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Abstract. The Coronavirus disease 2019 global pandemic in the United States is 

without a vaccine or cure to prevent its spread. Social distancing and stay at home 

orders have created financial turmoil while mandatory mask requirements have 

created other controversies. This paper presents a simple agent-based SEIR 

model developed to explore the use of homemade masks of various quality in a 

representative United States population. The goal of the model is to determine if 

a non-pharmaceutical herd immunity can be achieved using homemade masks. 

Doing so without vaccines can lower even the small risk posed by an eventual 

vaccination. The model demonstrates that at high levels of adoption even a mix 

of questionable quality homemade masks can “flatten the curve” for the pan-

demic and could do so without the immediate, sever economic cost of staying at 

home. The model suggests it is possible for a herd immunity effect to cause an 

early end to the pandemic resulting in fewer affected individuals. 

Keywords: COVID-19, disease modeling, homemade masks, agent-based 

model. 

1 Introduction 

The Coronavirus disease 2019 (COVID-19) is a respiratory infection that is a global 

pandemic which originated in the People's Republic of China and spread to multiple 

continents including North American and the United States (US) in 2020. Those in-

fected with COVID-19 can be asymptomatic without visible signs of the disease, or 

symptomatic where there are obvious indications they are infected [1]. It is transmitted 

between people in close contact through droplets exhaled from an asymptomatic or 

symptomatic person to a susceptible person [2]. Social distancing [3], by which people 

stay 6 or more feet (1.8 meters) from each other, was an early US recommendation. 

Some state and local governments in the US extended the social distancing concept to 

stay at home orders where the population was instructed not to go out except for essen-

tial purposes [4]. While there are benefits to this, there has also been an obvious impact 

of job loss and financial hardship [5]. 

 

This is not the first pandemic the US has faced and probably will not be the last 

[6,7,8,9]. Previous pandemics and epidemics have led some researchers to assume that 

professional and medical quality masks would not be available to the general population 
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and explore the use of homemade masks. In the US, the Centers for Disease Control 

and Prevention (CDC) reversed an early recommendation against the wearing of masks 

by the public to one in favor of wearing masks [1]. However, any requirement to wear 

homemade masks by the general population creates controversies similar to those who 

resist vaccines. Achieving a high level of vaccination among a population is a goal of 

health officials, as a sufficient number of vaccinated individuals creates “herd immun-

ity” that impacts the ability of the disease to sustain itself and can cause an epidemic or 

pandemic to end earlier than it might do otherwise. Unfortunately, there is no vaccine 

for COVID-19 and development of vaccines is generally a multi-year process. Vaccines 

are not without risk, as there is always some chance for an adverse medical reaction by 

the individual [10]. Wearing masks in sufficient quantities may provide herd immunity 

through non-pharmaceutical means and without the risk of medical issues while waiting 

for vaccine development. In the remainder of the paper Section 2 provides some back-

ground in previous studies of the efficacy of homemade masks. The model, method, 

and mask data are described in Section 3. In Section 4 the results are presented with 

some discussion. Finally, Section 5 provides some concluding remarks. 

2 Background 

Researchers have ranked three categories of masks with N95 respirators as the best, 

followed by surgical/medical masks, then homemade masks [11]. The N95 respirators 

were studied by Balazy, et al. [12] and Johnson, et al. [13]. They discovered they lived 

up to their name with an efficacy, their ability to block viruses, of 95%, though Konda, 

et al. [14] found them to be slightly less effective. Surgical and medical masks have 

also been tested, often in comparison with masks from the other categories, with results 

ranging from very bad to N95 equivalency [12,15,14,16,17]. In response to the H1N1 

pandemic of 2009 [9], Davies, et al. [15] questioned if improvised masks used by the 

untrained general public would provide any protection from an infected wearer. They 

concluded it would be better than no protection, but should only be used as a last resort. 

MacIntyre, et al. [16] examined the common use of cloth masks among health care 

workers in some parts of the world. They cautioned against their use for protection of 

health care workers. Responding to the COVID-19 pandemic, Konda, et al. [14] studied 

a variety of materials that could be used to construct a homemade mask, finding it was 

possible to create significant protection for the wearer, but only if the mask was made 

with high quality, layered materials (see Table 1 for more information regarding mask 

efficacies). 

 

A rapid means for exploring the use of these homemade masks is through simulation. 

Epidemiology investigations can include simulations using models of virus spread in 

populations. One such model is a Susceptible-Exposed-Infected-Recovered (SEIR) ap-

proach where people start in the first of those four compartments (states) and move in 

sequence to the last of the states. SEIR models can be deterministic, making use of 

differential equations to calculate the number of people in each state [18,19,20], or sto-

chastic [21,22] where chance controls the movement between states. Modeling 



3 

homemade mask use in a population has not been a focus of many researchers. How-

ever, in response to COVID-19 a compartment SEIR mathematical model of homemade 

mask use concluded an 80% adoption of moderately effective homemade masks could 

significantly reduce death rates in two studied US states [23]. 

