
EasyChair Preprint
№ 15614

An End-to-End Framework Towards Improving
RAG (Retrieval-Augmented Generation) Based
Application Performance

Aritra Sen, Anindita Desarkar and Vishwanathan Raman

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 20, 2024

An End-to-End Framework towards Improving RAG

(Retrieval-Augmented Generation) based Application

Performance

Aritra Sen1, Anindita Desarkar2 and

Vishwanathan Raman3

1 Enterprise AI, LTIMindtree Ltd, Kolkata, India, aritra_sen@outlook.com

2 Enterprise AI, LTIMindtree Ltd, Kolkata, India, aninditadesarkar@gmail.com
3 Enterprise AI, LTIMindtree Ltd, Chennai, India, vishwanathanraman@gmail.com

Abstract. Retrieval Augmented Generation (RAG) is a

framework designed to address the limitation of Large Lan-

guage Models (LLM) in terms of business domain awareness

and knowledge cutoff. Hence, the adoption of RAG has been

immense in recent times as it can overcome the above chal-

lenges. However, RAG also consists of several techniques

and challenges. A few common challenges include being un-

able to produce optimal response or output format mismatch,

missing to refer most important sources and incapable of re-

trieving the appropriate paragraphs or contexts. As a result,

the response accuracy of RAG based applications deterio-

rates. Hence a recommendation system is the need of the

hour which can assist the users to choose the most appropri-

ate method based on the specific scenario. In this paper, an

end-to-end RAG-based application performance improve-

ment framework is proposed which will assist the users to

select the optimal approach based on the present evaluation

score and other constraints. Evaluation score is calculated

based on the well-known metrices which include grounded-

ness, answer relevance and context relevance. The frame-

work is a collection of different techniques applied iteratively

at different stages of RAG with the goal of improving the

overall score. The embedding being the backbone of the

RAG, a right fit embedding model recommendation is part of

the overall framework.

mailto:aritra_sen@outlook.com
mailto:aninditadesarkar@gmail.com
mailto:vishwanathanraman@gmail.com

Keywords: Embedding model selection, large language

model (LLM), Retrieval Augmented Generation (RAG) im-

provement framework, Vector database.

1 Introduction

Recent advancement in the field of Generative AI has resulted in a sig-

nificant surge in the adoption of Large Language Models (LLMs) across

various domains and industry.

A powerful single LLM excels at various tasks like summarization, text

classification and conversational tasks but suffers from the problem of

hallucinations which occurs when the LLM does not have the correct

context to answer the given user query. The reason may be lack of do-

main knowledge or the correct responses are beyond the knowledge cut-

off date.

Retrieval Augmented Generation (RAG) [1] is the most well-known

technique which enables the LLM to go beyond the data on which they

have been trained on. RAG systems have several underlying benefits like

enhanced privacy and transparency due to its architectural design, in turn

these benefits have increased the adoption of RAG across the industry.

The outcome of RAG based application depends on selection of values

of its features made during the application design process. Features in-

clude embedding model selection, optimal chunking approach and

choosing the advanced RAG strategy. The automatic enhancement of the

quality of LLM response happens while these parameters are chosen

wisely. Also, it’s an iterative approach as respective methods need to be

adopted more than one time in various phases of the cycle based on RAG

based application evaluation score and other system constraints. How-

ever, the number of iterations can be reduced if some standard recom-

mendation engine exists in the eco-system.

This has motivated the current researchers to propose the end-to-end

RAG method adoption framework for using the best technique consider-

ing the current scenario and other user constraints towards improving the

application performance. The framework consists of several techniques

including in-context learning, embedding model selection, choosing op-

timal chunk strategy, hybrid search, using metadata filters, multi-query

retriever, hypothetical document embeddings (Hyde), reranking, re-

sponse synthesis, sentence window retrieval and auto merging retrieval.

