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Abstract—Voice-based training data was often costly and chal-
lenging to obtain, leading to significant barriers in building high-
performing models. Insufficient training data frequently resulted
in overfitting and compromised model quality. An alternative
approach involved generating synthetic data using publicly avail-
able tools, which provided a scalable and cost-effective solution to
address these challenges. This study compared the performance
of two models with identical architectures: one trained exclusively
on human speech data and another trained entirely on synthetic
audio. The evaluation demonstrated that the model trained with
synthetic data outperformed the one trained with human data,
primarily due to the availability of a substantially larger synthetic
dataset. The findings highlighted the potential of high-quality
synthetic data to serve as a viable replacement for real-world
datasets, particularly in applications where data collection posed
logistical, ethical, or financial challenges. The results underscored
the effectiveness of synthetic data in training multimedia models,
paving the way for broader adoption in diverse applications,
including text-to-speech systems and beyond.

Index Terms—Voice Cloning, Text-to-Speech, Synthetic Data,
Linguistic Diversity, Privacy, Natural Language Processing
(NLP), Speaker Generalization, Speaker Embeddings

I. INTRODUCTION

Voice cloning has emerged as a transformative technology
that enables the generation of synthetic speech resembling
the unique characteristics of an individual’s voice. The pro-
cess involves transforming textual inputs and audio samples
into high-quality speech outputs, achieving natural-sounding
reproduction of the speaker’s voice. Recent advancements
in neural network architectures, including WaveNet [2] and
Tacotron 2 [1], have set benchmarks for natural-sounding
text-to-speech (TTS) systems. However, the dependency on
large-scale human-annotated datasets remains a significant
challenge, as these datasets are resource-intensive, expensive
to acquire, and often limited by privacy concerns and linguistic
diversity gaps [3][4][5].

Synthetic datasets have gained attention as a viable solution
to mitigate the challenges associated with traditional data
collection. Unlike human-generated datasets, synthetic data of-
fers scalability, cost-effectiveness, and the potential to address

privacy and ethical concerns [10][11]. Recent studies have
demonstrated that synthetic data, when generated with high
quality and diversity, can achieve comparable performance to
human-annotated datasets in TTS applications [10][11]. This
approach also helps address the linguistic disparity in TTS
systems by accommodating underrepresented languages and
dialects, which are frequently overlooked in existing datasets
[5].

The present study builds upon these advancements by
leveraging synthetic datasets to train voice cloning models.
Synthetic speech data was generated using the Coqui TTS
model [7], with public-domain texts such as Lewis Carroll’s
Alice’s Adventures in Wonderland [8]. This methodology
eliminates the dependency on sensitive or proprietary datasets,
thereby enhancing the inclusivity and privacy of TTS tech-
nologies. The generated synthetic datasets allowed for the
development of a locally deployable voice cloning system
that requires minimal computational resources. The proposed
system empirically validated the effectiveness of synthetic data
in achieving high-quality speech synthesis and demonstrated
its potential to generalise across diverse linguistic variations.

The findings from this study contribute to ongoing research
in TTS and natural language processing (NLP) by address-
ing critical limitations related to data accessibility, privacy
preservation, and computational efficiency. By highlighting
the feasibility of synthetic datasets for voice cloning, this re-
search promotes equitable access to advanced speech synthesis
technologies and encourages further exploration into the use
of synthetic data for multimedia applications across different
domains [9][12][16]. Furthermore, the study underscores the
versatility of synthetic data in enabling innovation while
reducing biases inherent in human-annotated datasets [19][20].

II. BACKGROUND

Significant progress has been made in voice cloning and
text-to-speech (TTS) technologies, primarily driven by ad-
vances in neural network architectures and data-driven ap-
proaches. Foundational models, including WaveNet [2] and
Tacotron 2 [1], have established benchmarks for generating



Fig. 1. Overview of the architecture of our Synthetic data based TTS system

natural-sounding synthetic speech. WaveNet introduced a gen-
erative model capable of producing raw audio waveforms
with exceptional realism, setting a new standard for TTS
applications. Tacotron 2 further advanced this domain by
integrating a sequence-to-sequence feature prediction network
with a WaveNet vocoder, resulting in improved intelligibility
and speech quality.

Despite these advancements, the dependency on large-scale
human-generated datasets continues to be a critical limita-
tion. The collection and annotation of such datasets are both
resource-intensive and costly, creating accessibility challenges
for smaller research teams and independent developers [3].
Lengthy recording sessions, data cleaning, and annotation
processes are often required to maintain consistency and accu-
racy, thereby delaying innovation and limiting scalability [3].
Additionally, the reliance on human data amplifies concerns
related to user privacy and data security. Instances of data
breaches and unauthorised sharing of personal voice data have
highlighted the vulnerabilities in handling sensitive informa-
tion [4]. Privacy-preserving techniques, such as encryption
and anonymisation, have been proposed [4]; however, these
solutions often add complexity and computational overhead
to TTS systems.

