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Abstract—Electric vehicles (EVs) have been globally recognized
as a reliable alternative to fossil fuel vehicles. The core component
of an electric vehicle is its rechargeable battery pack, and
Lithium-ion battery (LIB) cells are currently the dominating
technology in battery pack design. This game-changing technol-
ogy pushes toward the investigation of new ideas to improve
the offered services. However, there still needs to be large-scale
publicly available EV data to investigate and distribute effective
solutions to monitor the conditions of the EV’s battery pack.
Hence, we propose an EV simulator that generates EV battery
pack internal signals starting from the input driving cycle. The
simulated data resemble the behavior of a multi-cell EV battery
pack undergoing the user’s utilization of the EV. The simulated
data include vehicle speed, voltage, current, State of Charge
(SOC), and internal temperature of the battery pack. The virtual-
EV model simulator, including the battery pack subsystem, has
been tuned using real-world EV data sheet information. The
battery pack embeds thermal and aging models for further
realism, influencing the output signals given the environmental
temperature and the battery’s State of Health (SOH). The data
generated by the virtual-EV simulator have been validated with
real EV data signals sampled by an equivalent real-world EV.
The data comparison yields a minimum R2 value of 0.94 and an
Root Mean Squared Error not higher than 2.74 V for the battery
pack’s voltage and SOC, respectively.

Index Terms—EV, simulation, Battery, SOH

I. INTRODUCTION

Climate change is gaining more concern as one of the
critical worldwide challenges. It is estimated that the road
transport sector accounts for three-quarters of transport CO2
emissions [1]. Electric vehicles (EVs) are considered a cleaner
and more sustainable technology than fossil fuel vehicles, re-
ducing air pollution, especially in urban settings. Therefore, as
EVs become the leading road transportation means, improving
their technologies becomes paramount to offer a better driving
experience to the users.

The core component of an EV is its rechargeable battery
pack which is hierarchically structured into three levels: cell,
module, and pack. Multiple battery cells are connected in
series and parallel to form a battery module, and then a certain
number of modules are assembled to form a battery pack.
Lithium-ion battery (LIB) cells are the dominating technology
for the battery pack design, thanks to a broad set of properties
[2]. LIB cells experience degradation due to time and usage,
leading to decreased capacity and increased internal resistance.
Therefore, monitoring the EV battery pack conditions is essen-
tial to determine the efficiency of the EV and, consequently,
the driver’s safety. For instance, an indicator of capacity loss

due to degradation is the State of Health (SOH), expressed as
the ratio of the battery’s actual capacity to its nominal capacity.
The SOH’s supervision is critical since it identifies when an
EV must retire. A brand new EV battery pack will have a
SOH equal to 100%, but with the vehicle’s utilization, the
SOH will eventually decrease to 80%, reaching the battery’s
end-of-life [3].

The discovery of a new and reliable solution to monitor the
EV battery conditions will require vast datasets, especially for
machine learning data-driven approaches. But, unfortunately,
only a few open datasets, including internal battery signals,
are nowadays available [4] [5], which are not representative of
an EV battery pack. Private EV fleet management companies
could provide such data at a very high price, inaccessible to
many researchers. Therefore, the necessity of richer and more
valuable datasets pushes towards alternative and affordable
solutions to gather such data.

Hence, in this work, we propose an EV model simulator
defined using MATLAB and Simulink programming envi-
ronments. The simulator is built as an assembly of several
constituents and mutually dependent EV subsystems, mod-
eling the main operational mechanisms of a general EV.
For instance, the electric motor, wheels, braking system, and
battery pack. The definition of a full EV simulator allows
the generation of battery pack signals that embed complex
interactions among all subsystems. The simulator receives an
input speed time series, resembling the user’s driving cycle,
which induces a change in the building blocks accordingly.
Moreover, we configured thermal and aging models of the
battery pack subsystem to adequately describe its conditions
at the beginning of the simulation. For the sake of our study,
we solely monitor the simulated output signals of the battery
pack, including current, voltage, State of Charge (SOC), and
internal temperature. Finally, we employed real driving session
monitoring data for a real-world EV acquired from a private
EV fleet management company to assess the performances of
the simulator.