3 Model and Methodology 

A SEIR model was developed to explore the use of homemade masks in a representative 

United States population. The model used in this paper is a stochastic agent-based 

model (ABM) [24] and was developed using the NetLogo (version 6.1) [25] framework. 

Agents who are asymptomatic are considered “exposed’ while symptomatic agents are 

“infected.” The execution flow of the model is shown in Fig. 1 and described in the 

following paragraphs. The model and Overview, Design concepts, and Details (ODD) 

protocol [26] are available at https://tinyurl.com/y2dvu8df. 

Model Initialization. The ABM contains 3,298 agents with each agent representing 

100,000 people, approximately the population of the United States on 3 June 2020 [27]. 

All agents are placed in a 101x101 two-dimensional toroidal grid with locations drawn 

from a continuous uniform random distribution. The agents are set to a susceptible state, 

except for four who are set to exposed. Each agent's age is randomly drawn from a 

distribution based on the United States 2019 census [28] so that all agents collectively 

represent that distribution. Each agent is assigned a mask category (i.e., N95, Medical, 

Homemade, or none) based on probabilities assigned by the user. A mask type is as-

signed based on a random uniform distribution selection of available types from the 

assigned mask category (see Table 1 – Mask Type). The precise mask efficacies as-

signed to the agent is based on a continuous random normal distribution using the mean 

(µ) and standard deviation (σ) for the mask category and type as shown in Table 1. Data 

was rarely available for both ingress and egress efficacies so an agent may be assigned 

different mask types for ingress and egress. 

Model Execution. The model begins execution and continues until there are no longer 

exposed or infected agents. Each loop through the code is a single tick (a NetLogo term) 

equivalent to a single day (see blue dashed box in Fig. 1). During each tick, each agent 

moves one grid cell in a random, generally forward direction. An agent takes one of 

four paths. Agents in a recovered or susceptible state simply mode randomly. If the 

agent is in an exposed or infected state and there are other susceptible agents in its new 

location, it checks to see if it has infected the other agents (see Infection of Other 

Agents). Model execution ends when there are no longer any exposed or infected 

agents.  

Infection of Other Agents. Based on the infectiousness of the virus (see Table 2), the 

infecting agent checks to see if co-located susceptible agents can be exposed. If so, the 

infecting agent's mask's egress efficacy is checked to see if the mask blocked the virus. 
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Finally, the susceptible agent's mask’s ingress efficacy is checked to see if their mask 

blocked the virus. The two efficacy values were assigned during Model Initialization 

from randomly assigned masks drawn from Table 1. If the virus makes it through these  

Table 1. Ingress (protects wearer) and egress (protects from wearer) efficacy for various category 

and mask types. Mask Types are labels created to provide unique references within the model’s 

code. In most cases, researchers examined either ingress or egress efficacy resulting in N/A val-

ues for missing data. 

Category Mask Type Ingress Efficacy Egress Efficacy Source 

μ σ μ σ 

N95 Balazy A 95.60% 0.600% N/A N/A [12] 

Balazy B 94.40% 0.500% N/A N/A [12] 

Johnson 95.00% 0.00% 95.00% 0.00% [13] 

Konda 85.00% 15.00% N/A N/A [14] 

Medical MacIntyre 44.00% 0.00% N/A N/A [16] 

Davies N/A N/A 89.52% 2.65% [15] 

Oberg A 9.80% 0.86% N/A N/A [17] 

Oberg B 47.10% 4.80% N/A N/A [17] 
Oberg C 22.80% 2.40% N/A N/A [17] 
Oberg D 94.02% 0.60% N/A N/A [17] 
Oberg E 62.60% 0.80% N/A N/A [17] 
Oberg F 71.10% 1.40% N/A N/A [17] 
Oberg G 89.56% 1.60% N/A N/A [17] 
Oberg H 96.04% 0.40% N/A N/A [17] 
Oberg I 68.40% 2.20% N/A N/A [17] 
Balazy A 15.00% 0.10% N/A N/A [12] 

Balazy B 80.00% 0.20% N/A N/A [12] 

Konda 50.00% 7.00% N/A N/A [14] 

Homemade MacIntyre 3.00% 0.00% 
  

[16] 

Davies A N/A N/A 50.85% 16.81% [15] 

Davies B N/A N/A 48.87% 19.77% [15] 

Davies C N/A N/A 57.13% 10.55% [15] 

Davies D N/A N/A 61.67% 2.41% [15] 

Davies E N/A N/A 54.32% 29.49% [15] 

Konda A 83.00% 9.00% N/A N/A [14] 

Konda B 67.00% 16.00% N/A N/A [14] 

Konda C 57.00% 8.00% N/A N/A [14] 

Konda D 96.00% 2.00% N/A N/A [14] 

Konda E 82.00% 19.00% N/A N/A [14] 

Konda F 79.00% 23.00% N/A N/A [14] 

Konda G 38.00% 11.00% N/A N/A [14] 

Konda H 9.00% 13.00% N/A N/A [14] 

three checks, the susceptible agent's state is changed to exposed and they are assigned 

a days-until-infected counter based on a discrete random uniform distribution between 

the values min-exposed-period and max-exposed-period initially set by the user (see 

Table 2). 
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Agent Death. If an agent is in an infected state, the probability it has died is checked 

using an age-based probability distribution. If dead, the agent is removed from the sim-

ulation. 

