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Abstract. Man-made ship collisions have greatly affected the marine environment. Automatic identification system (AIS) is 

widely used. Currently, researchers use AIS-based data analysis methods to predict navigation risks, but they have not been able 

to solve the problem of real-time ship detection. This paper studies the real-time detection method of a ship's single-shot multi-

box detector (SSD) framework with typical application scenarios. SSD is a single-order deep convolutional neural network (CNN) 

learning algorithm that uses a feedforward CNN to generate a set of fixed-size bounding boxes for each object from a different 

feature map. We evaluated a number of different feature extractors, including Faster RCNN (VGG16), YOLO, YOLOv2, 

YOLOv3, SSD300, SSD512, RefineDet320, RefineDet512. In 2019, we collected a detection dataset of a ship sailing video atlas. 

To verify the method, we identified it using various ship detection methods and compared the SSD with YOLO and RefineDet. 

Our results show that the method has good test results and surpasses all ship detection methods. Specifically, in terms of detection 

speed, our proposed method is superior to all methods and can meet the actual needs of ships when detecting ships in the 

surrounding waters in real time. In short, the SSD-based real-time ship detection method performs well and has the potential to 

improve accuracy and efficiency. 
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1. Introduction 

In 2018, the maritime accident of the "Sanji" in the 
East China Sea caused considerable marine pollution 
and economic losses. After a joint investigation by the 
International Maritime Organization (IMO) and a 
number of stakeholder countries, the results showed 
that the main factor was human error, as shown in 
Figure 1. Based on this, this paper proposes an SSD 
navigation vision real-time ship detection method 
based on a deep convolutional neural network. 

 

Fig. 1. "Sanji" accident scene 

Artificial intelligence technology has developed 
rapidly, and experts and scholars from various 
countries worldwide have conducted much research on 
deep learning methods. Real-time ship detection 
methods based on deep learning are mainly divided into 
detection methods based on ship characteristic data, 
such as automatic identification system (AIS) and 
detection methods based on machine learning, such as 
convolutional neural network (CNN). 

The traditional ship collision avoidance method 
based on AIS big data has the characteristics of 
positioning, navigation, timing error, and being 
deceived, which are greatly affected by human factors. 

Therefore, the real-time ship detection method based 
on SSD has practical application requirements. 

The detection method based on ship characteristic 
data mainly detects the ship position based on edge data 
[1-2], texture [3], corner points [5-6], colour [7], and 
morphological feature data in the image. Reference [8] 
improved the mixed Gaussian background model, 
combined with [9] morphological and other feature 
hypothesis verification, and good results were achieved 
[10]. The Sobel operator was used to detect all vertical 
edge image data in the image, and the vertical 
integration projection was used. Features determine the 
area of interest. Literature [11] analysed the ship's edge 
data, used Gabor filters to extract corresponding 
features, and achieved good results using SVM 
classifiers. The literature [12] combined shallow-level 
features that are prone to error classification but are 
high-resolution and high-level features that are low-
resolution but abstract, resulting in better candidate 
regions and further improving the accuracy of detection. 
Literature [13] used the Faster RCNN network to 
extract deep convolution features of ships, which not 
only addressed the problem of traditional dependence 
on manual features but also greatly improved the 
efficiency of target detection. However, these two deep 
learning methods do not meet real-time requirements. 

In 2016, Wei Liu proposed the SSD detection 
method [14]. SSD is a new end-to-end detection 
method. SSD is also a type of CNN, but SSD not only 
retains the previous CNN algorithm but can ensure 
accuracy and meet real-time requirements. 

In this paper, we propose a real-time ship detection 
method based on SSD. In addition, we carried out 
multiple tests in 2019 to test SSD-based real-time ship 
detection methods in Zhoushan City, Zhejiang 



Province, Shanghai City, and Fuzhou City, Fuzhou 
Province. We validate our method using different data 
sets, the Kaggle Airbus Ship Detection Challenge, and 
Kaggle digital. 

Compared to traditional methods and CNN-based 
ship detection methods, our system achieves an 
excellent balance between efficiency and accuracy. 
With extremely high detection speeds, our system 
obtains the highest number of ship identifications. 
Specifically, our proposed SSD algorithm is faster than 
Faster RCNN [15,16]. Similarly, our system is much 
more accurate than the YOLO of the same stage 
method. 

