07)  0.80(0.08) 1.69+0.17
XGB 0.80+0.11 0.74+£0.16 0.77+0.21 0.75+£0.13  0.17+0.25 0.55(0.07) 0.86(0.08) 1.92+0.0.31
ANN 0.75+0.06 0.70£0.17 0.65£0.08 0.67+0.09 0.20£0.07 0.71+0.22 0.78+0.06 1.66+0.24
SVM 0.71£0.12 0.59£0.16 0.91+0.07 0.71£0.13 0.21+0.18 0.48+0.03 0.84+0.03 1.79£0.17

Table 2: Confusion matrix

Ensemble RF GBT LR XGB ANN SVM
Predicted - Arrhythmia
1 0 1 0 1 0 1 0 1 0 1 0 1 0

Actual - Arrhythmia | 1 | 86% | 14% | 75% | 256% | 69% | 31% | 83% | 17% | 72% | 28% | 58% | 42% | 89% | 11%
0 17% | 83% | 17% | 83% | 15% | 85% | 40% | 60% | 15% | 85% | 12% | 87% | 33% | 67%
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Figure 4: Decision cut-off for ensemble model
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4 Conclusion

In this paper, we illustrate the use of machine learning techniques in diagnosing Arrhythmia. Additionally, with
the help of a comparative analysis of seven machine learning techniques, this study highlights the strengths and
weaknesses of several algorithms. This study acknowledges the advantages of using a machine learning technique
by showcasing its predictive capabilities, reliability, and accuracy over cardiologists and other existing methods.
The potential of machine learning to foster timely and precise diagnosis can contribute to better care and improve
patient safety.

As precautionary measures, while implementing machine learning techniques, we recommend referring to
false-negative outcomes of each model. It can prevent not only fatal outcomes (misdiagnosis can lead to death)
but also prevent delayed treatment. The proposed framework is not generic and might not produce a similar
result when applied on a different dataset. To further improve the robustness and performance of the models
proposed in this study, future work should include better data that represent a broader population and evaluate
other algorithms.
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