
EasyChair Preprint
№ 8835

Key Issues in Software Testing in Quality
Assurance and Recommendations for Improvement

Maria Afzal, Sidra Yousaf and Saleem Zubair Ahmed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 15, 2022

"Key Issues in Software Testing in Quality Assurance

and Recommendations for Improvement"

Maria Afzal (MSSE-F21-010), Sidra Yousaf (MSSE-F21-015)

msse-f21-010@superior.edu.pk, msse-f21-015@superior.edu.pk

Saleem Zubair Ahmed

Saleem.zubair@superior.edu.pk

Superior University of Lahore, Pakistan.

Abstract:

Quality Assurance ensures that the project is

executed according to the pre-agreed

requirements, standards, and functions. The

aim of this type of standardization research is

to better understand the complex process of

software testing. There are some flaws in

existing software practices, such as testing

procedures, user attitudes, and organizational

culture. All these issues together, such as

shortcut testing, shorter test times,

insufficient documentation, and more. In this

article, we describe the answer to the great

difficulty of product testing in quality

management. In this article, we describe

solutions for testing problems in quality

management. In this study, we propose an

approach to tackle the above problems.

Keywords: quality assurance,

improvement proposals, planning,

documentation.

1. Introduction:

Today, software quality has received a lot of

attention and there is a lot of emphasis on

producing high-quality software products.

Software engineering aims to reduce

development costs while improving the

quality of software products. [4] Making a

working software program is now a daunting

task. In order to build a good software

product, some measures of software quality

characteristics must be defined. When

dealing with quality assurance (SQA), keep

in mind new strategies, tools, processes, and

techniques related to the software

development process. Most software is the

result of years of collaboration between

different developers and designers. No one

understands the product of the result. If

quality assurance doesn't work, the project

will fail. [1] Continued complex growth,

customer demands, and increasing market

pressures, to achieve higher quality require

careful selection of a combination of

validation and verification methods to

produce software assets on time, on budget,

and with the right quality. QA methods

mainly focus on the last stages of

development, such as the performance phase

and related evaluation tasks. [2] This

document focuses on two areas of the

software process, software correction

management, and software quality assurance,

mailto:msse-f21-010@superior.edu.pk
mailto:msse-f21-015@superior.edu.pk
mailto:Saleem.zubair@superior.edu.pk

and provides a set of basic tools to assist in

the implementation of each specific practice.

The "Software Development" process is used

to describe, monitor, and evaluate the quality

of software products during development.

The authors describe the application results

and show how the proposed customization

tools can help set up and set up the

installation process, set achievable goals, and

evaluate the results more accurately.

Software quality assurance has many

problems, first of all how to determine the

quality of software. There should be a full

understanding of what good software is, but

the final specification will often change

depending on the context in which the system

is used. SQA has several components,

ranging from components that occur during

the software lifecycle phases to components

that occur during most phases. SQA is a field

critical to the overall success of a project and

requires a variety of skills. New domains of

information, such as software security and

reliability, are added to a set of essential

skills. To be effective, SQA must be an

independent body. This article describes

quality assurance (QA) strategies, including

software testing and assessment, which are

important to reduce the negative impact of

software errors.

2. Literature review:

Current publications offer advice, strategies,

and tools for improving software processes.

However, due to our lack of a clear and

comprehensive understanding of what is

involved in software testing, it is unclear how

these concepts, strategies, and tools should be

used in real-world testing. Software testing

focuses more on standards and procedures

than on theory. Various factors are mentioned

in the literature that influences the

assessment method. These features include,

for example, integration testing during

development, complex administrative

testing, communication and interaction

between development and testing, and the use

and testing of software components. Cost is

also a factor in the decision. Test procedures

are associated with test methods. For

example, risk-based assessment methods

determine the scope of testing, which is

especially important. The goal of risk-based

assessment is actually to narrow the scope of

the test and put more effort into critical tasks.

Collaboration and communication are

essential for the interaction and

communication between the evaluation and

development processes.