Finally, we conducted a large number of 
experiments using SSD-based ship identification 
methods. The results show that we verified that with 
other image datasets and FasterRCNN, YOLO, 
YOLOv2, YOLOv3, SSD300, SSD512, RefineDet320, 
RefineDet512, compared with the research of SSD 
(DP-SSD300 and DP-SSD512), our detection model 
shows higher detection performance. 

2. Methodology 

Deep learning methods have developed rapidly, and 
visual deep learning methods and models in the 
computer field have also emerged rapidly. For example, 
Faster RCNN, YOLO [17], and SSD [18] have made 
breakthrough progress in natural target recognition and 
detection, such as China's Megavision Technology Co., 
Ltd. Unlike Faster RCNN [19], YOLO and SSD do not 
require regional recommendations because they can 
completely eliminate and suggest the generation and 
subsequent function of multiple sampling stages and 
encapsulate all the calculated data in the network. 
Therefore, SSD and YOLO as one-stage methods are 
different from Faster RCNN [20] as a two-stage 
method. The tests show that the SSD detection method 

can obtain higher accuracy and increase the detection 
speed and has a good use effect. However, in all 
detection models, the SSD method can achieve higher 
accuracy and excellent data. Therefore, it has 
application potential in real-time detection. 

2.1. SSD algorithm 

The CNN network algorithm is used to detect ships 
in the following steps: 

Step 1: Generate a title box in the image; 
Step 2: Feature extraction for the title box; 
Step 3: Perform feature verification on the trained 

classifier. 
Therefore, it is possible to ensure that the detected 

SSD algorithm emerges as necessary, and that it has 
both real-time capability and accuracy. Such a target 
detection algorithm is a considerable breakthrough. To 
improve the accuracy of SSD-based real-time ship 
detection algorithms, we adjusted the basic network 
structure and adopted a multilayer network structure, 
which is a major breakthrough in the history of target 
detection. To further improve the accuracy, we adopt a 
multilayer structure for the feature extraction method 
of the basic network. 

2.2. SSD framework 

An SSD network based on a feedforward CNN 
generates a fixed-size bounding box based on size or 
expansion. Additionally, a scoring system is used to 
obtain the score of the placed pair category. Finally, a 
nonmaximum suppression algorithm is used to 
eliminate duplicate frames to obtain the final detection 
frame. In the experiment, we use the VGG-16 network 
and the basic CNN network and use this feature 
extraction network to perform feature extraction on the 
input image. Different from the ordinary CNN network, 
we did not use a fully connected layer but designed a 



new type of auxiliary structure, which resulted in the 
following two special detectors. 

Multiscale feature map detector: Several 
convolutional feature layers are added at the end of the 
basic network. The sizes of these layers gradually 
change to form a pyramid structure, which enhances 
the network's robustness to vehicle size. Moreover, the 
convolution models detected on each feature layer are 
different. 

Detected convolution predictor: We designed a 
convolution filter for the newly added feature layer to 
obtain a fixed set of predictions. For a feature layer 
with c channels and a size of m × n, we use a 
convolution kernel of size 3×3×c to obtain the score of 
the category or the coordinate transformation relative 
to the alternating box. In the feature map, an output 
result is obtained at the corresponding position through 
the convolution kernel function of size m×n, as shown 
in Figure 2. 

 

Fig. 2. Proposed SSD polyp detection framework architecture. A 

feature extractor is used to generate features from different spatial 

resolution layers. 

2.3. SSD network training 

When training the SSD network model, we assign 
the ship tag information to a specific output of the 
detector output set. Once the specified correspondence 
is determined, we can apply the loss function and 
backpropagation in an end-to-end manner. 

The training phase is divided into the following three 
steps: 

Step 1: Establish the correspondence between the 
ship's actual label and the default box in the training set. 
For each label box, we choose from the determined 
default box. At the beginning of training, we match 
each real label box with the best Jaccard of the default 
box to overlap, which can greatly simplify the need for 
learning computing power. Therefore, we obtain higher 
confidence from multiple overlapping default boxes. 

We make 𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝 = {0,1} , where 𝑥𝑥𝑖𝑖𝑖𝑖

𝑝𝑝 = 1  indicates 
that the i default box matches the j real label box of 
category P. According to this matching strategy, we 
obtain ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑝𝑝 ≥ 1,𝑖𝑖  that is, at least one can match the j 
real label box. The overall target loss function is the 
weighted sum of confidence loss and position loss. 

