EasyChair Preprint
Ne 309

j’ —crie

Data-Driven Approach Towards a Personalized
Curriculum

Michael Backenkohler, Felix Scherzinger, Adish Singla and
Verena Wolf

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 29, 2018

Data-Driven Approach Towards a Personalized Curriculum

Michael Backenkdhler
Saarland University
michael.backenkoehler
@uni-saarland.de

Adish Singla
MPI-SWS
adishs@mpi-sws.org

ABSTRACT

Course selection can be a daunting task, especially for first-
year students. Sub-optimal selection can lead to bad per-
formance of students and increase the dropout rate. Given
the availability of historic data about student performances,
it is possible to aid students in the selection of appropriate
courses. Here, we propose a method to compose a personal-
ized curriculum for a given student. We develop a modular
approach that combines a context-aware grade prediction
with statistical information on the useful temporal ordering
of courses. This allows for meaningful course recommenda-
tions, both for fresh and senior students. We demonstrate
the approach using the data of the computer science Bach-
elor students at Saarland University.

1. INTRODUCTION

Students at higher education institutions usually have to
choose from a large set of possible courses in order to achieve
an academic degree. Even for senior students, it is not ob-
vious which courses to follow and in what sequence as the
number of possible choices is large. Students often have
problems to ensure progress in a program of study, espe-
cially in the first years of study, and to graduate in a timely
manner.

Student success is also an important objective for decision
makers at universities, which continuously monitor drop-
out rates and average times to degree. Completion rates
at European universities range between 39% to 85% and are
highly program dependent, while the average time-to-degree
is around 3.5 years for a Bachelor degree [17].

When pursuing a degree students typically have to complete
a set of mandatory courses, as well as courses that can be
chosen more freely. In the first years, an adequate order of
mandatory courses is of interest while in later years the focus
is on the question which courses to take in general and which
not. Instead of relying on individual recommendations from

Felix Scherzinger
Saarland University

Verena Wolf
Saarland University

wolf@cs.uni-saarland.de

other students, our goal is to take advantage of the combined
experience of former students and address both, an adequate
temporal ordering and an intelligent selection of courses.

We propose an approach that combines statistical methods
based on course orderings and grade prediction based on
a collaborative filtering approach. This results in a model
consisting of two main components, a course dependency
graph and grade prediction. Therefore our model combines
two major criteria: The expected performance, i.e. the ex-
pected grade, and preparedness, i.e. how prior course choices
may benefit the student, for a given course.We believe that
weaving the two criteria strongly increases the usability of
our recommendations compared to previous work focusing
only on one of the two.

To train our model we use long-term educational data of
computer science Bachelor students from Saarland Univer-
sity’s computer science department. The data consists of
course performance information from several thousand stu-
dents of various countries during the last ten years. Experi-
ments with a first subset of students already showed promis-
ing results giving recommendations for first-year as well as
for senior students.

2. RELATED WORK

Many course recommendation approaches are based on per-
formance prediction. A wide range of standard machine
learning methods have been applied to this problem [14] |15],
as well as recommender system techniques [10]. Ray and
Sharma [8] apply collaborative filtering based on item-item
similarity. Ren et al. [9] supplement a matrix factorization
approach with weights for recently taken courses. Besides a
gain in predictive quality, the resulting model carries valu-
able information on beneficial orderings of courses. Poly-
zou and Kyrapis [7] propose a matrix factorization based
on course-specific features. Slim et al. |[12] use Markov net-
works of courses to predict individual grades and estimate
the future performances inside a study program.

In contrast to the aforementioned approaches, our technique
separates the concerns of performance and preparedness.
This has the benefit of allowing for a custom weighting of
the two components, as well as the increased explanatory
value of the model itself.

Much effort on curriculum planning has been focused on

Massive Open Online Courses (MOOC). For instance, Hansen
et al. [5] analyse characteristic question sequences in online
courses by applying Markov chains to student clusters. Chen
et al. [3] propose a squencing for items in the context of web-
based courses.