3. Hypothesis:

Our documentation ideas address key issues

such as keyboard shortcuts, faster test times,

collaboration and scheduling, lack of user

engagement, insufficient documentation,

insufficient staffing, management support,

low validity, and insufficient knowledge. It's

about providing strategies for improvement.

This document focuses on the above-

mentioned improvement factors.

4. Suggested Improvements for

key Issues:

This paper presents an approach to address

critical issues encountered during software

QA testing.

4.1 Programming and coordination

Test plans should be considered early in

software development. Testing will only take

place in the final phase of the project. This

checklist should be used at every planning

stage. Collect important documents, such as

previous versions of documents, document

requirements, and document quality tips.

Adjustments will be made on the following

points: The provision of personnel and

equipment used for software development

must be well planned. Assign obligations for

document segments. Team leaders must

estimate financial costs during software

development. Programming is very necessary

for the planning phase. Careful planning is

required to decide which prototype to use and

when. Document reviews are also needed to

assess the weaknesses of previous projects.

Full developer-customer collaboration is

required for a successful project and

document approval process. Decide how you

will handle future updates and developments.

Rewrite the text if necessary.

Coordination: The inspection and design

teams must work together to protect the

project from damage. To provide complete

customer satisfaction, you need to establish

customer communication between the project

and the test team.

4.2 Direct Access Test

Many software program managers and

software companies find it a difficult process

to test. Software testing is a smart and

complex task that requires diligent and

dedicated software development personnel.

To avoid direct access to the test, do the

following: Learn about requirements,

construction design, interior design details,

and other required documentation. You also

need to find the people involved in the project

and their responsibilities, the reporting

requirements, the required criteria, and the

planning requirements that define steps such

as evacuation and switchover procedures.

Possible points for improvement are: The test

team must be fully involved in the testing

process. Each member of the testing team

must follow the testing guidelines established

by the software company. Better planning

and coordination between test and

development teams are needed. The testing

team should consider the feedback and seek

continuous improvement. The evaluation

team should identify key risk factors for the

application, and prioritize and determine the

scope and limits of the test. Determine test

methods and methods: unit, integration,

operation, system, load, usability testing, etc.

You should also determine the requirements

for the test site, such as computer hardware

and software. Find requirements for test

materials such as communications and other

recording/playback tools, coverage analysts,

test track, and issue/bug tracking. You must

determine the input data requirements for the

test that will be used during testing. Identify

jobs, job responsibilities, and staffing needs.

The testing process requires establishing a

schedule, timeline, and key steps. During the

test, refer to the documentation of the test

program. Before you start testing, you need

to create a test case. Set up test sites and test

kits, obtain necessary user

manuals/references, documents/repair,

manuals/installation, guidelines, establish

test follow-up procedures, establish logging

and archiving procedures, and configure or

retrieve test data. The tester has to find the

software developed by the developer and

install the software to check for errors. After

installing the software, run the test and report

the result. Track and review issues/bugs and

fixes as needed. Maintain and update cycle

test programs, test cases, test sites, and test

materials.

4.3 Test time reduction

In that case, you need to follow the steps

below. Software developers must stick to the

schedule to have enough time to test. The

time required for each stage of development

should always be adhered to. In practice, tests

are often underestimated. Designing and

coding often take longer than planning or

estimating, so effective management is

needed to avoid wasted testing time.

4.4 Management support

Excellent principles can only be achieved by

implementing an efficient quality control

structure. Quality is built into software

products through technology and

management procedures designed and

implemented to ensure quality, schedule, and

budget compliance. There are several

technologies to update the software. This

includes the main goals of software

engineering. Key technologies include

defining requirements, preventing defects,

detecting defects, and eliminating defects.

4.5 Lack of user participation

Users are very important in the testing

process. The principles of collaborative

application design and group support systems

can be used for user interaction and are

preferred in software development. They

create strong interactions that are possible

between users and developers. Developers

should draw the user's attention to testing and

encourage them to participate in testing

activities, system testing, and acceptance

testing.

4.6 Insufficient knowledge

The testing team should have a full

understanding of the performance of the

software under test, the users, and the

platform it runs on. Otherwise, the test will

take a negative approach and you will miss

the areas that matter most to you. Without

environmental information, important user

requirements can be missed.