𝐿𝐿(𝑥𝑥, 𝑐𝑐, 𝑏𝑏,𝑔𝑔) = 1
𝑁𝑁
�𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) + 𝛼𝛼𝐿𝐿𝑙𝑙𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑏𝑏,𝑔𝑔)� (1) 

where N is the total number of matching default 
boxes. When 𝑁𝑁 = 0, we consider the loss to be 0. 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) = 

−∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝 log �𝑐𝑐𝚤𝚤

𝑝𝑝��𝑁𝑁
𝑖𝑖∈𝑃𝑃𝑐𝑐𝑃𝑃 − ∑ log�𝑐𝑐𝚤𝚤0��𝑖𝑖∈𝑁𝑁𝑁𝑁𝑁𝑁        (2) 

where  

𝑐𝑐𝚤𝚤
𝑝𝑝� = 𝑁𝑁𝑒𝑒𝑝𝑝�𝑐𝑐𝑖𝑖

𝑝𝑝�
∑ 𝑁𝑁𝑒𝑒𝑝𝑝�𝑐𝑐𝑖𝑖

𝑝𝑝�𝑝𝑝
                           (3) 

The position loss is the smoothing loss between the 
prediction box and the true label value box parameters. 
𝐿𝐿𝑙𝑙𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑙𝑙,𝑔𝑔) =

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚∈{𝑐𝑐𝑒𝑒,𝑒𝑒𝑥𝑥,𝑤𝑤,ℎ} 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿1�𝑙𝑙𝑖𝑖
𝑚𝑚 − 𝑔𝑔𝚥𝚥𝑚𝑚� �𝑁𝑁

𝑖𝑖∈𝑃𝑃𝑐𝑐𝑃𝑃     (4) 
where, 
𝑔𝑔𝚥𝚥𝑐𝑐𝑒𝑒� = �𝑔𝑔𝑖𝑖𝑐𝑐𝑒𝑒 − 𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒� 𝑑𝑑𝑖𝑖𝑤𝑤�                     (5) 

𝑔𝑔𝚥𝚥
𝑐𝑐𝑥𝑥� = �𝑔𝑔𝑖𝑖

𝑐𝑐𝑥𝑥 − 𝑑𝑑𝑖𝑖
𝑐𝑐𝑥𝑥� 𝑑𝑑𝑖𝑖ℎ�                     (6) 

𝑔𝑔𝚥𝚥𝑤𝑤� = log�𝑔𝑔𝑖𝑖𝑤𝑤 𝑑𝑑𝑖𝑖𝑤𝑤⁄ �                       (7) 
𝑔𝑔𝚥𝚥ℎ� = log�𝑔𝑔𝑖𝑖ℎ 𝑑𝑑𝑖𝑖ℎ⁄ �                        (8) 
Step 2: the number of network layers increases, and 

the pooling process reduces the obtained feature maps. 
Therefore, the need for computing power can be greatly 



reduced. Saving memory can ensure the translation of 
the features and the same scale. To make the algorithm 
robust to scales, Sermanet et al. used images of 
different sizes as training sets and obtained better 
results. We can combine the prediction results of 
feature maps extracted at different levels in the base 
layer to achieve similar results. The experimental 
results of Hariharan et al. can guide the feature maps of 
lower layers and improve the semantic segmentation 
results. Similarly, global text sampled in a high-level 
feature map can improve the result of smooth 
segmentation. Within the SSD framework, the default 
frame settings do not need to correspond to the actual 
field of view of each layer. We can obtain the 
prediction set containing the different sizes and shapes 
of the input object through the combination of different 
sizes of feature maps and the prediction results of the 
default boxes with different aspect ratios. For example, 
in Figure 3, the default box of the ship 4×4 feature map 
matches but does not match the default box of the 8×8 
feature map. This is because the default boxes all have 
different sizes but do not match the ship's box, so they 
are considered negative samples during training. 

a. Real map    b. 8×8 Feature map     c.4×4 Feature map 

Fig. 3. Schematic diagram of SSD 

Step 3: Most of the default boxes centred on real 
labels are negative samples, which causes a serious 
imbalance in the proportion of positive and negative 
samples during training, thereby reducing the accuracy 
of detection. Therefore, we sort the highest confidence 
of each default box. By selecting the box that is ranked 
first, we guarantee that the ratio of positive and 
negative samples is at most 3:1, instead of using all 
negative samples. 