In the context of university eduction, much effort has been
directed towards providing analytical tools to educators and
institutions. For example Zimmermann et al. [18] predict
graduate performance, based on the students’ undergradu-
ate performances. Saarela and Kirkkéinen [11] analyse un-
dergraduate student data to indentify relevant factors for a
successful computer science education.

3. PROBLEM SETTING

We consider the problem of designing a student’s curriculum
that optimizes performance (measured in terms of course
grades) and the time to degree. Hence, for each semester a
subset of the courses offered is chosen such that the student’s
complete trace from the first semester until the final degree
is (approximately) optimal, i.e., the performance and time to
degree does not improve if the order in which the courses are
taken is changed or if different courses are taken. We assume
that a large number of traces of former students are given,
including the particular grades achieved in each course. Note
that this also includes data of students retaking courses are
failing. However, the data may not provide information about
students that enroll in a course but withdraw before the
final exam. In addition, we assume that recommendations
for students that already participated in certain courses, the
corresponding partial trace is available as well as meta data
about the student. Moreover, we want to take into account
all selection rules of the corresponding study program.

The data-set consists of performance and meta-information
of the students at the computer science department of Saar-
land University since 2006. It includes grades, basic infor-
mation regarding students (age, nationality, sex, course of
studies) as well as basic information regarding the lecture
(course type, lecturer). Here, we consider a subset of 72 re-
curring courses which have a total of 16,090 entries of 1,700
students. A challenge regarding this particular data set is
the fact that students may register fairly late in the semester
for a particular course. Therefore the data does not capture
a early student drop out.

4. COMPONENTS OF OUR APPROACH

In the context of standard recommender systems, the pre-
dicted rating is the basis for a recommendation. However, in
the context of course recommendation, further aspects, such
as the knowledge gain and constraints of the study program
have to be taken into account. Here, we present an approach
that is flexible enough to also incorporate such criteria in a
modular way. Moreover, in our approach selection criteria
can further be prioritized by the student. A student may,
for example, prioritize taking a course that increases the pre-
paredness for certain other courses. In this case, the course
may be recommended although the students performance
alone did not lead to suggestion of that course.

We construct a personalized recommendation graph of courses
for each student based on the two main components: the
course dependency graph and the performance prediction.

The course dependency graph aims to capture the positive
effect that course A has on the performance in course B. The
performance prediction is done using a collaborative filtering
approach, that incorporates contextual features of both the
student and the course.

4.1 Course Dependency Graph

The Course Dependency Graph is a graph whose node set
equals the set of all (regularly or irregularly offered) courses.
A directed edge between course A and course B means that
when passing A before B then the chance of getting a better
grade in B is higher compared to the grade in B obtained
for the order B before A.

We use the Mann-Whitney U-test |2| to construct such a
graph of courses. The hypothesis of the test is that one ran-
dom variable is smaller than another. If we let the random
variable X, denote the grade in course B for a student
that had a grade < c¢ in course A an edge represents the
hypothesis

Pr(X<. <k)>Pr(X>. <k),

where X>. includes the case of not taking course A. The
hypothesis describes that the probability of drawing a grade
of subset X<, which is better than k is higher than doing
the same for subset X>..We fix a small significance level
a = 0.0001, to find the most important course relations.
Since the test is quite sensitive, it tends to identify too many
course pairs for higher significance levels. Moreover, a min-
imum number of 20 samples is required for each case to
perform the test. The graph only contains an edge between
two courses if the test confirms the above hypothesis.

In Germany grades are numbers in the set
P=1{1,1.3,1.7,2,2.3,2.7,3,3.3,3.7,4,5},

where lower numbers are better and 5 is the failing grade.
In general, we assume these performances to be normalized
to mean zero and unit variance w.r.t. courses.