However, choosing the right embedding model always throws a chal-

lenge to the users compared to other ones. The availability of several

embedding models makes the task more difficult as it confuses the users

whether the selection should be random, or parameter driven. There are

few embedding model’s leader boards which kind of give an idea of lead-

ing models, however those leaderboards generally do not cater to com-

plex use case need or user requirements. Hence, a novel method for the

embedding model selection process is also presented in the paper which

is a part of the proposed holistic framework. This in turn will reduce the

confusion of the developers or end users on the selection of embedding

model, so that developers can solely concentrate on building advanced

text-based AI solutions.

The paper is organized as follows. Section 2 highlights the existing tech-

niques for advanced RAG architecture and available frameworks for

adopting the same in various business scenarios. The problem statement

is summarized in section 3. Section 4 presents the failure point analysis

of generic RAG architecture. Outline of the proposed approaches are pre-

sented in Section 5. Section 6 describes the solution approach in detail

whereas the experimental results are summarised in Section 7. Section 8

contains the conclusions drawn based on the aforesaid research and in-

vestigations along with future directions.

2 Literature Review

Recent advances in the LLM space like ChatGPT [2] and LLaMA [3]

have shown that increasing the model parameters is directly correlated

with LLM performance improvement. However, RAG based systems are

essential to enable the LLM based systems to go beyond the training

data. RAG evaluation [4] is the first step towards improving the system

performance. RAGAS [5] is one such system where researchers came up

with three main evaluation parameters namely faithfulness, answer rele-

vancy and context relevancy. These evaluation criteria give adequate

directions to the user towards improving the RAG based application sys-

tem.

Scott Barnett et. al. [14] have found that RAG systems can have several

failure points in different stages of the pipeline. In the literature, they

have mainly discussed seven failure points which are related to two

stages: Index process and Query process. These failure points motivate

the current researchers to design an optimal RAG system.

Xiaohua Wang et. al. [15] have explored various processing steps present

in RAG architecture, each of which can be executed in various ways.

They have investigated existing RAG approaches and their potential

combinations to identify optimal practices. As a result, they have sug-

gested several strategies for deploying RAG that balance both perfor-

mance and efficiency.

Cheonsu Jeong [16] have leveraged agentic framework to evaluate the

reliability of RAG systems and synthesize diverse data to generate more

accurate and enhanced responses. The author also has demonstrated the

graph-based agentic RAG system, along with specific algorithm and val-

idation results. This has demonstrated the feasibility of an enhanced

RAG system.

Florin Cuconasu et. al. [17] have considered key factors like relevance

of the chunks included as context, their position, and their number. Re-

search observation includes a counter-intuitive finding that retriever’s

highly relevant documents can negatively impact the effectiveness of

RAG systems. Authors also have found that by adding random docu-

ments in the prompt improves the LLM accuracy by up to 35%.

Researchers have come up with several new advanced RAG techniques

[6] like Query rewriting [7], HyDE [8] etc. which have shown significant

performance improvements of RAG systems in terms of previously de-

fined parameters. However, a complete RAG improvement framework

is the need of the hour, and the paper tries to address the gap by proposing

the same. Without the recommendation system, it would be just choosing

the technique randomly and perform trial and error. It may not be a fea-

sible approach as the operating cost will be too high.

In terms of embedding models, prior research work have shown the huge

number of state of the art models are available in the market. Researchers

also came up with evaluation metrices like Massive Text Embedding

(MTEB) benchmarking [9] to evaluate and compare embeddings model

with the existing benchmark.

In one of the literature [10], researchers looked into the desired properties

of the word embedding and evaluation techniques using two types

intrinsic and extrinsic. The study tried to offer a valuable guidance in

selecting suitable evaluation methods for different application tasks.

Jean-Baptiste Excoffier et. al. [11] have concluded based on their research

that generalist embedding models perform better than specialized ones at

short-context clinical semantic search. They curated a textual dataset on

clinical code and found that specialized embedding models are more

sensitive to small changes in input.