The paper is organized as follows. Section II presents an
overview of the available EVs simulators and their limitations;
Section III describes in detail the structure of the simulator, its
inputs and outputs, and the chosen aging and thermal models
of the battery pack. In Section IV, we thoroughly discuss
the performances of the simulator. Finally, in Section V, we
make our final considerations over the developed simulator
and provide an overview of the possible future works.



II. RELATED WORKS

In the literature, different simulation approaches are avail-
able. In terms of load exchange, it is possible to encounter
simulators that model the impact of EVs over the power grid.
Conversely, other simulators model the inner dynamics of an
EV, monitoring its performance. The availability of EV simu-
lators enables the development of data-driven methodologies,
i.e., machine learning, to improve EV technologies under both
the manufacturing and use perspectives.

For instance, Canizes et al. [6] developed a travel simulation
tool to simulate a real environment, enabling the creation of
personalized profiles, schedules, and destinations. The tool
allows the inclusion of trips and charging stations, taking
into account the behavior of real users. The presented tool
highlights the variable-rate electricity prices that are more
advantageous to the users, considering the impact of electricity
price variation on the behavior of EV drivers. Rigas et al. [7]
proposed EVLibSim, a Java event-based simulator to model
EV activities at a charging station level inside the power
grid. Considering the user’s demands, the simulator allows
the configuration of a charging station, enabling an accurate
simulation of charges, discharges, and queues.

Gaete-Morales et al. [8] developed an open-source Python
tool, Emobpy, that generates EV time series ranging from
the vehicle’s mobility and energy consumption to the grid’s
availability and demand information. The tool exploits empir-
ical mobility statistical and physical properties data from 200
input vehicle profiles from Germany to extensively personalize
and characterize the simulation scenarios. Emobpy allows the
customization of the length and temporal granularity of the
output time series enabling the monitoring of large EV fleets.

Ciabattoni et al. [9] proposed an event-based web sim-
ulator called ePopSimulator, which allows the creation of
customizable individual and aggregated charge, discharge, and
plugin/out events for an EV fleet. Moreover, the tool includes
a Matlab/Simulink block to extend its possibilities, enabling
integration into different applications. The simulator is well
suited for investigating vehicle-to-grid technologies by cus-
tomizing the simulation scenarios. Successively, Ciabattoni et
al. [10] extended the capabilities of ePopSimulator, including
an aging model to include degradation mechanisms on battery
performances. The aging behavior expresses the degradation
in terms of residual capacity that allows the estimation of the
battery’s SOH.

Simic and Bäuml [11] exploited Modelica packages to
develop a hybrid EV model which includes an idealized
battery pack. They parameterized the EV model employing
available measurements and data sheets information, select-
ing real measured current as a reference signal. The model
achieves good performances for the battery voltage yielding a
deviation of 5% between the measured and simulated signals.
Finally, Baker et al. [12] defined FASTSim, as an open-source
vehicle simulation tool that analyzes and designs EVs and
conventional vehicles. The tool models car components at the
highest level while maintaining accuracy, ensured through the

validation of the results employing data from hundreds of
cars. The potentialities offered by the tool allow researchers to
explore numerous solutions to improve EV technologies, such
as estimating energy consumption.

This work proposes a virtual-EV model simulator developed
with Simulink and MATLAB. Concerning the solutions avail-
able in the literature, we wanted to create an EV simulator
focused on generating internal battery pack signals, given
a few inputs fully customizable by the user. Hence, we
concentrate on the EV rather than its impact on the power
grid. However, the proposed EV simulator could be integrated
into broader co-simulation contexts.

The proposed EV simulator is equipped with a multi-
cell battery model that generates the battery pack’s current,
voltage, State of Charge (SOC), and internal temperature
time series given the input driving cycle (i.e., a time series
of speeds). The selection of a multi-cell structure for the
battery pack allows us to mimic the actual inner structure
of an EV battery pack, with the cells organized in modules
and connected in series and parallel. The realistic battery
pack generates the output current, voltage, SOC, and internal
temperature considering the contribution of all and each cell.
In this way, we can generate precise and realistic internal
battery pack signals. Furthermore, the battery pack embeds
aging and thermal models; the former permits the customiza-
tion of the initial degradation conditions of the battery pack
at the beginning of the simulation; the latter manages the
heat exchanges between the battery pack and the external
environment to keep the internal temperature between 30 °C
and 40 °C.