To construct the course dependency graph, we first construct
one graph for each grade threshold ¢ € P. Next we average
over the edges of all graphs, resulting in edge weights be-
tween 0 and 1. In this way the final graph, in which course
dependency is not binary but a weighting, is more informa-
tive. A large value implies that this course ordering is bene-
ficial to students of all performance levels while a low value
indicates that this ordering is only helpful for a smaller set
of students. Note that the absence of edges indicates that
there is not enough information about the relation between
the two courses.

An excerpt of a course dependency graph is shown in Fig-
ure [I} We find that ‘Programming I’, ‘Maths I’ and ‘Maths
II" are good starting points in this graph for a first-year stu-
dent as they do not have incoming edges. Note that the miss-
ing edge between ‘Maths I’ and ‘Maths II’ is meaningful as
‘Maths I’ focuses on Linear Algebra while ‘Maths I’ is con-
cerned with Analysis. As opposed to this, for ‘Programming
I’ and ‘IT’ the graph suggests to first take ‘Programming I’
as a preparation, which is a meaningful recommendation as
the contents of ‘Programming II’ are based on those of ‘Pro-
gramming I’. Moreover, the graph shows a number of less

Maths |

0.37

Programming |

0.82

System architecture

0.2

Theoretical CS Software lab

0.09
A
0.2
A
A

0.28

Maths I

Information systems

Figure 1: Excerpt of a course dependency graph, based on
Mann-Whitney U-test with significance level of 0.0001, rep-
resenting the dependencies between most of the basic courses
in CS curriculum at Saarland University.

obvious relations between courses (e.g. ‘Programming II’
and ‘Theoretical Computer Science’).

4.2 Grade prediction

We use a collaborative filtering |10] approach to predict stu-
dent performance. One advantages of this approach is that
no imputation of missing entries is necessary but the opti-
mization only runs over existing entries.

We associate with each student i and course j an n-dimensio-
nal feature vector, s; and c;, respectively. The predicted
performance is the cross-product of both vectors, i.e.

n
£ 5) = (sies) =D sikCin,
k=1

which we call the predictor function. Let g; ; be the perfor-
mance of a student ¢ in course j and let G; denote the set of
all known performances of students up to semester ¢. Then
the standard loss is the regularized MSE, i.e.

L(S,C.t)= Y (f(i,4) = gig)* + Mh(S,C)

9i,;€9t—1

with regularization term

h(S,C) = llsill + > _llesll

i€S jec

where S is the set of all students and C' the set of all courses.

4.2.1 Contextual Information

The above loss metric only depends on information about
the students’ performances, i.e. their grades. However, the
context of a performance can contain vital information. Usu-
ally, in the context of student records a wealth of data is
readily available. This includes meta-data of a student such
as age, gender, and nationality and data regarding the pro-
gression of the student throughout study programs. More-
over, information regarding the course, such as the lecturer,
is typically known.

A standard and straight-forward, approach to include such
information is to pre-filter data [10]. This entails partition-
ing data along contextual criteria and then training a model
for each subset. Here, the only performed pre-filtering is to
take only computer science Bachelor students into account.
Other partitionings, e.g. partitioning along the semester,
have not improved predictive quality.

Further contextual information is included explicitly in the
model as follows. The predictor f is augmented by linear
terms for contextual features. Categorical features, such
as teachers, are one-hot encoded. Continuous features are
centered to zero mean and unit variance. In principle we
can introduce these additional linear parameters for both,
courses and students, but it turns out that the best results
are achieved if we associate features with courses. Given
the large number of contextual features it proved advanta-
geous to set up a feature selection pipeline in which certain
features are identified for each course. Specifically, features
were identified by using a 5-fold cross-validated recursive
feature elimination. Therein features are iteratively removed
according to their coefficient in a linear model. The cross-
validation is used to determine the number of features kept.
Thus, the predictor becomes

r .. tx
f(zv.77 t) = <5i7 cj> + <Ct$(2,], t)7 C]c' T>)
where ctz is the performance context according to the above
feature selection pipeline. Consequently, the parameter vec-
tor for course j becomes

~ ctr ctx

Cj = (Cj,1,0j,2, ey ij, Cj71 geeey ijmj)
and my; is the number of features selected for the context of
a performance in course j.