During the training process, to make the model more 
robust to the size and shape of the input image, the data 
are augmented by random sampling of the training 
image. If the box centre of the real label is within the 
sampled segment, the overlapping part is retained. At 
the same time, to maintain the uniformity of the 
network, we set the size of each sample slice to a fixed 
value and horizontally flip it with a probability of 0.5. 

3. Experiment 

3.1. Data selection 

We evaluated the SSD model using the Kaggle 
Airbus Ship Detection Challenge and the Kaggle 
digital datasets. The datasets contain 2,000 images 
obtained from 50 videos of 10 voyages from Shanghai, 
Zhoushan City, Zhejiang Province, and Fuzhou City, 
Fujian Province. We also evaluated SSD in the dataset. 
Details of these datasets are listed below. 

The Kaggle Airbus Ship Detection Challenge 
contains 1,000 images with ship detection results 
obtained from 25 video sequences obtained from 5 
voyages. 

The Kaggle digital dataset contains 1,000 images 
with relevant ship pictures, backgrounds (including 
multiple ships, reefs, and lighthouses), and is 
segmented from 25 video sequences obtained within 5 
voyages. We have a database of frames extracted from 
the ship video detection video. These frameworks 
contain multiple examples of ships. 

All annotations provided in the dataset are per-pixel 
masks, while SSD requires ground-truth bounding 
boxes. Therefore, to feed data using SSD, we convert 
the mask to a rectangular frame and ensure that all ships 
are inside the frame, as shown in Figure 4. 



 

Fig. 4. Bounding box with a green rectangle is the notation used 

during SSD training. 

3.2. Evaluation indicators 

We use a new evaluation method. Specifically, when 
testing ships in the area, each ship considers only one 
true negative, which can be considered (TN). Any test 
value other than the ship is regarded as a false positive 
and can be considered (FP). The situation in which the 
ship's image is not identified is considered a false 
negative and can be considered (FN). If the ship is not 
found in the picture, and no picture is provided for the 
picture output, we define this value as true negative 
(TN). Among them, true positives, we define as (TP); 
false positives, we define as (FP); false negatives, we 
define as (FN); true negatives, we define as (TN). After 
testing, we give different details. The performance 
indicators (precision, recall, specificity, F1 
measurement, F2 measurement) are listed. 

 
 
 
 
 

Table.1. 

Performance metrics for polyp detection. 

Metric Abbreviation Calculation 

Precision Prec 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

Recall Rec 𝑅𝑅𝑃𝑃𝑐𝑐 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

Specificity Spec 𝑆𝑆𝑆𝑆𝑃𝑃𝑐𝑐 =
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

F1-measure F1 𝐹𝐹1 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 × 𝑅𝑅𝑃𝑃𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑃𝑃𝑐𝑐

 

F2-measure F2 𝐹𝐹2 =
5 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 × 𝑅𝑅𝑃𝑃𝑐𝑐
4 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑃𝑃𝑐𝑐

 

3.3. Implementation 

We use the programming language PyTorch to carry 
out the experiments. The graphics card used is NVIDIA 
GeForce RTX 2080Ti. The processor is an Intel (R) 
Core (TM) i9 9900KF CPU @ 3.6 GHz, with 32.0 GB 
of RAM. Due to the lack of sufficient data, we use the 
dataset for training to extract feature models. In the 
training process, we use the mean method to train the 
model. To improve robustness and reduce overfitting, 
the following data theory should be adopted: 

Random cropping, scene changed to colour; 
Adjust all pictures to 300×300, 320×320, 416×416, 

448×448, 512×512, 544×544; 
Random sampling 
Finally, we conduct multiple groups of experiments 

for comparison. 

4. Results and discussion 

Real-time detection of ships is a very difficult task 
because ships have different shapes and video 
monitoring angles. During the test, due to the effects of 
ship roll, pitch, and strong and weak light, the test 
results will also affect the speed and real-time detection 
results of the ship. This article tests the SSD framework 
with high accuracy, low computational complexity, 
and fast speed. In order to explore the power of the SSD 
method, we also performed multiple sets of 
experiments, including Faster RCNN (VGG16), 



YOLO, YOLOv2, YOLOv3, SSD300, SSD512, 
RefineDet320, RefineDet512, SSD (DP-SSD300 and 
DP-SSD512). Finally, we tested the SSD method using 
image and video data from Shanghai, Zhoushan City, 
Zhejiang Province, and Fuzhou City, Fujian Province. 
Compare and evaluate real-time ship monitoring data 
of Faster RCNN (VGG16), YOLO, YOLOv2, 
YOLOv3, SSD300, SSD512, RefineDet320, 
RefineDet512, SSD (DP-SSD300 and DP-SSD512). 