We parameterized the EV simulator solely using data-sheet
information publicly accessible online to replicate the target
real-world EV model, the Volkswagen e-Golf. Each building
block of the EV simulator can be extensively modified to
match a target real-world EV model, changing the inner
parameters. Hence, the user might define an EV simulator
representing any real-world EV model whenever technical
data-sheet information is available. Using the proposed EV
simulator, we can generate a synthetic and realistic dataset
including internal battery pack signals, which might be only
accessible through either costly and time-consuming labora-
tory experiments or devices directly connected to the EV’s bat-
tery management system. The generation of realistic internal
battery data enables thorough research exploiting data-driven
methodologies to improve EV technologies, overcoming the
issue of data unavailability.

III. DATA AND METHODOLOGY

This section describes the employed dataset and how we
defined the EV simulator. We thoroughly discuss the design
choices of the simulator’s subsystems, the required inputs, and
generated outputs.

A. Dataset

The utilized dataset, acquired from a private company,
consists of actual EV battery pack measurements relative to



an individual real-world EV model, a Volkswagen e-Golf.
The dataset comprises five driving session data from the
same vehicle but characterized by a different mileage, hence
with other battery pack conditions, i.e., SOH. The data were
collected through a device connected to the battery manage-
ment system of the EV, which gathered environmental and
internal information concerning the monitored EV. The dataset
includes measurements of environmental temperature [°C],
EV speed [Km/h], current [A], voltage [V], SOC [%], and
internal temperature [°C] of the whole battery pack. Each of
the observed properties is sampled with a different frequency.
Indeed, the device sampled current and voltage with a higher
frequency since these physical quantities tend to vary more
rapidly over time with respect to the listed others. We report
the employed frequencies to sample the data for the real-
world EV in Table I. We used the available real EV data to
validate the simulated signals generated by the EV simulator.
We report in Table II an overview of the available driving
sessions belonging to the dataset.

TABLE I
THE SAMPLING FREQUENCIES OF THE ACQUIRED REAL SIGNALS.

Input signal Sampling frequency [s]
Speed 19

Current 0.1
Voltage 0.1

SOC 11
Battery internal temperature 41

Outside temperature 110

TABLE II
GENERAL INFORMATION OF THE AVAILABLE DRIVING CYCLES (DC).

Driving
cycles

Duration
[s]

Avg. speed
[Km/h]

Avg. Environmental
temperature [°C]

Avg. SOC
[%]

Battery pack’s
SOH [%]

DC1 7777 38.50 21.32 78,20 99
DC2 3749 81.85 30.08 50.74 98
DC3 3039 58.04 17.60 84.19 95
DC4 4584 60.59 19.74 78.11 94
DC5 6089 67.02 20.04 73.71 93

B. The EV simulator

The EV simulator has been developed using Simulink [13],
a simulation environment allowing the definition of complex
systems using modular components. Indeed, we defined the
proposed EV simulator as an assembly of individual blocks,
each modeling a specific EV subsystem. To correctly represent
a fully operational EV, we included the following blocks:
driver, motor, braking system, drivetrain, wheels, vehicle body,
vehicle dynamics, and battery pack. We thoroughly describe
the building blocks of the simulator later in the manuscript,
while Figure 1 shows the schematic diagram of the simu-
lator’s inner structure. For the sake of this study, we tuned
the simulator’s parameters to match a specific real-world
EV, a Volkswagen e-Golf, for which we own real battery
pack measurements. In this way, we can correctly assess the
performances of the simulator. The main parameters of the
simulator’s blocks have been retrieved from online sources and

technical data sheets. Hence, with this approach, numerous
real-world EV models can be simulated by changing the
parameters following the technical specifications of the target
EV model.