The literature review clearly shows the need of an holistic RAG

enhancement framework as no such concrete one is available. This has

motivated the current researchers to propose an end-to-end autonomous

framework for improving the performance of retrieval augmented

generation-based (RAG based) applications with minimal user

intervention which can tackle the different failure points [14] in a

systematic way. The framework can select the appropriate techniques in

each level based on the user requirements and system constraints.

3 Problem Statement

In the field of Generative AI, RAG is one of the most powerful ap-

proaches which combines the strength of language models and infor-

mation retrieval system so that meaningful and contextual responses can

be generated. However, several practical challenges are present in the sys-

tem so that always desired outcome cannot be achieved through RAG

methodology. Few such challenges or open questions are presented in the

following which have motivated the current researchers to design the pro-

posed framework.

A. What can be the best chunking strategy of documents while read-

ing them as input?

B. How can RAG system interpret the user query optimally?

C. What is the best way to store documents in the database which

leads to better retrieval and performance generation?

D. How to assign priority to a specific part of datasets which contain

the most relevant and trustworthy information?

E. Is there any way that system can re-rank the retrieved results

based on user requirements like semantic similarity, source cred-

ibility, or task-specific relevance?

F. How the retrieved output can be more meaningful in the context

of user query?

G. How to integrate content from various input documents?

H. Is there any way that redundancy can be removed from the final

response?

I. How to receive quality content which has the requisite depth and

free from inconsistencies?

J. Is there any way to check whether the correct part of the document

extracted in the process?

Additionally, using the embedding model is a must in all RAG based ap-

plications which also throws lots of confusion to the users. The following

presents a few of them. As a result, an embedding model selection

framework is included as a part of the proposed framework.

A. Is there any Embedding Model which can help to get better accu-

racy for the selected use case?

B. How to address the latency constraint in the project?

C. What is the correct embedding model to support big size docu-

ments taken as input?

D. How to choose the embedding model which can handle complex

scenarios?

E. Whether all the embedding models need GPU support, or any one

is available which does not require it?

F. How to take care of data privacy and security as it should not be

exposed to the outside world?

G. How to perform the embedding on non-English text?

4 Failure Point Analysis in Basic RAG based Applications

Retrieval augmented generation, or RAG, is an architectural concept

which can enhance the efficacy of large language model (LLM) applica-

tions by leveraging custom data. The custom data consists of user pro-

vided data in a document which is fed as an input to the system. The fol-

lowing Figure 1 presents the first part of the architecture which is Inges-

tion where user provided documents are divided into smaller chunks,

transformed into embedding vector and finally kept in the vector data-

base.

In the second part, depicted in Figure 2 shows the Retrieval and Synthesis

process where appropriate K chunks are retrieved from the vector data-

base based on user query and sent to LLM for evaluation. LLM performs

the synthesis based on user query and generates the final response based

on the given context.

Fig. 1: RAG Architecture: Ingestion

 Retrieval Synthesis

Figure 2: RAG Architecture: Retrieval and Synthesis

But there are several practical challenges in vanilla RAG which are

presented in the following. However, the proposed framework will try to

address the challenges to a meaningful extend.

A. Missing Content: One common case in RAG where incorrect answers

can appear, is retrieval of improper chunks as those are not related to

the question exactly.

Chunks Documents

Embeddings
 Index

Ingestion

 Query Index
 Top K

LLM Response

B. Missing Top Ranked Documents: The other scenario can be non-

retrieval of most relevant documents where relevance can be semantic

similarity, source credibility, or task-specific relevance.

C. Limitation in Consolidation Strategy: In few cases, multiple

documents can be associated for generating the final response where

appropriate consolidation takes a vital place as quality of final

response depends how effectively the chunks are merged together.

D. Problem in Extraction Format: This refers to the problem where

LLM output does not adhere the instructions given by the user; which

means output response format differs from the requested format.