Another key property to be considered when working with
past performances is the temporal distance to the current
time. A performance achieved one semester ago should be
considered more important than one five semesters ago [9].
Therefore it is natural to add a temporal decay to the loss
function. Considering the semester ¢’ of a specific perfor-
mance g; ;+, we can multiply an exponential decay function.
Thus, the now time-dependent loss is

L(S,Ct)=>Y" e (=) (f(i,J} t) — gi,j,t’)Q

94i,5,6' €9t—1
+ AR(S,C), (1)

where o > 0 is the temporal decay parameter.

4.2.2 Minimization

The non-linear minimization problem in Eq. is of high
dimensionality because of the parameter vectors s; and c;
for i € S,j € C. It can most effectively be achieved using
stochastic gradient descent techniques with adaptive learn-
ing rates, because for this approach course vectors stabi-
lize more quickly. Specifically, we used the Adagrad algo-
rithm [4], which avoids strong alteration of frequently con-
sidered parameters, which is the case for many course pa-
rameters, while seldomly encountered parameters may be
altered more, which is fitting for student parameters. We
fixed a batch size of 1000 and performed 500,000 iterations
of the algorithm. Each minimization is performed for 5 dif-
ferent initial random values. The value according to the

smallest training loss is selected. This was performed for all
semesters in a grid search over different dimensionality pa-
rameters and regularization parameters, i.e. for parameter
tuples (A, n). Before minimization the data was normalized
along the lectures to zero mean and unit variance.

4.2.3 Evaluation

The most natural approach to evaluate the model is to split
the data by semesters. Given a fixed semester t the data up
to (including) semester t — 1, i.e. G—1, is used as a training
set. The data of semester ¢, i.e. G; \ G¢—1 is used as a test
set.

The measures of quality we use are the mean absolute er-
ror (MAE) and the root mean square error (RMSE). As a
baseline we provide the RMSE and MAE for the mean pre-
dictor with respect to both, the students and the courses in
Table [11

In the evaluation of the context-free model, we see, that
low-dimensional models (i.e. models with only few features)
perform best. The absolute values of these errors are fur-
ther improved by pre-filtering the data considered. If, for
example, only Bachelor computer science students are con-
sidered the test error decreases. The decay factor leads to
an improvement. For example, for n = 1 and A = 0.1 the
MAE decreases from 0.856 to 0.852. In Figure [2| the pre-
diction results for the importance decay a = 0.1 are shown.
Given this loss function, the one-dimensional, less regular-
ized model outperforms the others in terms of both, the
MAE and the RMSE. The inclusion of contextural informa-
tion leads to a further reduction, such that for n = 1 and
A = 0.1 the MAE is 0.8459, while the RMSE is 1.0904.

Table 1: The RMSE and MAE for the mean predictors along
the student and the course axis, respectively.

MAE RMSE
course 1.1130 1.3311
student 0.9268 1.1883

S. RECOMMENDATION SYNTHESIS

The recommendation combines the course dependency graph,
the grade prediction, and constraints based on the study
regulation in order to compute a recommendation score. A
larger score corresponds to a stronger recommendation.

5.1 Combining the Components

The recommendation score for a course j w.r.t. a student
i combines several criteria, namely the preparedness for j,
the general merit of j, and the predicted performance of 4
in course j.

Let R; denote the set of courses that student ¢ has finished
within the last ¢ semesters. Now, for each course j € C'\ R;,
we sum over the weights of the edges of the course depen-
dency graph that start in some course ;' € R; and end
in j. This value is an approximation for the preparedness
Di,j € R>g of the student w.r.t. course j.