Table.2.  

Multi-group test results for real-time monitoring of ships 

Method Input mAP(%) FPS 

Faster RCNN(VGG16) - 72.69 11.27 

YOLO 448×448 62.50 42.33 

YOLO v2 416×416 73.84 64.66 

YOLOv2 544×544 544×544 75.97 39.15 

YOLOv3 416×416 88.11 51.27 

SSD 300 300×300 74.21 58.79 

SSD 512 512× 512 76.85 27.77 

RefineDet320 320×320 76.81 46.81 

RefineDet512 512×512 77.71 29.46 

Ours (DP-SSD300) 300×300 76.45 54.49 

Ours (DP-SSD512) 512× 512 77.97 25.13 

4.1. Precision comparison 

As shown in Figure 2, we use SSD and other 
monitoring methods for comparison, using different 
feature extractors respectively. The experiments show 
that in the tests of Faster RCNN (VGG16), YOLO, 
YOLOv2, YOLOv3, SSD300, SSD512, RefineDet320, 
RefineDet512, SSD (DP-SSD300 and DP-SSD512), 
we found that SSD has a lower false alarm rate. 
Therefore, the ship recognition method using SSD has 
the strongest recognition accuracy of ship picture 
information. 

We use three methods of end-to-end, hybrid method 
and manual plotting to test the target picture. We found 
that using the SSD method can generate feature 

extractors from layers with different spatial resolutions, 
so that the largest proportion of ship features can be 
captured, while having the least false positive results. 
Through experiments with multiple sets of CNN 
feature extraction methods, when the picture quality 
and hardware are in the same operating environment, 
the real-time ship detection method using the SSD 
method has the highest accuracy. 

4.2. Detection efficiency 

We have tested Faster RCNN (VGG16), YOLO, 
YOLOv2, YOLOv3, SSD300, SSD512, RefineDet320, 
RefineDet512, SSD (DP-SSD300 and DP-SSD512). 
The test results show that the real-time monitoring 
method for ships in SSD has the characteristics of 
simultaneous classification and regression, and has the 
image recognition type. It has the strongest detection 
efficiency in the same environment as the hardware 
operating environment. When the application scene is 
at different angles, light intensity and environment 
rendering, the main factor for SSD detection is the 
elimination of the region replacement step. The two-
stage detection method (for example, Faster RCNN) 
between this step. Therefore, this method is better than 
other methods. More effective and accurate. 

 

Fig. 5. Precision-recall curves for all the methods 
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The performance of SSD with three backbones is 
much better than that of the teams that attended the 
other methods but slightly lower than that of the two-
stage method. 

4.3. Comparison of experimental results 

We compare the real-time ship detection method of 
SSD with the literature [12]. As shown in Table 2, the 
accuracy of detection speed F1 and F2 has faster real-
time ship detection results. We conducted tests on the 
best data set of 198 ships, and the test results can detect 
180 ships. As shown in Table 3, during the training 
process, the post-processing period and other data sets 
are tested, and the training is repeated many times. The 
results show that the real-time ship monitoring method 
using SSD has the strongest real-time ship detection 
capability and the shortest detection time when using 
the same test data set and hardware environment. 

a. Compared with YOLO 
We compare YOLO and SSD in two groups. The test 

results show that when using YOLO for real-time ship 
inspection, YOLO is lower than SSD in both the 
accuracy of the test results and the detection speed. 
This is mainly because when YOLO is used for image 
recognition, the feature map generates candidate 
frames, which is affected by the spatial resolution of 
the picture, resulting in lower accuracy and detection 
time. On the other hand, SSD can use multiple spatial 
resolutions and different feature layers to generate real-
time ship detection results. Therefore, the test results 
using the SSD method have stronger detection 
accuracy and higher detection efficiency. 

b. Comparison with RefineDet 
We compared the RefineDet and SSD trials. The test 

results show that the RefineDet method of the multi-
step target detection network is used to perform real-
time video detection on ship targets.  

Step 1, generates a series of multiple candidate 
frames;  

Step 2, performs classification regression on the 
target pictures;  

Step 3, confirms the ship recognition result.  
SSD method, which uses multiple candidate frames 

generated in each unit to perform classification and 
regression at the same time. Therefore, the test results 
using the SSD method have higher detection accuracy 
and detection efficiency. 