A pronounced linguistic disparity has also been observed
in existing TTS systems, primarily due to the scarcity of
datasets for underrepresented languages, dialects, and accents.
While languages such as English and Mandarin benefit from
abundant datasets, many regional and minority languages
lack sufficient resources, limiting inclusivity and perpetuating
biases in TTS technologies [5]. Addressing this imbalance is
challenging due to ethical and logistical constraints associated
with collecting diverse datasets [6]. This limitation under-
scores the need for innovative approaches to improve linguistic
coverage without compromising ethical standards.

Recent studies have explored synthetic data as a viable
alternative to human-generated datasets, addressing challenges
related to scalability, cost, and privacy [10][11]. Synthetic
data, created through algorithmic and programmatic methods,
offers a scalable and cost-effective solution that bypasses the

logistical and ethical issues associated with traditional data
collection. Research has demonstrated that high-quality syn-
thetic datasets can achieve comparable performance to human-
generated data in various TTS applications [10]. For instance,
Kumar et al. [10] demonstrated the potential of synthetic
data to reduce dependency on costly and time-consuming data
acquisition processes. Patel and Desai [11] further validated
the scalability of synthetic datasets, highlighting their ability to
support robust voice cloning systems without extensive human
annotations.

The potential of synthetic data extends beyond cost and
scalability. It addresses privacy concerns by eliminating the
need to store sensitive voice data, thereby reducing the risk of
data breaches [4][10]. Additionally, synthetic data facilitates
the development of multilingual TTS systems by providing
scalable resources for underrepresented languages and dialects,
as demonstrated by recent studies on linguistic inclusivity
[11][19]. Research has also highlighted the versatility of
synthetic data in reducing biases and improving the fairness
of trained models by enabling greater control over dataset
diversity [20].

The growing adoption of synthetic data in TTS and voice
cloning research signifies a paradigm shift towards more acces-
sible and equitable technologies. The integration of synthetic
datasets not only addresses existing challenges but also paves
the way for further innovation in multimedia applications, in-
cluding speech synthesis, language learning, and accessibility
solutions.

III. METHODOLOGY

The proposed methodology builds upon the architecture
presented in OpenVoice [12], incorporating significant mod-
ifications to reduce computational requirements and training
time. The model maps a sequence of phonemes, P , and a set
of speaker style parameters, S, to an audio waveform. The
architecture follows an encoder-decoder paradigm, where the
phoneme encoder captures intrinsic audio patterns associated
with phonemes, the style encoder extracts speaker-specific



Fig. 2. Synthetic TTS Model Methodology

characteristics, and the decoder combines these encodings to
generate the final audio output.

A. Model Architecture

The model was designed to be compact to facilitate efficient
training with limited computational resources. The key com-
ponents of the architecture, along with their respective layers,
are detailed in Table I.

TABLE I
COMPONENTS AND LAYERS OF THE MODEL

Component Layers
Phoneme Encoder 2x Convolutional (Conv), 1x Long

Short-Term Memory (LSTM)
Style Encoder 2x Convolutional (Conv), 1x Fully

Connected (FF)
Audio Decoder 1x Fully Connected (FF), 3x Con-

volutional (Conv)

As seen in Fig. 2. Mel spectrograms were used to represent
the audio data due to their ease of conversion into tensors.
While this representation simplifies the model, it introduces
two primary challenges: (1) the inherently lossy nature of
mel spectrograms, which degrades audio quality, and (2) fixed
temporal lengths in the autoencoder outputs, necessitating
additional post-processing for inference.

B. Training Data and Preprocessing

The training dataset was constructed using two primary
sources. Synthetic speech was generated with the Coqui TTS
model [7], which supports 58 distinct speakers, using public-
domain English texts from Project Gutenberg [8]. Additionally,
the VCTK corpus [14], comprising human speech recordings,
was utilised as a benchmark dataset.

Audio preprocessing was performed using the Montreal
Forced Alignment (MFA) library, which segmented each

utterance into pairs of phonemes and corresponding audio
waveforms:

{(p1, a1), (p2, a2), . . . , (pn, an)}

where pi represents the phoneme, and ai denotes its corre-
sponding audio waveform.

