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Abstract

Robin’s criterion states that the Riemann hypothesis is true if and
only if the inequality σ(n) < eγ · n · log logn holds for all natu-
ral numbers n > 5040, where σ(n) is the sum-of-divisors function of
n, γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the nat-
ural logarithm. We require the properties of superabundant numbers,
that is to say left to right maxima of n 7→ σ(n)

n
. Let Pn be equal

to
∏

q|Nr
6

qνq(n)+2−1

qνq(n)+2−q
for a superabundant number n > 5040, where

νp(n) is the p-adic order of n, qk is the largest prime factor of n
and Nr =

∏r
i=1 qi is the largest primorial number of order r such

that Nr
6

< q2
k. In this note, we prove that the Riemann hypothesis is

true when Pn ≥ Q holds for all large enough superabundant numbers

n, where Q =
1.2·(2− 1

8
)·(3− 1

3
)

(2− 1
219 )·(3− 1

312 )
≈ 1.0000015809. In particular, the

inequality Pn ≥ Q holds when
∑

q|Nr
6

σ( n′

qνq(n)+1 ) ≥ σ(n′) · logQ

also holds such that n′ =
∏

q|Nr
6

qνq(n)+1 since σ(. . .) is multiplicative.
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1 Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann
hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list of
twenty-three unsolved problems. As usual σ(n) is the sum-of-divisors function
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2 The Riemann hypothesis

of n ∑
d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n . We say that

Robin(n) holds provided that

f(n) < eγ · log log n,

where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The Ramanujan’s Theorem states that if the Riemann hypothesis
is true, then the previous inequality holds for large enough n [1]. Next, we
have the Robin’s Theorem:

Proposition 1 Robin(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [2, Theorem 1 pp. 188].

In 1997, Ramanujan’s old notes were published where it was defined the
generalized highly composite numbers, which include the superabundant and
colossally abundant numbers [1]. Let q1 = 2, q2 = 3, . . . , qk denote the first k

consecutive primes, then an integer of the form
∏k

i=1 q
ai
i with a1 ≥ a2 ≥ . . . ≥

ak ≥ 1 is called a Hardy-Ramanujan integer [3, pp. 367]. A natural number n
is called superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

We know the following properties for the superabundant numbers:

Proposition 2 If n is superabundant, then n is a Hardy-Ramanujan integer [4,
Theorem 1 pp. 450].

Proposition 3 [4, Theorem 7 pp. 454]. Let n be a superabundant number such that
p is the largest prime factor of n, then

p ∼ logn, (n → ∞).

Proposition 4 [4, Theorem 9 pp. 454]. The number of superabundant numbers less
than x exceeds

c · log x · log log x
(log log log x)2

.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).
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There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 5 Every colossally abundant number is superabundant [4, pp. 455].

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. However, there are some
implications in case of the Riemann hypothesis might be false.

Proposition 6 If the Riemann hypothesis is false, then there are infinitely many
colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n) does
not hold) [2, Proposition pp. 204].

The following is a key Corollary.

Corollary 1 If the Riemann hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof This is a direct consequence of Propositions 1, 5 and 6. □

In number theory, the p-adic order of an integer n is the exponent of the
highest power of the prime number p that divides n. It is denoted νp(n). Equiv-
alently, νp(n) is the exponent to which p appears in the prime factorization of
n.

Proposition 7 Robin(n) holds for all natural numbers n > 5040 such that ν2(n) ≤
19 and ν3(n) ≤ 12 [5, Theorem 1 pp. 2, Theorem 2 pp. 2].

Proposition 8 [4, Theorem 5 pp. 452]. Let n be a superabundant number such that
νq(n) = t, p is the largest prime factor of n, 2 ≤ q ≤ p and q < (log p)α, where α is
a constant, then

log
qt+2 − 1

qt+2 − q
<

log q

p · log p ·
(
1 +O

(
(log log p)2

log p · log q

))
.

This is the main insight.

Lemma 1 Let n be a large enough superabundant number such that p > 3 is the
largest prime factor of n, then

p < 2ν2(n)−19

and
p < 3ν3(n)−12.
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Let Pn be equal to
∏

q|Nr
6

qνq(n)+2−1

qνq(n)+2−q
for a superabundant number n > 5040,

where qk is the largest prime factor of n and Nr =
∏r

i=1 qi is the largest
primorial number of order r such that Nr

6 < q2k. Putting all together yields the
main theorem:

Theorem 1 The Riemann hypothesis is true when Pn ≥ Q holds for all large enough

superabundant numbers n, where Q =
1.2·(2− 1

8 )·(3−
1
3 )

(2− 1
219

)·(3− 1
312

)
≈ 1.0000015809. In particu-

lar, the inequality Pn ≥ Q holds when
∑

q|Nr
6

σ( n′

qνq(n)+1 ) ≥ σ(n′) · logQ also holds

such that n′ =
∏

q|Nr
6

qνq(n)+1 since σ(. . .) is multiplicative.