Check for Infected to Recovered State Change. An agent in an infected state has its 

days-until-recovered counter decremented by one. If the counter has reached zero, the 

agent's state is changed to recovered. It can no longer be exposed or infected. 

Check for Exposed to Infected State Change. Agents in an exposed state have its days-

until-infected counter decremented by one. If the counter has reached zero, the agent's 

state is changed to infected and they are assigned a days-until-recovered counter based 

on a discrete random uniform distribution between the values min-infected-period and 

max-infected-period initially set by the user (see Table 2). 

 

Fig. 1. High level view of model execution flow. 

Methodology. To test the effect of homemade mask adoption at various adoption lev-

els, the other two mask categories were set to constant values of 1% for N95 and 4% 

for Medical. Other initial values for each model run are shown in Table 2. Homemade 

mask adoption ranged from 0% to 95% in increments of 5%. Five-hundred model runs 

for each of these twenty adoption values was conducted with results collected using the 

NetLogo tool BehaviorSpace. Mean and standard error values for all results were cal-

culated for the five-hundred simulations and data graphics were created with a Python 

program developed for this purpose.  
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Table 2. Initial user changeable parameter values selected for simulation. 

Parameter Value 

infectiousness 99% 

min-exposed-period 2 Days 

max-exposed-period 14 Days 

min-infected-period 10 Days 

max-infected-period 14 Days 

4 Results and Discussion 

Collective use of homemade masks in the simulation demonstrated a positive difference 

in high adoption scenarios. As homemade mask adoption increases, the total number of 

asymptomatic agents (exposed) and symptomatic agents (infected) on each day de-

creases and the peak day moves further away from the beginning of the pandemic (see 

Fig. 2A and Fig. 2B). This has a similar effect to social distancing in “flattening the 

curve.” 

 

Examining the maximum number of agents affected on the worse day (combining 

asymptomatic and symptomatic states) demonstrates a monotonically decreasing num-

ber of agents as homemade mask adoption increases (see Fig. 3A). The number of days 

into the pandemic that the worse day occurs increases as part of the effect of flattening 

the curve until adoption reaches 85%, then decreases during the remaining two adoption 

percentages (see Fig. 3B). The data graphics in Fig. 4 provide two views of pandemic 

length. Fig. 4A show pandemic length increasing monotonically as mask adoption in-

creases until adoption reaches 85%, then decreasing after that. Fig. 4B tracks the max-

imum length (the end of each plot) and daily mean number of susceptible agents for all 

mask adoption scenarios. This demonstrates even the maximum pandemic lengths de-

cease at high homemade mask adoptions. 

 

Fig. 2. The left figure (A) shows the mean number of agents exposed (asymptomatic) each day 

while the right figure (B) shows the same for agents infected (symptomatic) each day. The legend 

indicates the percent of agents using homemade masks. The means are calculated over five-hun-

dred model runs. 
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Fig. 3. The mean maximum agents affected on the worse day is shown in the left figure (A). The 

right figure (B) shows the mean day on which the mean maximum number of agents were af-

fected. Standard error for the y-axis is shown in light blue. The means are calculated over five-

hundred model runs. 

 

Fig. 4. The left figure (A) shows the mean number of days the pandemic lasted for each home-

made mask adoption percentage with standard error for the y-axis in light blue. The right figure 

(B) shows the number of susceptible agents each day for each homemade mask adoption percent-

age with the end point showing the maximum length of any run. The legend for B indicates the 

percent of agents using homemade masks. All means are calculated over five-hundred model 

runs. 

5 Conclusion 

Using a simulated population in a simple environment, this paper is intended to con-

tribute to the ongoing discussion regarding the use of homemade masks by an untrained, 

general population. Individually, homemade masks made from a wide variety of mate-

rials [14,16,15] range from ineffective to potentially equivalent to the N95 mask. As 

demonstrated in Section 4, a collection of mixed efficacy masks at high adoption levels 

can decrease the maximum number of affected agents on the worse day by slowing the 

pace at which the virus spreads. This flattens the curve, but does so without the 
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immediate, sever economic cost of staying at home. It is also possible for an early end 

to the pandemic with fewer affected agents if the virus is unable to find new hosts in a 

susceptible, but well masked, population. This achieves a goal of herd immunity by 

non-pharmaceutical means at an adoption percent of 85%. Unfortunately, this positive 

outcome takes place only at levels of adoption that may not be possible to achieve. 

 

Like all models, this one can be improved or extended. For example, different types 

of social networks could be added. Social networks that included family members, 

coworkers, fellow students, and friends would limit agent-to-agent contact in a manner 

more realistic than random motion in a large box. A second extension could recognize 

that humans move with purpose and not at random [29] thus limiting or extending the 

reasons that the agents come into contact. Finally, social distancing could be added to 

study the effect of combining homemade masks and social distancing. 
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