E. Incorrect Specificity: This situation happens when the answer is re-

turned but is not specific enough or is too specific to address the user’s

need. It occurs when users are not sure about the correct question or

provided in a generic format.

F. Incomplete Response: It means that answers are not incorrect but

does not contain all the relevant points to make it complete though

those are present in the input document.

In summary, following are the limitations found in three stages:

• Retrieval Stage - Difficulties in perfect data retrieval and the re-

sponse relevance.

• Augmentation Stage - Emphasizing the complexities in synthe-

sizing multi-document information and managing conflicting

data.

• Generation Stage - Underscoring the need for responses that are

contextually complete and specific.

5 Outline of Proposed Framework

The following two frameworks are proposed to address the above set of

problems where an end-to-end recommendation system of various RAG

techniques will help the end users to select the appropriate RAG tech-

nique based on the evaluation metrices and the other one will recommend

the optimal embedding model which is the heart of any RAG based

architecture. The end objective is improving the accuracy of RAG based

applications.

A. Framework for Improving RAG-based Application

Performance

The following Figure 3 presents the outline of the proposed framework

for RAG-based application performance improvement.

Evaluate RAG based Application

 Get the Score of RAG Triad:

1. Context Relevence: How Context relevent to the Query ?

2. Groundedness: How much LLM Response supported by the Context ?

3. Answer Relevence: How Answer relevent to the Query ?

Score not Satisfactory

In Context
Learning/

Prompt

Engineering

Embedding
Model

Selection

Framework

Selecting
Optimal

Chunk

Strategy

Hybrid

Search

Meta

Filters

Multi-

Query

Retriever
Approach

HyDE
(Hypothetical

Document

Embeddings)

Evaluate RAG based Applications Stop

Large Language Model Small Language Model (Initial Retriever then

Poly-Encoder Reranker

Multiple Documents
Improve Answer
Relevence:Improve Specificity and

make the responses complete as

much as possible
Apply:

1. Refined response synthesis

techniques
2. Reranking Strategy

Improve Context

Relevence &

Groundedness:
Improve Retrieval and

Context Window size.

1. Sentence Window
Retrieval

2. Auto Merging Retriever

Improve Context

Relevence &

Groundedness:
Improve Retrieval and

Context Window size.

1. Sentence Window
Retrieval

Evaluate Context

Relevence &
Groundedness

Evaluate Context

Relevence &

Groundedness

N
o

t
Im

p
ro

v
ed

:
D

et
er

m
in

e

O
p

ti
m

al
 W

in
d

o
w

 S
iz

e

an
d

 R
u
n

 t
h
e

T
ec

h
n

iq
u
es

N
o

t
Im

p
ro

v
ed

:
D

et
er

m
in

e
O

p
ti

m
al

W
in

d
o

w
 S

iz
e

an
d

 R
u

n
 t

h
e

T
ec

h
n

iq
u

es

Advanced RAG Techniques

Performance

Improved

Performance

not Improved

Yes No

Figure 3. Outline of Proposed framework for RAG-based application performance

improvement

B. Embedding Model Recommendation System

The following Figure 4 presents the outline of the proposed framework

for Embedding Model Recommendation System.

Figure 4. Outline of Proposed Embedding Model Selection Framework

6 Solution Approach

A. RAG based Application Improvement Framework

The proposed framework presented in above Figure 3 has the following

major components or approaches.

• Configuration File: The configuration file enables end users to se-

lect different selection criteria like LLM, embedding model, chunk

size, chunking strategy along with other details like document path,

document type and vector store persistence path etc. It provides the

end users the flexibility to try out different parameters to build a RAG

system.

• Agent based Approach: Based on an Agentic approach, the Agent

will take different routes to populate the vector DB as shown below

Figure 5 according to the configuration parameters.