Fig. 1. The inner structure of the EV simulator with the subsystem interactions
and relative inputs and outputs.

The EV simulator receives a driving cycle as input, ex-
pressed as a time series of speeds representing the user’s
driving routine. Hence, according to the driving cycle, the
EV simulator generates accurate internal battery pack signals,
including current, voltage, internal temperature, and SOC. We
added thermal and aging models to the battery pack to further
improve the quality of the synthetic output signals. Therefore,
besides the input driving cycle, the user can specify the envi-
ronmental temperature and battery pack’s degradation status in
terms of SOH. In such a way, it becomes possible to customize
the conditions of the simulated EV model to match the
researcher’s needs. As previously mentioned, the EV simulator
comprises mutually dependent subsystems, Driver, Motor,
Wheels & Brakes, Drivetrain,Vehicle dynamics, and Multi-cell
battery pack. The modules are connected through the signals
generated during the simulation. Referring to Figure 1, the
Driver block implements a discrete-time proportional-integral
controller that mimics the vehicle’s human driver. At each time
step, the controller tracks the given input driving cycle and the
simulated vehicle speed, attempting to line them up by acting
on the brake and accelerator pedals. The Motor block, taken
from the Simscape library [14], implements a mathematical
model of an electric motor operated in torque-control mode.

The Drivetrain in Figure 1 is the set of rotating shafts and
gears that distributes the mechanical power generated by the
electric motor to the wheels. The vehicle body implements
a three-degree-of-freedom rigid vehicle body with constant
mass. The three degrees of freedom are the pitch, yaw, and
roll, allowing the correct suspension system implementation.
The Wheels and Brakes are modeled using the Longitudinal
wheel with disc brake Simulink block. The braking system is
based on two contributions: friction and regenerative braking.
The former is the conventional braking mechanism activated
by pressing a brake pedal, generating a friction force opposing



the direction of the wheel; the latter recharge the EV battery
pack while slowing down the vehicle. Regenerative braking
was not implemented in the baseline block; hence, we added
it to mimic the dynamics of a real EV. The Vehicle dynamics
block handles the forces acting on the vehicle body, and it
enables the definition of the wind resistance and slope of the
road. Finally, as shown in Figure 1, the Multi-cell battery pack
subsystem, taken from the Simscape library, is modeled as a
multi-cell battery pack. The cells are individually organized in
modules and connected in series and parallel, mimicking the
actual inner structure of an EV battery pack. The chosen multi-
cell battery pack module provides data on each cell’s current,
voltage, SOC, and internal temperature. But, for the sake of
our study, we consider their aggregate outputs computed as
average values for current, SOC, and internal temperature.
At the same time, for the voltage, we calculate the sum
of the individual cell voltages. We consider the aggregate
values of the battery pack’s signals to properly compare them
with the real available Volkswagen e-Golf’s battery signals.
The number of cells, their configuration data, and all the
other subsystems’ main parameters have been chosen based
on publicly available technical data sheets. In this way, we
configure the EV simulator to represent the target real EV
model we intend to replicate as much as possible.

The EV simulator does not consider the impact of auxiliary
devices within the vehicle, such as air-conditioning units,
headlights, radio, power steering, etc. Therefore, to contem-
plate the effect of such devices over the battery’s SOC, we
include an offset to be added to the generated current equal
to 5.5 A. Moreover, we added a minimal wind resistance
component of 4 m/s to the opposing forces acting against
the vehicle during the driving. In this way, we define an EV
simulator that emulates more realistic driving conditions the
vehicle experiences. Unfortunately, we cannot assess the good-
ness of such values since the available dataset does not include
environmental information, beside external temperature, prone
to their validation.

C. Thermal and aging models

As introduced in the previous Section III-B, we added
thermal and aging models to the battery pack to further
improve the quality of the synthetic output signals. We defined
the thermal model as a state flow chart, depicted in Figure 2,
that receives each battery pack cell’s variation of temperature,
voltage, and current to compute the percentage of generated
power to be exchanged as heat between the battery pack and
the external environment. The state flow chart ensures that
the overall battery pack temperature stays between 30 °C
and 40 °C to guarantee the correct battery pack functioning.
Referring to Figure 2, each block identifies a state. At the
same time, heat is the heat to be exchanged, i, volt, and Temp
are the aggregated current, voltage, and internal temperature
of the battery pack, respectively.

