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Abstract. Synergistic drug combination is a promising solution to can-
cer treatment. Since the combinatorial space of drug combinations is
too vast to be traversed through experiments, computational methods
based on deep learning have shown huge potential in identifying novel
synergistic drug combinations. Meanwhile, the feature construction of
drugs has been viewed as a crucial task within drug synergy predic-
tion. Recent studies shed light on the use of heterogeneous data, while
most studies make independent use of relational data of drug-related
biomedical interactions and structural data of drug molecule, thus ig-
noring the intrinsical association between the two perspectives. In this
study, we propose a novel deep learning method termed HetBiSyn for
drug combination synergy prediction. HetBiSyn innovatively models the
drug-related interactions between biomedical entities and the structure
of drug molecules into different heterogeneous graphs, and designs a self-
supervised learning framework to obtain a unified drug embedding that
simultaneously contains information from both perspectives. In details,
two separate heterogeneous graph attention networks are adopted for the
two types of graph, whose outputs are utilized to form a contrastive learn-
ing task for drug embedding that is enhanced by hard negative mining.
We also obtain cell line features by exploiting gene expression profiles.
Finally HetBiSyn uses a DNN with batch normalization to predict the
synergy score of a combination of two drugs on a specific cell line. The
experiment results show that our model outperforms other state-of-art
DL and ML methods on the same synergy prediction task. The ablation
study also demonstrates that our drug embeddings with bi-perspective
information learned through the end-to-end process is significantly infor-
mative, which is eventually helpful to predict the synergy scores of drug
combinations.

Keywords: synergistic drug combinations · Deep learning · Heteroge-
neous data · Graph attention network · Self-supervised learning

1 Introduction

In the field of cancer treatment, drug combination therapy[1] holds significant
importance. The interactions of pairwise combinations of drugs can be divided
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into synergistic, additive, and antagonistic by comparing the effect of the drug
combination with the sum of effects of drugs applied separately[2]. Synergistic
drug combinations can often reduce the development of drug resistance[3] and
minimize the occurrence of drug-related side effects[4] during the treatment pro-
cess. However, distinguishing synergistic drug combinations from non-synergistic
ones is challenging as the combination space expands rapidly with the discovery
of new drugs.

Early studies on synergistic drug combinations are mostly based on clinical
experience, which is time-consuming and labor-intensive, and may lead to unnec-
essary or even harmful treatments on patients[5]. Even applying high-throughput
screening technology (HTS)[6] that enables efficient testing of cell lines in vitro
is impossible to screen through the complete combination space, let alone that
the technology is expensive to build[7]. Researchers have therefore turned to
computational methods to predict synergistic drug combinations.

Except for computational models that are only available on specific drugs or
cell lines[5], recent studies have shed light on methods based on machine learning
(ML) and deep learning (DL). The most common workflow consists of obtaining
the features for cell lines and drugs and predicting the synergy score with a ML or
DL model. Previous studies employed various ML models [8,9,10,11,12] to predict
the synergy of anticancer drug combinations. In recent years, the availability of
large-scale synergy datasets[13] has provided a valuable resource for employing
DL methods in drug combination prediction. Commonly adopted DL models
include Deep Neural Network (DNN)[5,2], Residual Neural Network[14], and
other interpretable DL models. Additionally, special techniques such as Ensemble
Learning[15,16], Transfer Learning[17], and Tensor factorization[18] have been
adopted to predicting drug combination synergy.

On the other hand, drug features play an essential role in the synergy predic-
tion task. A classical and universal method for drug representation is to directly
use molecular fingerprints[19] or molecular descriptors[5], which refers to a pre-
defined feature vector containing substructural and physicochemical properties.
Some researchers[5,2,11,12] collected the interactions between drugs and other
biomedical entities (e.g. drug target, pathway etc.), and simply obtained the
feature vector by sampling a binary digit for each interaction. Those feature-
engineering-based methods offer easy access to fairly informative representa-
tions, whereas they might be greatly affected by prior assumptions of biochemi-
cal domain knowledge. Methods based on representation learning are proposed
to alleviate this problem[17,20,21,22,23].