1

Select set of Embedding
Models

2

Identify Parameters as
Decision/Implicit Variables

3

Summarize User
Requirements

(Explicit Variables)

4

Build reference table for
embedding models
consisting implicit

variables

5

Derive Implicit Variables
from Explicit Variables

6

Recommend the
appropriate Embedding

Model

Improved Improved Stop

Figure 5. Agentic approach to populate Vector DB based on configuration file

• Evaluation metrices for RAG based applications: RAGAS [12]

package is utilized towards performing the evaluation of the applica-

tion in the beginning and in-between stages. It contains three

metrices which include context relevance, groundedness and answer

relevance where context relevance refers to the measurement of rel-

evance of the context to the user query. To verify the groundedness

of the application, we can separate the response into individual

claims and independently search for evidence that supports each

within the retrieved context. Answer relevance is the metric which

checks the relevance of the answer to the user query. We can verify

this by evaluating the relevance of the final response to the user input.

• RAG implementation for Large Language Model and Small

Language Model: Implementing RAG techniques for small lan-

guage model is little bit different from the LLM; hence initial re-

triever and poly encoder re-ranker are proposed here instead of all

other advanced techniques.

• Challenges in handling multiple documents: This is one thing in

real life applications where multiple input documents are there and

the answer to each question comes from more than one document.

In these cases, some advanced techniques for auto-merging re-

triever is proposed which takes care of this problem by returning

the parent chunk instead on individual child chunk.

B. Embedding Model Selection Framework

Embedding selection framework goes through a series of six steps, below

we will discuss each of the steps in detail.

Step 1 - Selection base of 100 embedding models: Using a popular

leader board [10] and after doing some of our research on the popular

embedding models we have selected a set of 100 embedding models. Our

recommendation would be based on this set of models.

Step 2 – Identify the decision variables or implicit variables: The de-

cision variables are the parameters or features used to describe various

aspects of the embedding model. Out of several available parameters, we

have considered the following ones primarily in our framework.

• Model Size: This refers to the number of parameters in the em-

bedding models. Larger models usually have more parameters,

which can lead to better performance but also higher computa-

tional costs and latency.

• Embedding Dimension: The size of the vector representation

(embedding) that the model generates for each input token. Com-

mon sizes are 300, 768, 1024, etc. The latency of semantic search

grows with the dimension of embeddings. Low dimensional em-

beddings can be selected to minimize latency.

• Average: This refers to the average performance metric across

multiple tasks or datasets.

• Classification Average: The average performance of the model

on classification tasks. This includes accuracy metric and unit is

percentage (%).

• Retrieval Average: The average performance of the model on

retrieval tasks, which involve finding relevant documents or pas-

sages based on a query. Metrics include Normalized Discounted

Cumulative Gain @ 10 (nDCG@10) and unit is ratio (range from

0 to 1).

• Clustering Average: The average performance of the model on

clustering tasks. This involves Validity Measure(V-measure) and

unit ratio (0 to 1).

• STS (Semantic Textual Similarity): Semantic Textual Similar-

ity is the task of determining how similar two texts are. Metrics

include Spearman correlation based on the model's similarity

metric (usually cosine) and unit is ratio (range from -1 to 1).

• Summary Average: Summarization is the task of generating a

summary of a text. Metrics include Spearman correlation based

on the model's similarity metric (usually cosine) and unit is per-

centage (%).

• Max Token: The maximum number of tokens (words or sub-

words) the model can process in a single input. This is important

for understanding the model's capacity to handle longer texts.

• Embedding Latency: The time it takes for the model to generate

an embedding for a given input. This is usually measured in mil-

liseconds and can be influenced by the model size, input length,

and hardware used and unit is milliseconds (ms).

• Embedding Type: The type of embeddings the model generates.

This includes static and dynamic. Static models require inputs of

a fixed length, needing padding or truncation whereas dynamic

models can handle varying input lengths.

• GPU Support: Indicates if the model can leverage GPU acceler-

ation for faster computation. Models that support GPU can sig-

nificantly reduce latency and improve throughput compared to

CPU-only models.