For the general merit of a course, we use the out-degree of
the course deg™ () in the graph as an approximation of its
benefit towards other courses. Note that this criteria is espe-
cially relevant for first-year students as for them nodes with

N 0.906 | 0.881

0.876 0.873

~ - 0.849 0.852 0.855 0.855

Dimensionality n

1 1 1 1 -0.85
0.05 0.1 0.15 0.2

Regularization parameter A

(a)

< 1.170
>

MR 1.173 | 1.133 SIH20NREY 1155w
5 1.140 2
g 1125 §
0 ~-1.105 1.105 1.106 1.098 R
.g -1.110

0.05 0.1 0.15 0.2
Regularization parameter A

(b)

Figure 2: The MAE (a) and RMSE (b) for different dimen-
sionalities n and regularization parameters A. The models
were trained and tested on Bachelor CS students only. The
loss is weighted by time with oo = 0.1.

higher out-degree provide a good starting point. Further
note that for such students, R; = @ and the grade predic-
tion can only give average values as no information about
their previous performance is available.

To incorporate information about the predicted performance,
we transform the predicted grades g;,;, such that good grades
map to large values and poor grades to small values, i.e., we
consider the value (5 — g;,;)/4 € [0,1].

We parameterize these factors into a linear model, that gives
us a raw, unfiltered recommendation value

T = CpDij + q(5 = §ij)/4 + cm deg™ (4), (2)

where ¢, ¢q,cm € [0,1] provide a weighting for the three
factors, i.e., ¢p +cg +cm = 1.

We finally filter the recommendations as follows. The choice
of courses is constrained by study regulations. Thus, for a
given student ¢, some courses may not contribute towards
completion of the program or she may not be able to enroll
in them (‘not allowed’). Thus, the final recommendation
value is a product of the raw value r; ; and a function value
reg(i, j), where

1 j is part of program
reg(i,j) = 4 0
ce(i) otherwise

7 not allowed

This introduces a further parameter c.(i) € [0, 1] associated
with courses that are not necessary to achieve the degree but
may lead to an improvement of the final grade or may be
interesting to the student. E.g. a student of bioinformatics
may choose ce (i) = 0.5 to get also recommendations for com-
puter science courses that are not part of the bioinformatics

Theoretical CS

A

System architecture Programming Il

Programming |,
Maths |

Maths Il

0.1 Information systems

A
Software lab

Figure 3: Example of a recommendation graph, based on the
dependency graph given in[I] ‘Programming I’ and ‘Maths
I’ have been passed already and the edge weights have been
updated accordingly. The recommendation values were com-
puted with ¢, = 0.76, ¢y = 0.21 and ¢, = 0.03.

program. However, the default value is ce(i) = 0.

Hence, the overall recommendation value of course j is
rig = (copiy + cg(5 = §i)/4 + cm deg” (4)) reg(i,j) (3)

with weight parameters by cp, cg, cm.

To illustrate the influence of the different factors, we con-
sider the following example. Suppose a first-year student
in the winter semester uses the system to compose his first
curriculum. We do not have any performance knowledge
about the student, so this is a cold start scenario. Recon-
sider the dependency graph in Figure[ll Because of the high
out-degrees, we recommend ‘Programming I’, ‘Maths I’ and
‘Theoretical CS’. The student successfully attends the first
two of these courses in the following winter semester. Now
we are able to incorporate the achieved grades in our pre-
diction model. The now computed recommendation values
per course are visualized as star graph shown in Figure [3]
Finally a valid suggestion for the next semester based on
the recommendation values is a combination of ‘Program-
ming II’) ‘Information systems’ and ‘Maths II’. In general,
at the beginning of every semester, we can provide the stu-
dent with a personalized curriculum by compiling a list of
lectures based on their recommendation score.

5.2 Evaluation

We now assess how similar our recommendation are to the
actually selected courses of the students. Again, we separate
the student data by semesters, such that recommendations
are only based on data of previous semesters. To define the
metric, let 7 be the set of semesters, S; the set of students
who took some course in semester ¢ € 7. Further, given
some semester ¢, let C"} be the set of courses in which stu-
dent i was enrolled and let C%! be the set of recommended
courses for student i. We adopt a top-k recommendation
policy in which we recommend only the k£ courses with the
highest recommendation value. Moreover, we only take into
account lectures which were available in the given semester
and study program.