When it comes to how data is utilized in constructing drug features, it should
be emphasized that the chemical structure of a drug determines how it func-
tions, while the interactions between drugs and other biomedical entities rep-
resent known patterns of drug action. Both aspects should be considered for
comprehensive drug features. Concerning the way that molecular-level data and
drug-related interaction are used in drug feature constructing, previous studies
on synergy prediction either use only one type of data or simply perform con-
catenation after representations from both aspects are extracted respectively. As
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the two aspects are intrinsically associated but differs a lot in terms of data, such
methods might not be able to fully exploit the latent information when the fea-
tures are directly used for subsequent synergy prediction. There is still potential
for improvement by devising a drug representation learning model to simulta-
neously obtain information from both structural and relational heterogeneous
data.

To improve the synergy prediction of anti-cancer drug combination from
the perspective of constructing compact drug representations that are more
expressive and informative, we hereby propose a deep learning model Het-
BiSyn (Drug Synergy Prediction featuring Bi-perspective Drug Embedding
with Heterogeneous Data). In this paper, drug embeddings that integrate infor-
mation from both aspects are learned within a self-supervised training process.
Specifically, HetBiSyn constructs a graph for interactions between drug-related
biomedical entities and multiple molecular-level graphs for drugs. Both types
of graphs are heterogeneous, and separate Heterogeneous Graph Attention Net-
works (HGAT) are applied to each type of graph to embed information from
different perspective. A contrastive learning module is designed to learn a uni-
fied embedding based on the output of the two HGATs, and the hard sample
mining strategy is adopted to enhance the model. Besides, HetBiSyn utilizes gene
expression profiles to construct the cell line features. Lastly, a DNN with Batch
Normalization mechanism is designed to predict the synergy score of drug com-
binations on cell lines. We compared HetBiSyn with other popular ML and DL
methods on the synergy dataset contributed by O’Neil, and the result demon-
strates that HetBiSyn can achieve more accurate drug synergy prediction.

2 Materials and Methods

2.1 Synergy Dataset

A high-throughput drug combination screening dataset was obtained from O’Neil’s
research. The dataset encompass 583 pairwise drug combinations involving 38
distinct drugs tested against 39 human cancer cell lines. Preuer et al.[5] com-
puted a synergy score for each sample using Loewe Additivity values, and divided
all samples into 5 disjoint folds with an equal count of drug combinations.

2.2 Cell Line Features

The cell line features are extracted mainly based on the gene expression data.
The gene expression files are fetched from the ArrayExpress database[24] (ac-
cession number: E-MTAB-3610). We adopted the Factor Analysis for Robust
Microarray Summarization method[25] to implement quantile normalization and
summarization on the gene expression data. The method also provides calls on
whether a gene is informative, by which effective genes are selected for the fea-
ture construction of cell lines. In all, 3739 genes are screened out and z-score
normalization is performed to produce the feature vector.
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2.3 Construction of Drug-related Graphs

To directly exploit information from different perspectives, we design two types of
drug-related graphs from which the embeddings of drugs are learned jointly. The
bioinformatic graph provides identified patterns of drug action by integrating the
interactions between drugs and other biomedical entities, while molecular-level
graphs reveal the structural and chemical particulars inside a drug molecule.

Drug-related Heterogeneous Bioinformatic Graph Bioinformatic graphs,
also called bioinformatic networks, are widely used in various drug-related prob-
lems, especially in extracting complex hidden features that implicate proven pat-
terns of drug actions. Here we construct a heterogeneous graph GBio = (V,E)
, in which each node v in the node set V belongs to a biomedical entity type
tv in a type set T , and each edge e in the edge set E belongs to a relation
type te ∈ St × St. As defined, there is at most 1 edge between 2 nodes, and all
edges are set bidirectional in practice. Only the largest connected component
of Gbio is retained so that information can be propagated through every single
node. Also, we collect the biomedical entities and their relationships from Luo
et al.’s work[26] and DrugBank (Version 3.0), and supplement the drug-target-
interaction data with UniProtKB so that all 38 drugs in the synergy dataset are
involved in Gbio.