• Multilingualism: Multilingual encoder or a translation system

can be chosen alongside an English encoder to support non-Eng-

lish languages. Key considerations for choosing a multilingual

embedding model include language coverage, dimensionality,

and integration ease.

• Model Type: Stringent data privacy requirements, especially in

sensitive domains like finance and healthcare, may influence the

choice of embedding services. Evaluate privacy considerations

before selecting a provider. Hence, we can select public models

instead of licensed ones as those can be downloaded privately

and utilized.

Step 3 – Capture and Summarize User requirements: This is a very

crucial step as user satisfaction ultimately determines the efficacy of the

framework. Hence, user requirement should be analyzed carefully to

ensure the right model selection. Seven common input parameters are

primarily considered which are presented below. They cover most of the

queries present in the problem statement section, also referred as explicit

variables.

• Use Case

• Latency

• Document Length

• Task Type

• GPU Availability

• Model Type

• Non-English Language Support Required

Step 4 – Build reference table for embedding models consists of

implicit variables: Based on the available features of embedding models

the process builds the reference dataset which contains the values of

implicit variables.

Step 5 – Map decision variables (or implicit variables) from user

requirements (or explicit variables): Once we have captured the user

requirements, the next step is to map explicit variables to the implicit

variables. Following Figure 6 shows the mapping between the two set of

variables. Based on that, the rulesets are created for recommendation.

Figure 6. Mapping between implicit and explicit variables

Step 6 – Recommend appropriate embedding models: Based on the

rules and mapping between the explicit and implicit variables; finally,

filters are applied to come up with set of recommendations. This set of

recommendations is also sorted based on the user provided requirements.

7 Experimental Setup and Results

A. Performance improvement of RAG based applications through proposed

Framework

Our proposed framework is fully functional which was tested on multiple

datasets. It allows us to run different RAG methodologies and provides

evaluation scores accordingly. Appropriate recommendations can be

chosen from the framework based on the received evaluation score and

other user-provided requirements towards improving the same. Below

Figure 7 and Figure 8 present a few such sample snapshots of the results.

Figure 7. RAG improvement framework evaluation results

Below is the comparison of different advanced RAG techniques using

the recommended framework. Th result shows that average context rel-

evancy has been improved using some of the advanced RAG recommen-

dations like sentence window retriever or auto merging retriever.

Figure 8. Average RAG Triad score for different RAG techniques

B. Embedding model selection framework

Embedding model selection framework is based on a user interface

where users can select different criteria based on the use case which will

Question RAG Types Reranking Goundedness Answer Relevancy Context Relevancy
Vanila Rag Yes 0.801 0.73 0.024

Hyde Yes 0.501 0.33 0.000
Ensemble Retriever Yes 0.901 0.761 0.029

Sentence Window Retriever Yes 0.95 0.701 0.304
Auto Merging Retriever Yes 1 0.830 0.333

Vanila Rag Yes 0.800 0.918 0.003
Hyde Yes 0.800 0.970 0.004

Ensemble Retriever Yes 0.847 0.960 0.003
Sentence Window Retriever Yes 0.867 0.968 0.058

Auto Merging Retriever Yes 0.857 0.969 0.388
Vanila Rag Yes 0.790 0.863 0.100

Hyde Yes 0.800 0.767 0.015
Ensemble Retriever Yes 0.833 0.740 0.012

Sentence Window Retriever Yes 0.500 0.909 0.100
Auto Merging Retriever Yes 0.933 0.909 0.267

Tell me five key bulluet points
about transformer archietecture.

Tell me how Multi-Head attention
is different from traditional

attention mechanism.

How encoder module is different
from decoder module.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auto Merging

Retriever

Ensemble Retriever Hyde Sentence Window

Retriever

Vanila Rag

Average RAG Triad Scores

Groundedness Answer Relevancy Context Relevancy

in turn produce a list of recommended embedding models. Following

Figure 9 shows the list of choices present in the user interface whereas

Figure 10 presents the recommendations of the embedding models.