To approximate the conformity of our recommendations we
consider the conformity score

1_ 1 S min(k, \C;etz) — |(?Z~éi n Ci;i)h
ITI+18 i &5 min(k, |C[)

where the second term calculates the average ratio of the
number of courses that have been selected by the student
but were not recommended or that were recommended but
not selected. So we end up with a score, indicating the con-
gruency of our recommendations with the student’s actual
course selections.

We evaluated the conformity score w.r.t. several combina-
tions of the recommendation parameter values of Eq. .
The considered recommendation sizes are 4 and 6 courses,
since for most students this is a realistic balance between
study progression and manageable a workload.Since we are
interested in the relationship between the conformity score
and the distribution of the parameters, in the first place we
either fix ¢, or ¢4 to 1 while the rest stays at zero which
captures the performance of a single component of our ap-
proach. Moreover, we look for the best combination of both,
course dependency graph (c¢p) and grade prediction (cg4).
The third parameter ¢, = 1—c, —cg4 results from the choice
of the first two, which makes the search two-dimensional.

Our results in Table 2] show that with increasing k the con-
formity grows as more courses are recommended. The first
two columns of the table point out that the course depen-
dency graph has a higher explanatory value for the recom-
mendation than the grade prediction. A recommendation
only based on the performance hardly achieves a value ex-
ceeding 50 percent while course dependency alone reaches 70
percent. Therefore it is clear that ¢, has to be determined
significantly larger than c,. This observation is approved
within the third column as in all top-k recommendations we
reached the best conformity with ¢, ~ 0.76, ¢4 ~ 0.21 and
cm ~ 0.03.

According to these scores our recommendations and the choi-
ces of the students have an average overlap of about 70
percent. Hence, there are recommended courses that the
student did not choose. An example for this case is given
by the core lecture ‘Embedded Systems’. We recommended
this course to 89 students, while only 4 of them actually
took the course in the corresponding semester. As opposed
to mathematically demanding lectures such as ‘Complexity
Theory’, which is only recommended for a small set of very
strong students, this course seems to be a good choice for
many students but is taken only by few. Moreover, in one
semester the number of recommendations for basic courses
was about 200 while only 90 students actually attended the
courses. This could be related to the fact that many stu-
dents withdraw from courses after a few weeks when they
feel that the course is too demanding for them. In this case,
the data does not show their trial for this course.

6. CONCLUSION

We proposed an approach that gives personalized course rec-
ommendations for students in order to improve the obtained
grades and to decrease the time-to-degree. We combined a
course dependency graph and performance predictions to

Table 2: The conformity score for different valuations of the
recommendation value parameters (cp, ¢g, ¢n) and different
top-k recommendation policies.

top-k (cp,cg) = (1,0) (cpscq) = (0,1) (cpscq)”
4 0.5913 0.3857 0.6349
5 0.6580 0.4564 0.6962
6 0.7138 0.5326 0.7432

determine a recommendation value for each course. We as-
sumed that only the top-k courses are given as a personal-
ized curriculum for a student and tested their conformity to
the actually selected courses of the student. This, however,
does not indicate that our approach significantly improves
the students’ grades or time-to-degree as we expect that stu-
dents do not make optimal choices.

An interesting insight from our results is that the course de-
pendency graph seems better suited for course recommen-
dation than grade prediction even though it is only based
on aggregated information and does not consider any meta
data. From this result it seems that students tend to focus
more on a course ordering that older students established
rather then selecting according to their own confidence or
skill. Another interesting result is the large overlap (around
70 percent) of recommended and chosen courses. Moreover,
some courses are not taken by students even though our
model indicates that they would lead to an improvement in
performance.