The training dataset included tuples of the form:{
(asi , s

s′ , as
′

i )
}

where asi is the audio of a target phoneme generated by speaker
s, ss

′
is a 5-second audio sample of the target speaker s′, and

as
′

i is the audio of the same phoneme generated by s′ at the
corresponding sequence index. Instances where s = ss

′
were

included to ensure consistency in input-output mappings.
Phonemes were selected based on identical sequence indices

to minimise the impact of phoneme drift caused by variations
in speaker accents. Each model consisted of multiple autoen-
coders, trained independently for each phoneme type.

C. Training Procedure

Two separate models were trained: one using synthetic
audio generated with Coqui TTS and another using human
audio from the VCTK corpus. Both models were trained
under identical conditions, including the same batch size,
number of training cycles, and hardware resources. Training
was conducted on an NVIDIA 4090 GPU to ensure optimal
performance and scalability.

The objective function used for training was a combination
of the Mean Squared Error (MSE) and cross-entropy loss to
account for both waveform accuracy and phoneme classifica-
tion. The Adam optimiser was employed with a learning rate
of 10−4 for efficient convergence.

D. Inference Pipeline

Inference was performed using the same preprocessing
pipeline as used during training. Each phoneme in the input
sequence was passed through the corresponding phoneme-
specific autoencoder, along with the style embedding provided
by the user. The outputs were concatenated in sequence,
and silence regions were trimmed during post-processing to
generate the final audio waveform.

The inference pipeline was optimised for real-time pro-
cessing, ensuring that the generated speech adhered to the
target speaker’s vocal characteristics while maintaining high
intelligibility and naturalness.

E. Mathematical Representation

The model represents speech synthesis as a mapping func-
tion:

f(P, S) → A

where P is the sequence of input phonemes, S is the speaker
embedding derived from the style encoder, and A is the
generated audio waveform. The loss function for training is
defined as:

L = α · MSE(Apred, Atrue) + β · CE(Ppred, Ptrue)



where α and β are hyperparameters controlling the contribu-
tions of the Mean Squared Error (MSE) and Cross-Entropy
(CE) losses.

IV. RESULTS AND ANALYSIS

A. Evaluation Metrics

Standard evaluation metrics were employed to assess the
performance of the voice cloning models. These included Mel-
Cepstral Distortion (MCD), Word Error Rate (WER), and
Speaker Similarity Metric (cosine similarity in embedding
space).

Mel-Cepstral Distortion (MCD): MCD quantifies the
spectral distance between two audio signals, focusing on
frequency domain differences. Lower MCD values indicate
greater similarity between the generated and target voices. It
is defined as:

MCD =
1

T

T∑
t=1

√√√√ D∑
d=1

(
MFCC(t)

d − MFCC(t)′

d

)2

where T is the number of frames, D is the dimension of
Mel-Frequency Cepstral Coefficients (MFCC) vectors, and
MFCC(t)

d and MFCC(t)′

d represent the MFCC coefficients of
the original and generated audio, respectively.

Word Error Rate (WER): WER evaluates intelligibility by
comparing the transcription of generated speech to reference
text. It is calculated as:

WER =
S +D + I

N

where S, D, and I are the numbers of substitutions, deletions,
and insertions, respectively, and N is the total number of
words in the reference.

Speaker Similarity Metric: Cosine similarity between
embeddings extracted from generated and target speaker audio
was used to quantify voice similarity. It is given by:

Simcos =
A ·B

∥A∥∥B∥

where A and B are the embedding vectors, and ∥A∥ and ∥B∥
denote their magnitudes.

In addition to these metrics, correctness was evaluated
using automatic speech-to-text (STT) systems, and human
evaluations were conducted to assess subjective quality and
naturalness.

B. Analysis of Results

Inference was conducted using one male and one female
voice from the LibriTTS dataset [15], with six distinct phrases
generated for each. The spectrograms of the generated audio
were compared to reference speech, as shown in Figures 3, 4,
and 5.

The generated audio was evaluated using both human lis-
teners and objective metrics. The results, summarised in Table
II, indicate that the model trained on synthetic data from the
Coqui TTS corpus outperformed the VCTK-trained model in

Fig. 3. Spectrogram of “Please call Stella.” from the VCTK corpus.

Fig. 4. Spectrogram of “Please call Stella.” generated using the model trained
on VCTK data.

Fig. 5. Spectrogram of “Please call Stella.” generated using the model trained
on TTS data.

terms of human listener preference. However, cosine similar-
ity results were inconclusive, highlighting the limitations of
embedding-based evaluation for speaker similarity.

Figure 6 illustrates the audio waveforms of reference speech
and generated speech. These visualisations highlight notable
differences in waveform characteristics, reflecting the limita-
tions of the generated audio in achieving high fidelity.