Figure 9. Embedding model selection framework – user selection criteria

Figure 10. Embedding model selection framework – model recommendations

8 Conclusions and Future Scope

Currently, RAG is the most widely used approach in the current era of

Gen AI; however, the response is not always optimal due to the various

limitations in different phases of retrieval, augmentation and generation.

Few such limitations are missing content, missing top ranked documents,

limitation in consolidation strategy, problem in extraction format, incor-

rect specificity and incomplete response. An end-to-end RAG method

adoption framework is proposed towards addressing this challenge

which will recommend the optimal technique in each stage of evaluation

based on existing scenarios so that the application performance can be

improved. Additionally, one recommendation system is developed

which will suggest the most appropriate embedding model based on user

requirements as embedding model is the heart of the RAG architecture.

However, there are few areas exist to improve the framework which in-

clude developing new advanced approaches to receive better contextual

response from the LLM, incorporating agents in the whole eco-system to

make the RAG agentic, proposing autonomous agents for improving

RAG based application performance, hallucination identification and

mitigation with agents and self-corrective process with feedback loop

which will select the optimal RAG improvement strategies in automated

manner.

References

[1] Lewis, Patrick, et al. "Retrieval-augmented generation for

knowledge-intensive nlp tasks." Advances in Neural Information Pro-

cessing Systems 33 (2020): 9459-9474.

[2] Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint

arXiv:2303.08774 (2023).

[3] Touvron, Hugo, et al. "Llama: Open and efficient foundation lan-

guage models." arXiv preprint arXiv:2302.13971 (2023).

[4] Salemi, Alireza, and Hamed Zamani. "Evaluating Retrieval Quality

in Retrieval-Augmented Generation." Proceedings of the 47th Interna-

tional ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval. 2024.

[5] Es, Shahul, et al. "Ragas: Automated evaluation of retrieval aug-

mented generation." arXiv preprint arXiv:2309.15217 (2023).

[6] Gao, Yunfan, et al. "Retrieval-augmented generation for large lan-

guage models: A survey." arXiv preprint arXiv:2312.10997 (2023).

[7] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan.

Query rewriting for retrieval-augmented large language models. arXiv

preprint arXiv:2305.14283, 2023.

[8] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise

zero-shot dense retrieval without relevance labels. arXiv preprint

arXiv:2212.10496, 2022.

[9] Muennighoff, Niklas, et al. "MTEB: Massive text embedding bench-

mark." arXiv preprint arXiv:2210.07316 (2022).

[10] Wang, Bin, et al. "Evaluating word embedding models: Methods

and experimental results." APSIPA transactions on signal and infor-

mation processing 8 (2019): e19.

[11] Excoffier, Jean-Baptiste, et al. "Generalist embedding models are

better at short-context clinical semantic search than specialized embed-

ding models." arXiv preprint arXiv:2401.01943 (2024).

[12] RAGAS package reference: https://docs.ragas.io/en/stable/con-

cepts/metrics/index.html

[13] RAGAS package reference: https://ragas.io/

[14] Barnett, Scott, et al. "Seven failure points when engineering a re-

trieval augmented generation system." Proceedings of the IEEE/ACM

3rd International Conference on AI Engineering-Software Engineering

for AI. 2024.

[15] Wang, Xiaohua, et al. "Searching for best practices in retrieval-aug-

mented generation." Proceedings of the 2024 Conference on Empirical

Methods in Natural Language Processing. 2024.

[16] Jeong, Cheonsu. "A Study on the Implementation Method of an

Agent-Based Advanced RAG System Using Graph." arXiv preprint

arXiv:2407.19994 (2024).

[17] Cuconasu, Florin, et al. "The power of noise: Redefining retrieval

for rag systems." Proceedings of the 47th International ACM SIGIR

Conference on Research and Development in Information Retrieval.

2024.

https://ragas.io/