On the other hand, through the aging model, we can modify
the initial health conditions of the battery pack. The input to

Fig. 2. The inner structure of the thermal model state flow chart.

the aging model is the desired SOH, expressed as a percentage,
which is generally defined through the following relation,

SOH =
Cactual

Cnominal
(1)

where Cactual and Cnominal are the current and nominal
capacities of the battery pack, respectively. Given the battery
pack’s desired initial SOH and its nominal capacity (retrieved
from technical data sheets of the EV model), we can compute
the Cactual. Indeed, using Equation (1), a 1% decrease of SOH
corresponds to a 1% reduction of the battery pack’s nominal
capacity. Through such a relation, we compute the actual
capacity, which is then assigned to the battery pack subsystem
of the EV simulator at the beginning of the simulation,
affecting the initial battery’s aging conditions.

IV. EXPERIMENTAL RESULTS

In this section, we present the performances of the EV
simulator, comparing the simulated battery pack signals with
the real ones, given the same input driving cycle, environ-
mental conditions and battery pack’s initial state. We use
the Volkswagen e-Golf’s real battery pack signals as our
benchmark. The performance metrics used to quantify the error
between actual and simulated output signals are the Root Mean
Square Error (RMSE) and Coefficient of determination (R2).
The RMSE quantifies the standard deviation of the residuals
and prediction errors, while the R2 measures the variability in
the observed values that can be explained using the predicted
values. The mathematical formulation of the selected metrics
is the following,

RMSE =

√∑N
n=1(ysim,n − yreal,n)2

N
(2)

R2 = 1−
∑N

n=1(yreal,n − ysim,n)
2∑N

n=1(yreal,n − yreal)
2

(3)

where ysim is the simulated value, yreal is the observed
value, yreal is the mean value of the observed values, and
N is the total number of simulated values. As mentioned,
the EV simulator generates internal battery signals according
to the input driving cycle, the desired battery pack’s aging
status, and environmental conditions. We individually measure
the performances of the generated synthetic data for each
input driving cycle and output signal using the performance
indicators introduced above. The simulator generates all output



battery signals with a sampling frequency of 0.1 s to correctly
capture the sub-second evolution of signals, especially for cur-
rent and voltage. Therefore, for correct results validation, the
real signals are down-sampled with the same frequency using
linear interpolation. The simulation duration is proportional to
the input driving cycle length.

We provide a complete overview of the simulator’s perfor-
mances in Table III, for all the individual input driving cycles.
We report the RMSE and R2 assessed by comparing each
output simulated battery signal with its corresponding real
signal. The chosen input driving cycles are characterized by
different environmental conditions and, most importantly, dis-
tinct battery aging statuses. Nevertheless, observing Table III,
the errors between actual and simulated battery signals are all
approximately of the same magnitude over the different driving
cycles. Indeed, for the voltage, the RMSE ranges between
2.14 V and 2.74 V for DC 3 and DC 1, in that order. Or,
for the SOC, the R2 lies between 0.94 and 1.00 for DC 3
and DC 5, respectively. Such performances prove the thermal
and aging model’s capability to describe the battery pack’s
degradation correctly. Indeed, for all tested driving cycles, and
their relative scenarios, the R2 for the SOC is well above 0.90,
reaching 1.0 for DC 5. In contrast, the RMSE for the internal
temperature is approximately 1 °C except for DC 1. Also, for
the simulated voltage, the RMSE does not exceed 3 V and the
minimum R2 equals 0.89 for DC 2 and DC 3.

However, the real driving cycle included in the dataset, uti-
lized as the primary input to the simulator, has been collected
by the device on board the monitored EV with a much higher
sampling frequency than the current or voltage. We have no
information about the driver’s velocity between two speed
sampled measurements. This inevitably leads to an approxima-
tion of the input driving cycle, which results in less detailed
simulated output signals, especially of current, compared to
the real ones. This limitation explains the performances drop
for the simulated current, which is highly correlated to the
pilot’s driving behavior. Indeed, for the current, the minimum
RMSE is 29.92 A for DC 5, while the maximum R2 is 0.40 for
DC 4. Still, considering this limitation, the simulator provides
accurate battery pack signals.