Heterogeneous Molecular-level Graph To exploit drug properties from a
microscopic perspective, we construct a graph Gmol for each drug in Gbio at
molecular level. First, a molecular graph Gmg is generated for each drug by treat-
ing the atoms as nodes and the bonds between them as edges. All atom nodes
are considered to be of the same type though they are initialized with different
atomic features (e.g. chirality, formal charge, partial charge, etc.)[27], while edges
vary in types according to the original bond types (e.g. single, double, aromatic,
etc.). The edges in Gmg are bidirectional since chemical bonds are unbiased. We
use the RDKit tool to convert the SMILES string of a drug into a molecule ob-
ject for subsequent operations, and drugs that do not have a SMILES or cannot
be converted are abandoned from Gbio. Inspired by Fang[28], we augment Gmg

to leverage the associations between atoms that are not directly connected with
bonds but share fundamental chemical attributes. By histogramizing the con-
tinuous attributes of atoms and converting them into discrete labels, totally 107
attributes of atoms and 17 relation types are devised. These attributes are then
added to Gmol as another type of nodes, while their relations with the atoms in
Gmg are modeled as different types of directed edges pointing to atoms.

2.4 HetBiSyn

In this paper, a novel deep learning method named HetBiSyn is proposed to
predict synergy scores of drug combinations on cell lines. The overview of our
method is shown in Figure 1.
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Fig. 1. Overview of HetBiSyn. (A) Two HGATs as shown integrate information
from the drug-related heterogeneous biomedical graph Gbio and the heterogeneous
molecular-level graphs Gmol respectively, yielding drug embedding at different per-
spectives. (B) Embedding of drugs from different perspectives are paired to form a
contrastive learning task, where DNNclf is set up for binary classification. (C) Het-
BiSyn predicts the synergy score of a drug combination on a specific cell line using the
DNN with the batch normalization mechanism.
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Heterogeneous Graph Attention Networks for Drugs As shown in fig-
ure(B), the essential step for drug representation learning is to extract an inter-
mediate embedding from both Gbio and Gmol for a drug, which would be contin-
uously updated throughout the subsequent self-supervised learning process. Het-
erogeneous graph attention network (HGAT)[29] is a node representation learn-
ing model that can generate dense embedding while retaining information about
network topology and meta-path importance with insights into heterogeneity.
HetBiSyn set up two separate HGATs for Gbio and Gmol to exploit inter-entity
and intra-molecular information, namely HGATmacro and HGATmicro. The de-
tailed derivation about how HGAT works within our study can be found in
supplementary file (section 1).

It is worth noting is that only the embedding for each atom or property node
is obtained through training HGATmicro, which cannot be directly referred to
individual drugs. In order to present the drug embedding by micro-view, average
pooling is conducted on the atom node vectors for each drug as whole-graph
embedding.

Drug Representation Learning Based on Contrastive Learning The
subsequent step of drug embedding learning is to leverage the output of the
two networks to train a unified embedding balancing both perspective. The key
idea comes that the representations of the same drug generated from the two
networks shall be as similar as possible, while drugs showing great distinction
shall have differentiated embeddings. Under this assumption, we form a binary
contrastive learning task aiming at estimating the performance of the outputs
and optimizing the recurrent training process.

Let Z(G, di) denote the output embedding of drug di from either HGAT.
For each drug di in Gbio, S(di, di) = [Z(HGATmacro, di)||Z(HGATmicro, di)] is
defined as a positive sample that is labeled 1, while S(di, dj) given i ̸= j is defined
as a negative sample that is labeled 0. The concatenated vector S is sampled
twice in reverse order with respect to the two networks to generate both positive
and negative samples. A simple deep neural network, denoted as DNNclf , is
set up for binary classification. We use binary cross-entropy loss with sum as
reduction for the loss function. The loss function can be described as:

loss =

n∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)]; pi =
1

1 + e−xi
(1)

where xi and yi respectively represents the predicted label value and the true
label value of a sample. It is worth noting that the drug embedding learning
module is an end-to-end process, as the loss computed here is used to update
DNNclf as well as the two HGATs through back propagation. After multiple
rounds of training, the representation of a drug can be inferred by averaging the
output of its embedding from both HGATs.