The model itself is flexible in the sense that one can easily
adjust or extend it by changing the recommendation formula
and/or incorporate more information to make the grade pre-
diction more precise. A possible extension is the integration
of more personalized information given by the student before
calculating their recommendations. For example a student
is more interested in practical lectures, so she uses an in-
terface to let the system know. Thus, we would be able to
give courses of this category a positive effect on their rec-
ommendation value. The challenge here is to separate the
courses into appropriate categories, since the way a course is
designed strongly depends on the lecturer and other factors.

To evaluate the system, it would be interesting to monitor
a sufficiently large number of students during their stud-
ies that choose only recommended courses or at least is ex-
posed to the course recommendations. An easier evaluation
would be possible with a simulation of hypothetical student
traces according to our grade prediction approach, where in
each semester we assume that a student chooses only rec-
ommended courses.

7. REFERENCES

[1] R Asif, A Merceron, S Abbas Ali, and N Ghani
Haider. Analyzing undergraduate students’
performance using educational data mining.
Computers € Education, 113:177 — 194, 2017.

[2] M Baron. Probability and Statistics for Computer
Scientists. Chapman & Hall, 2014.

[3] CM Chen, CY Liu, and MH Chang. Personalized
curriculum sequencing utilizing modified item

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

response theory for web-based instruction. Ezpert
Systems with applications, 30(2):378-396, 2006.

J Duchi, E Hazan, and Y Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121-2159, 2011.

C Hansen, C Hansen, N Hjuler, St Alstrup, and

C Lioma. Sequence modelling for analysing student
interaction with educational systems. In Conference
on Educational Data Mining, pages 232237, 2017.

A Karatzoglou, X Amatriain, I Baltrunas, and

N Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In Conference on Recommender systems,
pages 79-86. ACM, 2010.

A Polyzou and G Karypis. Grade prediction with
models specific to students and courses. International
Journal of Data Science and Analytics,
2(3-4):159-171, 2016.

S Ray and A Sharma. A collaborative filtering based
approach for recommending elective courses. In
International Conference on Information Intelligence,
Systems, Technology & Management, pages 330-339.
Springer, 2011.

Z Ren, X Ning, and H Rangwala. Grade prediction
with temporal course-wise influence. Conference on
Educational Data Mining, 2017.

F Ricci, L Rokach, B Shapira, and PB Kantor.
Recommender systems handbook. Springer, 2015.

M Saarela and T Kérkkédinen. Analysing student
performance using sparse data of core bachelor
courses. Journal of educational data mining, 7(1),
2015.

A Slim, GL Heileman, J Kozlick, and CT Abdallah.
Employing markov networks on curriculum graphs to
predict student performance. In Machine Learning and
Applications, Conference on, pages 415-418. IEEE,
2014.

SE Sorour, T Mine, K Goda, and S Hirokawa. A
predictive model to evaluate student performance.
Journal of Information Processing, 23(2):192-201,
2015.

M Sweeney, J Lester, and H Rangwala. Next-term
student grade prediction. In Big data, pages 970-975.
IEEE, 2015.

M Sweeney, H Rangwala, J Lester, and A Johri.
Next-term student performance prediction: A
recommender systems approach. arXiv preprint
arXiv:1604.01840, 2016.

A Toscher and M Jahrer. Collaborative filtering
applied to educational data mining. KDD cup, 2010.
H Vossensteyn, A Kottmann, B Jongbloed, F Kaiser,
L Cremonini, B Stensaker, E Hovdhaugen, and

S Wollscheid. Dropout and completion in higher
education in europe: Main report. 2015.

J Zimmermann, KH Brodersen, HR Heinimann, and
JM Buhmann. A model-based approach to predicting
graduate-level performance using indicators of
undergraduate-level performance. Journal of
Educational Data Mining, 7(3):151-176, 2015.

	Introduction
	Related Work
	Problem Setting
	Components of Our Approach
	Course Dependency Graph
	Grade prediction
	Contextual Information
	Minimization
	Evaluation

	Recommendation Synthesis
	Combining the Components
	Evaluation

	Conclusion
	References