Moreover, we do not have any information related to the
road traits traveled by the driver but the speed, e.g., slope and
wind resistance, which highly influence the behavior of the
EV. All these contributions are embedded into the real dataset
signals and unknown to us, making perfect alignment between
simulated and actual battery pack signals impossible. Despite
this limit for the performances assessment validation, the
EV simulator demonstrates surprising accuracy in simulating
battery pack data, given the heterogeneous driving cycle and
battery degradation condition.

In Figure 4 and Figure 3, we show the simulator’s output
signals for two distinct driving cycles, DC 2 and DC 5, com-
pared to the real ones, providing to the reader a clearer insight
of the results. The EV simulator catches the correct evolution
of the signals, proving its accuracy. Indeed, looking at the
simulation results in the mentioned images, we can observe

Fig. 3. The comparison between real and simulated battery pack signals
generated that uses the input DC 5.

a decrease of SOC and the rising of internal temperature
as the vehicle’s mileage and utilization increase. Moreover,
with the reduction of SOC, we can observe a gradual decline
of the battery pack’s voltage, consequence of the electrical
potential reduction, as expected. We can also notice negative
current spikes in conformity of the vehicle’s accelerations;
and, conversely, positive current spikes in correspondence of
sudden braking. In addition, observing Figure 4 and Figure 3,
it is possible to demonstrate the relatively low R2 for the
internal temperature. Indeed, the actual internal temperature
signal is sampled once every 41s (see Table I), resulting in a
stepped curve over time. In comparison, its simulated version
changes smoothly with the other outputs making the real and
simulated temperature signals quite different. The different
curve shapes produce a low R2, although the RMSE remains
small.

V. CONCLUSIONS

In this work, we proposed an EV simulator developed
in MATLAB and Simulink environments that, starting from
an input driving cycle, generates internal battery pack sig-
nals, namely, current, voltage, SOC, and internal temperature.
The simulator includes the multi-cell battery pack subsystem
equipped with an aging model that allows us to specify its



TABLE III
THE PERFORMANCES OF THE EV SIMULATOR IN TERMS OF RMSE AND R2 FOR EACH OUTPUT BATTERY PACK SIGNAL AND INPUT DRIVING CYCLE.

DC 1 DC 2 DC 3 DC 4 DC 5
Battery signal RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Current 51.65 A 0.19 38.09 A 0.27 33.77 A 0.39 40.0 A 0.40 29.92 A 0.35
Voltage 2.74 V 0.92 2.42 V 0.89 2.14 V 0.89 2.33 V 0.94 2.26 V 0.94

SOC 1.95 % 0.97 2.54 % 0.96 1.56 % 0.94 1.06 % 0.99 0.62 % 1.00
Internal temp. 5.04 °C -0.74 0.59 °C 0.76 1.07 °C -0.27 1.31 °C 0.48 1.14 °C 0.15

Fig. 4. The comparison between real and simulated battery pack signals
generated that uses the input DC 2.

degradation conditions at the beginning of the simulation.
Moreover, we defined the thermal model, which accurately
describes the heat exchanges between the battery subsystem
and the external environment. The simulator proves accuracy
in generating output signals given different driving cycles and
battery aging statuses.

The user could generate a vast and realistic dataset of
internal battery pack signals of current, defining any custom
driving cycle and operating scenario. Moreover, we selected
the parameters for the EV simulator’s subsystems exclusively
from freely accessible technical data sheets related to the target
real-world EV model. In this way, the user can define an EV
simulator mimicking any EV model of interest whenever its
data sheet information is available.

For future works, we plan to include a detailed contribution
of all the auxiliary devices onboard the EV, affecting the
outcome of the simulation, into the EV simulator. Finally,
we will generate a synthetic and realistic dataset allowing the
development of applications to improve the monitoring of the
battery pack.
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