4.7 Insufficient staff

The test is truly a team effort and all team

members must contribute to its success.

Choosing the right team members for your

test can have a significant impact on the

success of your test. Testing requires team

members with development and testing

experience. Group leaders must have

problem-solving and management skills, as

well as the ability to lead teams and

coordinate with clients.

4.8 Insufficient documentation

These two forms of documentation, system

documentation, and user documentation, are

important during the software development

process. The following criteria should be

improved to avoid incorrect documentation:

Check the content of the entire document for

gaps. Bad writing and confusion often cause

major problems. Therefore, this part needs to

be improved. Reader problems, questions,

and lack of foresight from others. Documents

are created for the writer and his

environment, not the user and his

environment. Nevertheless, the

documentation must be suitable for the user.

Focusing on improving the wrong technical

level. Documentation is highly dependent on

format and structural design. It is also

important to index the document correctly

(the document contains the correct

information, but is difficult to find).

4.9 Low validity

Software testing consists of programming,

effort, and time. Software should be tested

using software validation and validation

techniques to avoid testability. After

development, we recommend that you follow

validation testing, black box testing, white

box testing, unit testing, integration testing,

system testing, and acceptance testing.

Validation testing requires peer and peer

review of software between customers and

developers at different stages of

development. A formal technical review of

the software quality assurance activities

should be performed during the validation

testing. Developers should develop software

with the characteristics of maneuverability,

observability, manageability, degradability,

simplicity, stability, and understanding.

5. conclusion:

Testing is a method of testing data, analyzing

software output, and performing software

implementations. We can support all

software testing techniques, procedures,

tools, and philosophies. Effective evidence is

the administrator's job. Members of the

testing team should focus on consensus with

customers. This task proposes techniques to

address key software testing and quality

assurance issues. The following are

considered: test shortcuts, faster test times,

collaboration and planning, lack of user

involvement, insufficient documentation,

insufficient staffing, administrative support,

and insufficient knowledge.

6. Reference

1. Iqbal, N., & Qureshi, M. (2012). Improvement

of key problems of software testing in quality

assurance. arXiv preprint arXiv:1202.2506.

2. Denger, C., & Olsson, T. (2005). Quality

assurance in requirements engineering.

In Engineering and managing software

requirements (pp. 163-185). Springer, Berlin,

Heidelberg.

3. Zeineddine, R., & Mansour, N. (2003,

November). Software quality improvement model

for small organizations. In International

Symposium on Computer and Information

Sciences (pp. 1027-1034). Springer, Berlin,

Heidelberg.

4. Taipale, O., & Smolander, K. (2006,

September). Improving software testing by

observing practice. In Proceedings of the 2006

ACM/IEEE international symposium on Empirical

software engineering (pp. 262-271).

5. de Souza, É. F., de Almeida Falbo, R., &

Vijaykumar, N. L. (2015). Knowledge

management initiatives in software testing: A

mapping study. Information and Software

Technology, 57, 378-391.

6. Chatley, R., & Field, T. (2017, May). Lean

learning-applying lean techniques to improve

software engineering education. In 2017

IEEE/ACM 39th International Conference on

Software Engineering: Software Engineering

Education and Training Track (ICSE-SEET) (pp.

117-126). IEEE.

7. Hossain, M. (2018). Challenges of Software

Quality Assurance and Testing. International

Journal of Software Engineering and Computer

Systems, 4(1), 133-144.

8. Burnstein, I., Suwanassart, T., & Carlson, R.

(1996, October). Developing a testing maturity

model for software test process evaluation and

improvement. In Proceedings International Test

Conference 1996. Test and Design Validity (pp.

581-589). IEEE.

9. Elhag, A. A., Elshaikh, M. A., Mohamed, R., &

Babar, M. I. (2013, August). Problems and future

trends of software process improvement in some

Sudanese software organizations. In 2013

International Conference on Computing,

Electrical and Electronic Engineering

(ICCEEE) (pp. 263-268). IEEE.