Furthermore, the sampling strategy is also improved by hard negative min-
ing. In other words, we try to find drugs that are alike and challenge the classifier

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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to label their combination correctly. We collected a 167-dimension MACCS fin-
gerprint, which is often used to assess the similarity between molecules, for all
the drugs in Gbio, and calculated the Tanimoto similarity for each pair of drugs.
A drug dj having the most similarity with another drug di indicates this duo
may compose a hard negative sample, while other randomly taken samples are
viewed as common negative samples. We take positive samples, hard negative
samples and common negative samples at a certain ratio for training DNNclf .

Synergy Score Prediction After the cell line features and drug embeddings
are obtained, a regression model is designed for predicting cell-line-specific syn-
ergy scores of drug combinations. The input vector is constructed by sequentially
concatenating the feature or embedding vectors of the two drugs and the cell
line in a data point from the synergy dataset, and the synergy score of this trio
serves as the output. Each trio is sampled twice in terms of the input vector by
exchanging the order of drug vectors, since the network should not differenti-
ate between permutations of two drugs. The prediction model is implemented
by a feed forward DNN composed of three fully connected (FC) layers and two
batch normalization layers in between, denoting as DNNpred. The number of
neurons in each FC layer is funnel-shaped as we have the most neurons in the
first FC layer and one neuron representing the predicted synergy score in the
last FC layer. ReLU is used as the activation function for the first two FC layers.
DNNpred takes mean square error loss as its loss function.

3 Result

3.1 Experiment Setup

We resort to the mean square error (MSE) and the root mean square error
(RMSE) for the main evaluation metric. The Pearson correlation coefficient
(PCC) between the predictions and the ground truth is also adopted. As the
experiments are conducted under a 5-fold cross-validation approach, we present
the mean and the standard deviation of each evaluation metric across the 5-
fold dataset. Hyper-parameter settings are documented in the supplementary
file (section 2).

3.2 Performance Comparison with Other Models

To objectively appraise the performance of HetBiSyn, we compare HetBiSyn
with some representative models on the same synergy dataset with a 5-fold cross
validation. Four ML methods including Elastic Net[30], Support Vector Regres-
sion (SVR)[31], Random Forest[32] and XGBoost[33] are adopted by using the
same drug and cell line features for input. We implemented these methods with
sklearn and retained the default hyper-parameters. We also selected 4 DL meth-
ods for comparison, including DeepSynergy[5], MatchMaker[34], AuDNNSynergy[2]

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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and DFFNDDS[35]. We adopted their feature generating process and validate
them upon our dataset, as described in the supplementary file (section 3).

Results of the experiment of the comparison among the methods above are
shown in Table 1. The best and second best performance are shown in bold
and italic respectively. HetBiSyn achieves the lowest MSE of 225.90 among all
compared methods, which is 11.58% less than DeepSynergy, 6.31% less than the
AuDnnSynergy which achieves the second lowest and 20.90% less than XGBoost.
The PCC of HetBiSyn, which is the second best across all methods compared,
also shows a strong correlation between the model’s prediction and the ground
truth. The result demonstrates the advantage of HetBiSyn on the synergy pre-
diction task, and the possible reasons are: 1)Drug feature is more informative
under the end-to-end self-supervised learning framework of HetBiSyn that inte-
grates data from multiple aspects. 2) The DNN for final prediction may identify
the nonlinear patterns in the synergy dataset better in comparison with other
DL methods.