TABLE II
COMPARISON OF SPEAKER SIMILARITY AND LISTENER PREFERENCE

Coqui (Female) Coqui (Male) VCTK (Female) VCTK (Male)
Mean Cosine Similarity 0.02715 0.03686 0.05897 0.01480
Human Listener Preference 83.3% 91.7% 16.7% 8.3%

Fig. 6. Audio waveforms of “Please call Stella” for human speech (top) and generated speech (bottom).

C. Discussion

The results demonstrated that the model trained on synthetic
data achieved superior performance in terms of subjective
evaluation, while objective metrics such as cosine similarity
revealed inconsistencies. The Coqui TTS-trained model ex-
hibited better adaptability and generalisation compared to the
VCTK-trained model. These findings reinforce the potential of
synthetic datasets in addressing the limitations of traditional
human-annotated data, such as high collection costs and pri-
vacy concerns.

V. APPLICATION SUGGESTIONS

The proposed model, being lightweight and locally deploy-
able, offers various practical applications in text-to-speech
(TTS) and voice cloning technologies. Its small size and
minimal computational requirements ensure accessibility for
a wide range of users.

A. Customization and Personalization

The model facilitates the customisation of devices to pro-
duce speech in specific voices, making it particularly beneficial
for users with visual impairments or reading difficulties. This
functionality extends to personalising virtual assistants, such
as Siri, to mimic a user’s voice or the voice of a relative,
enhancing user engagement and interactivity. Studies such as
[12] have demonstrated the growing demand for personalised
voice assistants, validating this application.

B. Audio Editing

In audio production, the model simplifies tasks such as pod-
cast recording and audio correction. Errors in audio recordings
can be converted to text using speech-to-text (STT) models,
corrected manually, and re-synthesised into high-quality audio
using the proposed TTS system. This workflow minimises time
and effort compared to traditional re-recording processes, as
highlighted in [10] and [11].

C. Language Learning and Speech Therapy

The model is a valuable tool for improving pronunciation
and intonation, offering clear speech targets. Its potential for
assisting language learners and individuals undergoing speech
therapy aligns with applications in pronunciation training, as
explored in prior research on language learning technologies
[15].

D. Privacy and Inclusivity

A significant advantage of the model is its ability to operate
locally, eliminating the need to share sensitive voice data
with third-party services. This privacy-preserving approach
addresses critical concerns raised in studies such as [4].
Furthermore, the model’s ability to generate synthetic data can
compensate for the scarcity of real audio recordings in less-
spoken languages, enabling the development of inclusive TTS
systems for underrepresented linguistic groups [5][11].



E. Future Enhancements

Although the model demonstrates strong performance
across various applications, certain limitations remain. Im-
provements to the fidelity of audio representations are expected
to enhance output quality, as the current mel spectrogram-
based format is lossy. Additionally, increasing model size
and incorporating advanced architectural components, such as
modules for better phoneme sequence merging, could further
improve synthesis quality and naturalness. These enhance-
ments align with recommendations in recent studies on TTS
architecture design [1][2].

VI. CONCLUSION

This study demonstrated the practicality and efficacy of syn-
thetic data as an alternative to real-world datasets, particularly
in scenarios where traditional data acquisition processes are
constrained by cost, privacy concerns, or limited availability.
By addressing these challenges, the use of synthetic data
effectively mitigated ethical, logistical, and scalability issues
associated with real-world data. This approach has not only
reduced dependence on real data but has also expanded the
applicability of machine learning models to domains previ-
ously hindered by data scarcity.

The findings highlighted the versatility of synthetic data, ex-
tending its applicability beyond text-to-speech (TTS) systems
to a wide range of multimedia applications, including those
requiring visual, audio-visual, or spatial data. Tools such as
Blender, Unity, and Unreal Engine enable the generation of
realistic, task-specific datasets tailored to specialised applica-
tions. These tools have proven particularly useful for domains
where real data acquisition is infeasible or resource-intensive,
as suggested in studies such as [10] and [11].

Synthetic data has further demonstrated its potential to
enhance machine learning systems by allowing precise control
over dataset characteristics. This control facilitates the creation
of balanced and unbiased datasets, addressing common issues
in real-world data and improving the fairness and general-
isability of trained models. Applications in niche fields and
underrepresented domains have particularly benefited from
this capability, enabling the development of robust machine
learning systems tailored to specialised tasks [12][15].

Overall, the results of this study underscore the feasibility
and importance of synthetic data as a scalable, high-quality,
and customisable solution for data generation. By leverag-
ing synthetic data, significant advancements can be made in
multimedia models, particularly in addressing data scarcity
and accessibility challenges. The use of synthetic datasets
is positioned as a critical enabler for innovation in machine
learning technologies, paving the way for further research
and development across diverse applications in text-to-speech
systems and beyond.
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