2 Proof of the Lemma 1

Proof Let q ∈ {2, 3} and νq(n) = t. For every large enough superabundant number
n, there is a constant α such that q < (log p)α. For example, we can take α = 2.5
since (log p)2.5 ≥ (log 5)2.5 > 3. We will use the following inequality

u

u+ 1
< log(1 + u), (u > 0).

From the previous inequality, we notice that

log
qt+2 − 1

qt+2 − q
= log

(
1 +

q − 1

qt+2 − q

)

>

q−1
qt+2−q
q−1

qt+2−q
+ 1

=
q − 1

(qt+2 − q) · ( q−1
qt+2−q

+ 1)

=
q − 1

(q − 1) + (qt+2 − q)

=
q − 1

qt+2 − 1

>
1

3 · qt+1
.

Hence, there is a constant C > 0 such that

qt > C · p · log p
log q

by Proposition 8. Putting c = C
log q , then we obtain that

c · p · log p < qt,

where c is a positive constant. We deduce that

c · log p > 312

by Proposition 3 for large enough n. Therefore, the proof is done. □
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3 Proof of the Theorem 1

Proof There are infinitely many superabundant numbers by Proposition 4. Let n >
5040 be a large enough superabundant number. Let

∏k
i=1 q

ai
i be the representation

of this superabundant number n as the product of the first k consecutive primes
q1 < . . . < qk with the natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents,
since n must be a Hardy-Ramanujan integer by Proposition 2. Let Pn be equal to∏

q|Nr
6

qνq(n)+2−1

qνq(n)+2−q
for n > 5040, where Nr =

∏r
i=1 qi is the largest primorial number

of order r such that Nr
6 < q2k. Suppose that Robin(n) fails and Pn ≥ Q, where

Q =
1.2·(2− 1

8 )·(3−
1
3 )

(2− 1
219

)·(3− 1
312

)
≈ 1.0000015809. So,

f(n) ≥ eγ · log logn.
We know that

f(n) = f(2ν2(n) · 3ν3(n)) · f( n

2ν2(n) · 3ν3(n)
)

< 3 · f( n

2ν2(n) · 3ν3(n)
)

= f(23 · 3 · 5) · f( n

2ν2(n) · 3ν3(n)
)

≤ f

(
219 · 312 · n · Nr

6

2ν2(n) · 3ν3(n)

)

= f

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)

since Pn ≥ Q, qi
qi−1 >

q
ai+1

i −1

q
ai
i ·(qi−1)

= f(qai
i ) and f(. . .) is multiplicative, where f(23 ·

3 · 5) = 3 = 2 · 3
2 > f(2ν2(n)) · f(3ν3(n)) = f(2ν2(n) · 3ν3(n)). This is true because of

f(23 · 3 · 5) · f( n

2ν2(n) · 3ν3(n)
) ≤ f

(
219 · 312 · n · Nr

6

2ν2(n) · 3ν3(n)

)
is equivalent to say that

f(23 · 3 · 5)
f(219 · 312)

≤
∏
q|Nr

6

f(qνq(n)+1)

f(qνq(n))
.

Certainly, we know that
f(23 · 3 · 5)
f(219 · 312)

= Q

and ∏
q|Nr

6

f(qνq(n)+1)

f(qνq(n))
=
∏
q|Nr

6

qνq(n)+2 − 1

qνq(n)+2 − q
= Pn.

Consequently, that is true under the supposition that Pn ≥ Q. We have

f

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
< eγ · log log

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
by Proposition 7. Therefore, we obtain that

eγ · log log

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
> eγ · log log n
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which is the same as(
n · q2k

2ν2(n)−19 · 3ν3(n)−12

)
>

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
> n

using the inequality Nr
6 < q2k. However, we know that

2ν2(n)−19 > qk

and
3ν3(n)−12 > qk

by Lemma 1, due to n is large enough. So, we can see that necessarily,(
n · q2k

2ν2(n)−19 · 3ν3(n)−12

)
< n.

In this way, we obtain a contradiction under the assumption that Robin(n) fails and

Pn ≥ Q, where Q =
1.2·(2− 1

8 )·(3−
1
3 )

(2− 1
219

)·(3− 1
312

)
≈ 1.0000015809. To sum up, the study of

this arbitrary large enough superabundant number n reveals that Robin(n) holds
whenever Pn ≥ Q. Accordingly, Robin(n) holds for all large enough superabun-
dant numbers n when Pn ≥ Q holds. This contradicts the fact that there are
infinitely many superabundant numbers n, such that Robin(n) fails when the Rie-
mann hypothesis is false according to Corollary 1. By reductio ad absurdum, we
prove that the Riemann hypothesis is true when Pn ≥ Q holds for all large
enough superabundant numbers n. From the proof of the Lemma 1, we show that

log qνq(n)+2−1

qνq(n)+2−q
> q−1

qνq(n)+2−1
, where we know that q−1

qνq(n)+2−1
= 1

σ(qνq(n)+1)
. Thus,

the inequality Pn ≥ Q holds when
∑

q|Nr
6

σ( n′

qνq(n)+1 ) ≥ σ(n′) · logQ also holds such

that n′ =
∏

q|Nr
6

qνq(n)+1 since σ(. . .) is multiplicative. □
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