Table 1. Results of method comparison on the synergy score prediction task

Type Method MSE RMSE PCC

DL

HetBiSyn 225.90±31.90 15.00±1.02 0.74±0.03
DeepSynergy 255.49 15.91±1.56 0.73±0.04
MatchMaker 254.37±37.70 15.93±1.17 0.68±0.03

AuDNNSynergy 241.12±43.52 15.46±1.44 0.74±0.04
DFFNDDS 242.37±34.21 15.53±1.07 0.76±0.02

ML

Elastic Net 407.06±48.23 20.18±1.33 0.47±0.03
SVR 338.57±53.39 18.40±1.48 0.58±0.03

Random Forest 312.75±44.01 17.68±1.13 0.61±0.02
XGBoost 285.60±44.40 17.16±1.31 0.68±0.02

3.3 Ablation Study

To further inspect how the use of heterogeneous data from different perspective
contributes to the prediction result in our model, a series of variants of HetBiSyn
are designed for comparison mainly by altering the drug feature construction
process as:

•HetBiSyn-Bio Only the data of drug-related biomedical interactions are
utilized. Metapath2vec[36] is applied on the Gbio we constructed to extract drug
features. We use the implementation provided by DGL [37].

•HetBiSyn-MolHGT Only the data of molecular structure of drugs are
utilized. We adopt a molecular representation learning framework MolHGT[38]
to obtain features from heterogeneous graphic data, which treat atoms and bonds
as different types of nodes and edges to extract representations.

•HetBiSyn-MG Similar to the original HetBiSyn but the molecular graph
Gmg mentioned in 2.3 is used instead. Atom properties are not considered so
that the structural information completely emerges from the molecular graph.

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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•HetBiSyn-Concat Drug features are constructed by concatenating the
representation from HetBiSyn-Bio and HetBiSyn-MG.

All the variants are set to generate a drug feature of 128 dimensions except
for HetBiSyn-Concat which is doubled by concatenating. The DNN for synergy
prediction is same for each variant. The results are displayed in Table 2 .

Table 2. Results of the ablation study

Method MSE RMSE PCC
HetBiSyn 225.90±31.90 15.00±1.02 0.74±0.03

HetBiSyn-Bio 246.75±48.02 15.71±1.52 0.68±0.02
HetBiSyn-MolHGT 248.24±41.91 15.76±1.42 0.67±0.02

HetBiSyn-MG 229.98±35.22 15.17±1.08 0.73±0.03
HetBiSyn-Concat 236.93±40.05 15.39±1.35 0.70±0.02

HetBiSyn-MG is designed to be a fair comparison to HetBiSyn-MolHGT,
as they both depend on heterogeneous molecular graphs in terms of obtaining
structural information. HetBiSyn-MG performs better because information from
the macro-view perspective is also considered. It can be inferred that using data
from either single perspective would not make better performance than integrat-
ing them even using simple concatenation. Furthermore, methods of fusing data
from the micro-view and macro-view also affect the result of prediction. Though
HetBiSyn-Concat outperforms other variants based on single perspective data,
the original HetBiSyn shows an advantage to it even having less feature dimen-
sions, which proves that the end-to-end self-supervised learning process of drug
feature may better integrate the hidden information from both perspective.

4 Conclusion

In this paper, we propose a new DL based method for predicting anti-cancer syn-
ergistic drug combinations named HetBiSyn. HetBiSyn models the drug-related
interactions between biomedical entities and the structure of drug molecules into
different heterogeneous graphs, and designs a self-supervised learning framework
to obtain a unified drug embedding that simultaneously contains information
from both perspective. In details, two separate heterogeneous graph attention
networks are adopted for the two types of graph, whose outputs are utilized to
form a contrastive learning task for drug embedding that is enhanced by hard
negative mining. We also obtain cell line features by exploiting gene expression
profiles. Finally HetBiSyn uses a DNN with batch normalization to predict the
synergy score of a combination of two drugs on a specific cell line. The experiment
results show that our model outperforms other state-of-art DL and ML methods
on the same synergy prediction task. Besides, the ablation study demonstrates
that our drug embeddings with bi-perspective information learned through the
end-to-end process is significantly informative and expressive, which is helpful
to predict the synergy scores of drug combinations.
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