4.4. Detection and Identification  

We use different methods to evaluate the impact of 
the test feature extractor. The test results are shown in 
Table 3. The values in the table show the confidence 
level of the ship's detection area. Specifically, as shown 
in Table 3, training evaluation indexes of feature 
extractors using different methods. 

Table.3.  

Detection identification evaluation 

Method Map (%) Easy Hard Runtime 

Moderate 

Faster RCNN (VGG16)     

YOLO 91.98 91.99 84.55 0.37s 

YOLO v2 85.35 89.21 74.81 0.1s 

YOLOv2 544×544 84.74 88.97 72.66 0.1s 

YOLOv3 83.86 87.38 70.72 0.08s 

SSD300 82.39 88.15 71.71 0.07s 

SSD512 81.55 76.22 66.84 0.7 s 

RefineDet320 81.37 90.37 70.31 0.7 s 

RefineDet512 79.78 89.79 78.59 0.34s 

Ours (DP-SSD300) 79.23 90.13 65.69 0.3 s 

Ours (DP-SSD512) 79.23 90.13 65.69 0.3 s 

Different ship appearances, different photo angles, 
and different light intensities make it difficult to detect 
the ship. To solve this problem, SSD uses multi-layered 
functional maps with different spatial resolutions. At 
the same time, it can use filters or accept different 



combinations of different fields for image feature 
extraction. 

The SSD structure enables the network to obtain ship 
features covering different sizes and shapes through 
different convolution sizes, so it can reduce and large 
changes in shape. For SSD, the fast connection network 
used to reconstruct the convolutional layer still retains 
more ship characteristics when deep. This structure 
helps to improve the detection area of ships based on 
the SSD detection method. 

It is shown that different filter sizes and shortcut 
connections are crucial for the extraction of ship 
features. I compare the SSD with YOLO and RefineDet. 
We use the SSD method to detect ships in real time. In 
summary, low-level features have typical geometric 
data, and high-level features have more semantic data, 
which can effectively improve the detection accuracy. 

We use the SSD method for real-time video 
detection of marine vessels, and the successful 
detection result is green. We extract single target 
detection results, multiple target detection results, and 
different angle target detection results, as shown in 
Figure 6. 

 

Single target ship detection 

 

Multi-target ship detection 

 

Multi-angle target ship detection, the first is the original picture 

Fig.6. Ship target detection results 

4.5. Limitations 

Our research has limitations. The experimental data 
and real-time scene samples are limited, and larger 
experimental samples are needed in the future. Among 
them, the lack of more tests on factors such as light 
intensity, photo angle, complex environment, and ship 
sway. The detector is specifically trained to distinguish 
ship shapes in different scenarios. However, as shown 
in Figure 7, they still have difficulty identifying ships 
(small ships in distant scenes). Experiments show that 
the method of obtaining more training data can improve 
the accuracy of SSD-based ship identification methods. 
The test dataset contains more ship data, so it cannot be 
directly compared with the actual scene of 
manipulating the ship. Considering that maritime 
accidents triggered by ship navigation will cause 
inestimable losses, we need to conduct comprehensive 
training on the ship dataset. Further prospective 
research is needed to verify the performance of its 
algorithm. 



 

Fig.7. Sample failure detection. There are failure results in the 

first ship detection target, marked in red. 

5. Conclusions  

In this article, we have studied a method based on 
the SSD (DP-SSD300 and DP-SSD512) framework. 
We use different feature extractors to perform multi-
dataset and multi-learning on ship pictures. 
Subsequently, we embedded video and pictures into the 
real-time ship detection system of SSD, and compared 
with the methods of YOLO and RefineDet, we verified 
that the ship detection method using SSD architecture 
has high accuracy and high efficiency. Our research 
shows the feasibility of SSD-based methods to provide 
ship pilots with additional information. The 
development of a real-time ship automatic 
identification platform will have a positive impact on 
future ship navigation based on artificial intelligence 

technology. At the same time, we will further develop 
hardware that improves detection accuracy and 
efficiency, develops cheaper and more stable. At the 
same time, we will make recommendations to the 
International Maritime Organization (IMO) and the 
International Association of Marine Aids to Navigation 
and Lighthouse Authorities (IALA) for the 
establishment of demonstration projects. 
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